Home
Wikimization
Contact Us
Accumulator error feedback
CVX Download
Calculus of Inequalities
Rick Chartrand
Chromosome Structure EDM
Complementarity problem
Compressive Sampling
Compressed Sensing
Conic Independence
Convex Cones
Convex Functions
Convex Geometry
Convex, Affine, Conic: Hulls
Convex Iteration
Convex Optimization
Convex Optimization Group
Dattorro PC Optimization
Dattorro Supercomputer
Distance Geometry
Distance Matrix Cone
Dual Cones
Duality Gap
Eigenvalues/Eigenvectors
Elliptope and Fantope
Euclidean Distance Matrices
EDM cone faces
Extreme Directions
Face Recognition
Farkas Lemma
Fermat point
Fifth Metric Property
Jensen's Inequality
Jobs in Optimization
Kissing Number
Harold W. Kuhn
Linear Algebra
Linear Matrix Inequality
Manifold Learning
MATLAB for Optimization
Matrix Calculus
Molecular Conformation
Moreau's theorem
Isaac Newton
Angelia Nedic
Open Problems
Positive Matrix Factorization
Positive Semidefinite Cone
Projection
Projection on Cone
Proximity Problems
PY4SCIENCE
Quasiconvex Functions
Rank Constraint
Rockafellar
Justin Romberg
Michael Saunders
Schoenberg Criterion
Semidefinite Programming
Sensor Network Localization
Smallest Simplex
Systems Optimization Lab
Stanford SOL
Talks on Optimization
Joshua Trzasko
Video
Wikimization     Meboo     SOL      Video     CVX     Contact     
Felice crystal
Home arrow Euclidean Distance Matrices
Euclidean Distance Matrix


"These results were obtained by Schoenberg (1935), a surprisingly late date for such a fundamental property of Euclidean geometry."

   cubix

By itself, distance information between many points in Euclidean space is lacking.  We might want to know more; such as, relative or absolute position or dimension of some hull. A question naturally arising in some fields (e.g., geodesy, economics, genetics, psychology, biochemistry, engineering) asks what facts can be deduced given only distance information. What can we know about the underlying points that the distance information purports to describe? We also ask what it means when given distance information is incomplete; or suppose the distance information is not reliable, available, or specified only by certain tolerances (affine inequalities).  These questions motivate a study of interpoint distance, well represented in any spatial dimension by a simple matrix from linear algebra.  In the book, we answer some of these questions via Euclidean distance matrices.

Euclidean space is a finite-dimensional real vector space having an inner product defined on it, hence a metric as well. A Euclidean distance matrix, an EDM, is an exhaustive table of distance-square between points taken by pair from a list of N points; the squared metric, the measure of distance-square.

Read more...

 
Course,   Video
Convex Optimization
     convex optimization
Stephen Boyd 
L. Vandenberghe 


Dattorro      convex optimization Euclidean distance geometry 2ε
Dattorro


Course
Bertsekas
     books by Bertsekas
Dimitri Bertsekas 


See Inside Hiriart-Urruty & Lemaréchal
Hiriart-Urruty
& Lemaréchal


See Inside
Rockafellar Rockafellar