Hiriart-Urruty

From Wikimization

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
Born in 1949, in Hasparren in the French side of the Basque country, Jean-Baptiste Hiriart-Urruty
Born in 1949, in Hasparren in the French side of the Basque country, Jean-Baptiste Hiriart-Urruty
studied in Pau and Bordeaux, passed the "agregation de mathematiques" in 1972, and the "doctorat d'Etat" in mathematics in 1977 from the Blaise-Pascal University in Clermont-Ferrand. He has been a professor of Mathematics at the Paul-Sabatier University in Toulouse since 1981.
studied in Pau and Bordeaux, passed the "agregation de mathematiques" in 1972, and the "doctorat d'Etat" in mathematics in 1977 from the Blaise-Pascal University in Clermont-Ferrand. He has been a professor of Mathematics at the Paul-Sabatier University in Toulouse since 1981.
 +
[[Image:Hiriart-Urruty.jpg|thumb|right|450px|Jean-Baptiste Hiriart-Urruty]]
After being responsible for six years for the program of doctoral studies in applied mathematics, he headed the Laboratory of Numerical Analysis from 1988 to 1993.
After being responsible for six years for the program of doctoral studies in applied mathematics, he headed the Laboratory of Numerical Analysis from 1988 to 1993.

Revision as of 16:14, 26 January 2008

Born in 1949, in Hasparren in the French side of the Basque country, Jean-Baptiste Hiriart-Urruty studied in Pau and Bordeaux, passed the "agregation de mathematiques" in 1972, and the "doctorat d'Etat" in mathematics in 1977 from the Blaise-Pascal University in Clermont-Ferrand. He has been a professor of Mathematics at the Paul-Sabatier University in Toulouse since 1981.

Jean-Baptiste Hiriart-Urruty
Jean-Baptiste Hiriart-Urruty

After being responsible for six years for the program of doctoral studies in applied mathematics, he headed the Laboratory of Numerical Analysis from 1988 to 1993. Hiriart-Urruty's interests in research included variational analysis (convex, nonsmooth, applied), and optimization. He also takes an active interest in issues of mathematics education. Besides the two-volume research monograph written with Claude Lemarechal (1993), he is also the author of a popular-level booklet on optimization (1996), and has published two books of exercises on linear and bilinear algebra (1988), and on convex analysis and optimization (1998).

His most recent book, Fundamentals of Convex Analysis with Claude Lemarechal (2001, in one volume), is an abbreviation and enhancement of their two-volume monograph.

Contents

two booklets on optimization and optimal control (in French)

Jean-Baptiste Hiriart-Urruty, Professor of mathematics, Paul Sabatier University in Toulouse, France.

Annonce de parution de livres

Les deux opuscules dont les contenus sont risumis ci-dessous, en format 14,5-19cm, + ligers en poids et en prix ;, sont en vente dans les librairies. Les fichiers pdf joints en sont des publicitis, avec avant-propos et tables des matihres.

Opuscule N0 8. Les mathimatiques du mieux faire. Volume 1 : Premiers pas en optimisation.

L'usage frangais du verbe optimiser nous est arrivi vers le milieu du XIX-hme sihcle d'Angleterre, oy /+ to optimize/ ; signifiait /+ se comporter en optimiste ;/ ; on peut donc dire que l'optimiseur est comme l'optimiste qui pense /pouvoir toujours mieux faire./ Mais ce n'est que dans la deuxihme moitii du XX-hme sihcle que les mathimaticiens, motivis par les demandes issues des applications, ont iti conduits ` poser les fondations modernes des /+ mathimatiques du mieux faire ;/, matihre principale de ces deux Opuscules (n0 8 et 9) sur l'optimisation et la commande optimale. Ces /+ Premiers pas en optimisation ;/ sont destinis ` un large public, dans un souci de popularisation des bases mathimatiques de l'optimisation vers des domaines utilisateurs partiels, intiressis, ou potentiels : automatique, iconomie mathimatique, analyse numirique, statistique, etc. Dans notre prisentation, l'accent a iti mis sur les /idies/ davantage que sur les techniques ou giniralisations que le lecteur plus intiressi aura tout loisir de divelopper.

Opuscule N0 9. Les mathimatiques du mieux faire. Volume 2 : la commande optimale pour les dibutants.

Commander un systhme physique, micanique, iconomique, ivoluant avec le temps, de manihre ` lui faire faire quelque chose de manihre optimale (selon divers crithres choisis), voila un objectif qui apparant dans bien des domaines d'applications des sciences de l'inginieur. Ce n'est que dans la deuxihme moitii du XX-hme sihcle que les inginieurs, automaticiens et mathimaticiens, motivis par les demandes issues des applications, ont iti conduits ` poser les fondations modernes de ce volet des /+ mathimatiques du mieux faire ;/ : la thiorie de la commande optimale. Cet opuscule /+ La commande optimale pour les dibutants ; ;/ est destini ` un large public, dans un souci de popularisation des bases mathimatiques de la commande optimale vers des domaines utilisateurs partiels, intiressis, ou potentiels : l'automatique, le spatial, l'iconomie, la robotique, etc. Notre prisentation se borne ` une /initiation/, l'accent est mis sur les /idies/ de base ; beaucoup /d'exemples d'illustration/ accompagnent les risultats fondamentaux.

Personal tools