Moreau's decomposition theorem

From Wikimization

(Difference between revisions)
Jump to: navigation, search
m (Moreau's theorem)
m (Moreau's theorem)
Line 44: Line 44:
Moreau's theorem is a fundamental result characterizing projections onto closed convex cones in Hilbert spaces. Recall that a '''convex cone''' in a vector space is a set which is invariant
Moreau's theorem is a fundamental result characterizing projections onto closed convex cones in Hilbert spaces. Recall that a '''convex cone''' in a vector space is a set which is invariant
-
under the addition of vectors and multiplication of vectors by positive scalars (see more at [http://en.wikipedia.org/wiki/Convex_cone Convex cone (Wikipedia)] or for finite dimension at [http://www.convexoptimization.com/wikimization/index.php/Convex_cones Convex cone (Wikimization)]).
+
under the addition of vectors and multiplication of vectors by positive scalars (see more at [http://en.wikipedia.org/wiki/Convex_cone Convex cone (Wikipedia)] or for finite dimension at [[Convex cones | Convex cone (Wikimization)]]).
-
'''Theorem (Moreau)''' Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathcal H,\langle\cdot,\cdot\rangle)</math> and <math>\mathcal K^\circ</math> its '''polar cone'''; that is, the closed convex cone defined by <math>K^\circ=\{a\in\mathcal H\mid\langle a,b\rangle\leq0,\,\forall b\in\mathcal K\}</math> (for finite dimension see more at [http://en.wikipedia.org/wiki/Dual_cone_and_polar_cone Dual cone and polar cone]; see also [http://www.convexoptimization.com/wikimization/index.php/Farkas%27_lemma#Extended_Farkas.27_lemma Extended Farkas' lemma]). For <math>x,y,z\in\mathcal H</math> the following statements are equivalent:
+
'''Theorem (Moreau)''' Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathcal H,\langle\cdot,\cdot\rangle)</math> and <math>\mathcal K^\circ</math> its '''polar cone'''; that is, the closed convex cone defined by <math>K^\circ=\{a\in\mathcal H\mid\langle a,b\rangle\leq0,\,\forall b\in\mathcal K\}</math> (for finite dimension see more at [http://en.wikipedia.org/wiki/Dual_cone_and_polar_cone Dual cone and polar cone]; see also [[Farkas%27_lemma#Extended_Farkas.27_lemma | Extended Farkas' lemma]]). For <math>x,y,z\in\mathcal H</math> the following statements are equivalent:
<ol>
<ol>

Revision as of 05:51, 11 July 2009

Contents

Projection mapping

Let LaTeX: (\mathcal H,\langle\cdot,\cdot\rangle) be a Hilbert space and LaTeX: \mathcal C a closed convex set in LaTeX: \mathcal H. The projection mapping LaTeX: P_{\mathcal C} onto LaTeX: \mathcal C is the mapping LaTeX: P_{\mathcal C}:\mathcal H\to\mathcal H defined by LaTeX: P_{\mathcal C}(x)\in\mathcal C and

LaTeX: \|x-P_{\mathcal C}(x)\|=\min\{\|x-y\|\mid y\in\mathcal C\}.

Characterization of the projection

Let LaTeX: (\mathcal H,\langle\cdot,\cdot\rangle) be a Hilbert space, LaTeX: \mathcal C a closed convex set in LaTeX: \mathcal H,\,u\in\mathcal H and LaTeX: v\in\mathcal C. Then, LaTeX: v=P_{\mathcal C}(u) if and only if LaTeX: \langle u-v,w-v\rangle\leq0 for all LaTeX: w\in\mathcal C.

Proof

Suppose that LaTeX: v=P_{\mathcal C}u and let LaTeX: w\in\mathcal C be arbitrary. By using the convexity of LaTeX: \mathcal C, it follows that LaTeX: (1-t)v+tw\in\mathcal C, for all LaTeX: t\in (0,1). Then, by using the definition of the projection, we have

LaTeX: 
\|u-v\|^2\leq\|u-[(1-t)v+tw]\|^2=\|u-v-t(w-v)\|^2=\|u-v\|^2-2t\langle u-v,w-v\rangle+t^2\|w-v\|^2
.

