Moreau's decomposition theorem
From Wikimization
(→Moreau's theorem) |
m (→Projection mapping) |
||
| (31 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| + | [http://web.mat.bham.ac.uk/S.Z.Nemeth/ <math>-</math> Sándor Zoltán Németh] | ||
| + | |||
| + | (In particular, we can have <math>\mathbb{H}=\mathbb{R}^n</math> everywhere in this page.) | ||
| + | |||
== Projection on closed convex sets == | == Projection on closed convex sets == | ||
=== Projection mapping === | === Projection mapping === | ||
| - | + | Let <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> be a Hilbert space and <math>\mathcal{C}</math> a closed convex set in <math>\mathbb{H}.</math> The '''projection mapping''' <math>P_{\mathcal{C}}</math> onto <math>\mathcal{C}</math> is the mapping <math>P_{\mathcal{C}}:\mathbb{H}\to\mathbb{H}</math> defined by <math>P_{\mathcal{C}}(x)\in\mathcal{C}</math> and | |
| - | Let <math>(\ | + | |
<center> | <center> | ||
| - | <math>\ | + | <math>\parallel x-P_{\mathcal{C}}(x)\parallel=\min\{\parallel x-y\parallel\,:y\in\mathcal{C}\}.</math> |
</center> | </center> | ||
=== Characterization of the projection === | === Characterization of the projection === | ||
| - | + | Let <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> be a Hilbert space, <math>\mathcal{C}</math> a closed convex set in <math>\mathbb{H},\,u\in\mathbb{H}</math> and <math>v\in\mathcal{C}.</math> Then <math>v=P_{\mathcal{C}}(u)</math> if and only if <math>\langle u-v,w-v\rangle\leq0</math> for all <math>w\in\mathcal{C}.</math> | |
| - | + | ||
| - | + | ||
| - | Let <math>(\ | + | |
=== Proof === | === Proof === | ||
| - | + | Suppose that <math>v=P_{\mathcal{C}}u.</math> Let <math>w\in\mathcal{C}</math> and <math>t\in (0,1)</math> be arbitrary. By using the convexity of <math>\mathcal{C},</math> it follows that <math>(1-t)v+tw\in\mathcal{C}.</math> Then, by using the definition of the projection, we have | |
| - | Suppose that <math>v=P_{\mathcal C}u.</math> Let <math>w\in\mathcal C</math> and <math>t\in (0,1)</math> be arbitrary. By using the convexity of <math>\mathcal C,</math> it follows that <math>(1-t)v+tw\in\mathcal C.</math> Then, by using the definition of the projection, we have | + | |
<center> | <center> | ||
<math> | <math> | ||
| - | \ | + | \parallel u-v\parallel^2\leq\parallel u-((1-t)v+tw)\parallel^2=\parallel u-v-t(w-v)\parallel^2=\parallel u-v\parallel^2-2t\langle u-v,w-v\rangle+t^2\parallel w-v\parallel^2, |
</math> | </math> | ||
</center> | </center> | ||
| Line 28: | Line 27: | ||
<center> | <center> | ||
| - | <math>\langle u-v,w-v\rangle\leq\frac t2\ | + | <math>\langle u-v,w-v\rangle\leq\frac t2\parallel w-v\parallel^2.</math> |
</center> | </center> | ||
| Line 35: | Line 34: | ||
<br> | <br> | ||
| - | Conversely, suppose that <math>\langle u-v,w-v\rangle\leq0,</math> for all <math>w\in\mathcal C.</math> Then | + | Conversely, suppose that <math>\langle u-v,w-v\rangle\leq0,</math> for all <math>w\in\mathcal C.</math> Then |
<center> | <center> | ||
| - | <math>\ | + | <math>\parallel u-w\parallel^2=\parallel u-v-(w-v)\parallel^2=\parallel u-v\parallel^2-2\langle u-v,w-v\rangle+\parallel w-v\parallel^2\geq \parallel u-v\parallel^2,</math> |
</center> | </center> | ||
| Line 44: | Line 43: | ||
== Moreau's theorem == | == Moreau's theorem == | ||
| + | Moreau's theorem is a fundamental result characterizing projections onto closed convex cones in Hilbert spaces. | ||
| - | + | Recall that a '''convex cone''' in a vector space is a set which is invariant | |
| - | under the addition of vectors and multiplication of vectors by positive scalars | + | under the addition of vectors and multiplication of vectors by positive scalars. |
