Binomial coefficient

From Wikimization

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
== full definition, Matlab ==
== full definition, Matlab ==
-
binomial coefficient from M.J. Kronenburg
+
binomial coefficient from M.J. Kronenburg [336]
-
[https://arxiv.org/pdf/1105.3689.pdf]
+
Also see: [https://www.wolframalpha.com/input/?i=binomial+coefficient&assumption=%7B%22F%22%2C+%22BinomialCoefficientCalculator%22%2C+%22n%22%7D+-%3E%22-10%22&assumption=%7B%22F%22%2C+%22BinomialCoefficientCalculator%22%2C+%22k%22%7D+-%3E%225%22&assumption=%7B%22C%22%2C+%22binomial+coefficient%22%7D+-%3E+%7B%22Calculator%22%7D Wolfram <math>\alpha</math>]
Also see: [https://www.wolframalpha.com/input/?i=binomial+coefficient&assumption=%7B%22F%22%2C+%22BinomialCoefficientCalculator%22%2C+%22n%22%7D+-%3E%22-10%22&assumption=%7B%22F%22%2C+%22BinomialCoefficientCalculator%22%2C+%22k%22%7D+-%3E%225%22&assumption=%7B%22C%22%2C+%22binomial+coefficient%22%7D+-%3E+%7B%22Calculator%22%7D Wolfram <math>\alpha</math>]
Line 30: Line 29:
return
return
</pre>
</pre>
 +
 +
==References==
 +
336. M.J. Kronenburg, [https://arxiv.org/pdf/1105.3689.pdf "The Binomial Coefficient for Negative Arguments"], arXiv:1105.3689.

Revision as of 17:45, 16 September 2024

full definition, Matlab

binomial coefficient from M.J. Kronenburg [336]

Also see: Wolfram LaTeX: \alpha

full binomial coefficient definition including negative argument
full binomial coefficient definition including negative argument
function y = binomial(n, k)
if ~k || k == n
   y = 1;
elseif k == 1
   y = n;
elseif n < 0
   if k > 0
      y = (-1)^k*nchoosek(-n+k-1, k);
   elseif k <= n
      y = (-1)^(n-k)*nchoosek(-k-1, n-k);
   elseif n < k && k < 0
      y = 0;
   end
elseif n >= 0
   if k < 0 || k > n
      y = 0;
   else
      y = nchoosek(n,k);
   end
end
return

References

336. M.J. Kronenburg, "The Binomial Coefficient for Negative Arguments", arXiv:1105.3689.

Personal tools