Hence,

LaTeX: \langle u-v,w-v\rangle\leq\frac t2\|w-v\|^2.

By tending with LaTeX: t to LaTeX: 0, we get LaTeX: \langle u-v,w-v\rangle\leq0.

Conversely, suppose that LaTeX: \langle u-v,w-v\rangle\leq0, for all LaTeX: w\in\mathcal C. Then,

LaTeX: \|u-w\|^2=\|u-v-(w-v)\|^2=\|u-v\|^2-2\langle u-v,w-v\rangle+\|w-v\|^2\geq \|u-v\|^2,

for all LaTeX: w\in\mathcal C. Hence, by using the definition of the projection, we get LaTeX: v=P_{\mathcal C}u.

Moreau's theorem

Moreau's theorem is a fundamental result characterizing projections onto closed convex cones in Hilbert spaces. Recall that a convex cone in a vector space is a set which is invariant under the addition of vectors and multiplication of vectors by positive scalars (see more at Convex cone (Wikipedia) or for finite dimension at Convex cone (Wikimization)).

Theorem (Moreau) Let LaTeX: \mathcal K be a closed convex cone in the Hilbert space LaTeX: (\mathcal H,\langle\cdot,\cdot\rangle) and LaTeX: \mathcal K^\circ its polar cone; that is, the closed convex cone defined by LaTeX: K^\circ=\{a\in\mathcal H\mid\langle a,b\rangle\leq0,\,\forall b\in\mathcal K\} (for finite dimension see more at Dual cone and polar cone; see also Extended Farkas' lemma). For LaTeX: x,y,z\in\mathcal H the following statements are equivalent:

  1. LaTeX: z=x+y,\,x\in\mathcal K,\,y\in\mathcal K^\circ and LaTeX: \langle x,y\rangle=0
  2. LaTeX: x=P_{\mathcal K}z and LaTeX: y=P_{\mathcal K^\circ}z

Proof of Moreau's theorem

  • 1LaTeX: \Rightarrow2: For all LaTeX: p\in K we have

    LaTeX: \langle z-x,p-x\rangle=\langle y,p-x\rangle=\langle y,p\rangle\leq0.

    Then, by the characterization of the projection, it follows that LaTeX: x=P_{\mathcal K}z. Similarly, for all LaTeX: q\in K^\circ we have

    LaTeX: \langle z-y,q-y\rangle=\langle x,q-y\rangle=\langle x,q\rangle\leq0

    and thus LaTeX: y=P_{\mathcal K^\circ}z.
  • 2LaTeX: \Rightarrow1: Let LaTeX: x=P_{\mathcal K}z. By the characterization of the projection we have LaTeX: \langle z-x,p-x\rangle\leq0, for all LaTeX: p\in\mathcal K. In particular, if LaTeX: p=0, then LaTeX: \langle z-x,x\rangle\geq0 and if LaTeX: p=2x, then LaTeX: \langle z-x,x\rangle\leq0. Thus, LaTeX: \langle z-x,x\rangle=0. Denote LaTeX: y=z-x. Then, LaTeX: \langle x,y\rangle=0. It remained to show that LaTeX: y=P_{\mathcal K^\circ}z. First, we prove that LaTeX: y\in\mathcal K^\circ. For this we have to show that LaTeX: \langle y,p\rangle\leq0, for all LaTeX: p\in\mathcal K. By using the characterization of the projection, we have

    LaTeX: 
\langle y,p\rangle=\langle y,p-x\rangle=\langle z-x,p-x\rangle\leq0,

    for all LaTeX: p\in\mathcal K. Thus, LaTeX: y\in\mathcal K^\circ. We also have

    LaTeX: 
\langle z-y,q-y\rangle=\langle x,q-y\rangle=\langle x,q\rangle\leq0,

    for all LaTeX: q\in K^\circ, because LaTeX: x\in K. By using again the characterization of the projection, it follows that LaTeX: y=P_{\mathcal K^\circ}z.

References

  • J. J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires, C. R. Acad. Sci., volume 255, pages 238–240, 1962.
Personal tools