| - | '''Theorem (Moreau)''' Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\ | + | '''Theorem (Moreau).''' Let <math>\mathcal{K}</math> be a closed convex cone in the Hilbert space <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>\mathcal{K}^\circ</math> its '''polar cone'''; that is, the closed convex cone defined by <math>\mathcal{K}^\circ=\{a\in\mathbb{H}\,\mid\,\langle a,b\rangle\leq0,\,\forall b\in\mathcal{K}\}.</math> |
| + | |||
| + | For <math>x,y,z\in\mathbb{H}</math> the following statements are equivalent: | ||
<ol> | <ol> | ||
| - | <li><math>z=x+y,\,x\in\mathcal K,\,y\in\mathcal K^\circ</math> and <math>\langle x,y\rangle=0,</math></li> | + | <li><math>z=x+y,\,x\in\mathcal{K},\,y\in\mathcal{K}^\circ</math> and <math>\langle x,y\rangle=0,</math></li> |
| - | <li><math>x=P_{\mathcal K}z</math> and <math>y=P_{\mathcal K^\circ}z.</math> | + | <li><math>x=P_{\mathcal{K}}z</math> and <math>y=P_{\mathcal{K}^\circ}z.</math> |
</li> | </li> | ||
</ol> | </ol> | ||
=== Proof of Moreau's theorem === | === Proof of Moreau's theorem === | ||
| - | |||
<ul> | <ul> | ||
| - | <li>1<math>\Rightarrow</math>2: For all <math>p\in K</math> we have | + | <li>1<math>\Rightarrow</math>2: For all <math>p\in\mathcal{K}</math> we have |
<center> | <center> | ||
| Line 65: | Line 66: | ||
</center> | </center> | ||
| - | Then, by the characterization of the projection, it follows that <math>x=P_{\mathcal K}z.</math> Similarly, for all <math>q\in K^\circ</math> we have | + | Then, by the characterization of the projection, it follows that <math>x=P_{\mathcal{K}}z.</math> Similarly, for all <math>q\in\mathcal{K}^\circ</math> we have |
<center> | <center> | ||
| Line 71: | Line 72: | ||
</center> | </center> | ||
| - | and thus <math>y=P_{\mathcal K^\circ}z.</math></li> | + | and thus <math>y=P_{\mathcal{K}^\circ}z.</math></li> |
| - | <li>2<math>\Rightarrow</math>1: By using the characterization of the projection, we have <math>\langle z-x,p-x\rangle\leq0,</math> for all <math>p\in\mathcal K.</math> In particular, if <math>p=0,\,</math> then <math>\langle z-x,x\rangle\geq0</math> and if <math>p=2x,\,</math> then <math>\langle z-x,x\rangle\leq0.</math> Thus, <math>\langle z-x,x\rangle=0.</math> Denote <math>u=z-x.\,</math> Then | + | <li>2<math>\Rightarrow</math>1: By using the characterization of the projection, we have <math>\langle z-x,p-x\rangle\leq0,</math> for all <math>p\in\mathcal K.</math> In particular, if <math>p=0,\,</math> then <math>\langle z-x,x\rangle\geq0</math> and if <math>p=2x,\,</math> then <math>\langle z-x,x\rangle\leq0.</math> Thus, <math>\langle z-x,x\rangle=0.</math> Denote <math>u=z-x.\,</math> Then <math>\langle x,u\rangle=0.</math> It remains to show that <math>u=y.\,</math> First, we prove that <math>u\in\mathcal{K}^\circ.</math> For this we have to show that <math>\langle u,p\rangle\leq0,</math> for |
| - | all <math>p\in\mathcal K.</math> By using the characterization of the projection, we have | + | all <math>p\in\mathcal{K}.</math> By using the characterization of the projection, we have |
<center> | <center> | ||
| Line 81: | Line 82: | ||
</center> | </center> | ||
| - | for all <math>p\in\mathcal K.</math> Thus, <math>u\in\mathcal K^\circ.</math> We also have | + | for all <math>p\in\mathcal{K}.</math> Thus, <math>u\in\mathcal{K}^\circ.</math> We also have |
<center> | <center> | ||
| Line 89: | Line 90: | ||
</center> | </center> | ||
| - | for all <math>q\in K^\circ,</math> because <math>x\in K.</math> By using again the characterization of the projection, it follows that <math>u=y.\,</math> | + | for all <math>q\in\mathcal{K}^\circ,</math> because <math>x\in\mathcal{K}.</math> By using again the characterization of the projection, it follows that <math>u=y.\,</math> |
