Eigenvalues/Eigenvectors | Eigenvalues and Eigenvectors |
|
For any m X m matrix A, the number of 0 eigenvalues is at least equal to dim nullspace(A),
For diagonalizable matrix A, the number of 0 eigenvalues is precisely dim nullspace(A) while the corresponding eigenvectors span nullspace(A). The real and imaginary parts of the eigenvectors remaining span range(A). TRANSPOSE. Likewise, for any m X n matrix A, For any square m X m matrix A, the number of 0 eigenvalues is at least equal to dim nullspace(A^T)=dim nullspace(A) while the left-eigenvectors (eigenvectors of A^T) corresponding to those 0 eigenvalues belong to nullspace(A^T). For diagonalizable A, the number of 0 eigenvalues is precisely dim nullspace(A^T) while the corresponding left-eigenvectors |