| - | + | ||
</ul> | </ul> | ||
| - | === | + | === notes === |
| + | For definition of ''convex cone'' in finite dimension see [[Convex cones | Convex cones, Wikimization]]. | ||
| - | + | For definition of ''polar cone'' in finite dimension, see [http://meboo.convexoptimization.com/Meboo.html Convex Optimization & Euclidean Distance Geometry]. | |
| - | = | + | <math>\mathcal{K}^{\circ\circ}=\mathcal{K}</math> see [[Farkas%27_lemma#Extended_Farkas.27_lemma|Extended Farkas' lemma]]. |
| - | === | + | == Applications == |
| + | For applications see [[Complementarity_problem#Every_nonlinear_complementarity_problem_is_equivalent_to_a_fixed_point_problem|Every nonlinear complementarity problem is equivalent to a fixed point problem]], [[Complementarity_problem#Every_implicit_complementarity_problem_is_equivalent_to_a_fixed_point_problem|Every implicit complementarity problem is equivalent to a fixed point problem]], | ||
| + | and [[Projection_on_Polyhedral_Cone#Projection_on_isotone_projection_cones|Projection on isotone projection cone]]. | ||
| - | + | === References === | |
| - | + | * J. J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires, C. R. Acad. Sci., volume 255, pages 238–240, 1962. | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | == | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
Current revision
(In particular, we can have everywhere in this page.)
Contents |
Projection on closed convex sets
Projection mapping
Let be a Hilbert space and
a closed convex set in
The projection mapping
onto
is the mapping
defined by
and
Characterization of the projection
Let be a Hilbert space,
a closed convex set in
and
Then
if and only if
for all
Proof
Suppose that Let
and
be arbitrary. By using the convexity of
it follows that
Then, by using the definition of the projection, we have
Hence,
By tending with to
we get
Conversely, suppose that for all
Then
for all Hence, by using the definition of the projection, we get
Moreau's theorem
Moreau's theorem is a fundamental result characterizing projections onto closed convex cones in Hilbert spaces.
Recall that a convex cone in a vector space is a set which is invariant under the addition of vectors and multiplication of vectors by positive scalars.
Theorem (Moreau). Let be a closed convex cone in the Hilbert space
and
its polar cone; that is, the closed convex cone defined by
For the following statements are equivalent:
and
and
Proof of Moreau's theorem
- 1
2: For all
we have
Then, by the characterization of the projection, it follows that
Similarly, for all
we have
and thus - 2
1: By using the characterization of the projection, we have
for all
In particular, if
then
and if
then
Thus,
Denote
Then
It remains to show that
First, we prove that
For this we have to show that
for all
By using the characterization of the projection, we have
for all
Thus,
We also have
for all
because
By using again the characterization of the projection, it follows that
notes
For definition of convex cone in finite dimension see Convex cones, Wikimization.
For definition of polar cone in finite dimension, see Convex Optimization & Euclidean Distance Geometry.
Applications
For applications see Every nonlinear complementarity problem is equivalent to a fixed point problem, Every implicit complementarity problem is equivalent to a fixed point problem, and Projection on isotone projection cone.
References
- J. J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires, C. R. Acad. Sci., volume 255, pages 238–240, 1962.