# Talk:Beginning with CVX

```lamda_W=eig(full(W))
```

Thanks for the ideas it's great. Thank you very much :D.

I have an answer, how to calculate the normalized eigenvector.

Maybe?
`[v_W]=eig(full(W))/norm ....`

I've changed Epsilon1, Epsilon2, they aren't a variable, I think they are constants.

I'm going to see how to initialice (I'm going to research in the references of my article (Cross fingers)

Thanks a lot again.

Here is the new code:

```
clear all;
n=2; m=1;

A_a=3*eye(2*n,2*n)
B_a=4*eye(2*n,2*m)
W=eye(4)
R=(zeros(2,4))

H=W*A_a'+A_a*W-B_a*R-R'*B_a'

lamda_W=min(eig(full(W)))
lamda_H=max(eig(H))

Epsilon1=1;
Epsilon2=1;

if(lamda_W>=Epsilon1)
if(lamda_H<=-Epsilon2)     para=1
else para = 0
end
else para =0
end

%v_W=eig(W)/(abs(eig(W)))
%v_W=eig(full(W))/abs(full(W))%%normalized eigenvector :|
%v_H=eig(H)/max(eig(H))

while para==0

[v_W,D] = eig(W)
[v_H,D] = eig(H)

if ( Epsilon1 - lamda_W )>(lamda_H+Epsilon2)

cvx_begin

variables p1 p2 W(4,4) R(2,4)

minimize (p1+p2)

subject to

W(1,1)<=p1
W(2,2)<=p1
W(1,1)>=Epsilon1
W(2,2)>=Epsilon1
W(3,3)==W(1,1)
W(4,4)==W(2,2)

R(1,1)>=-p2
R(1,1)<=p2
R(2,3)==R(1,1)

R(1,2)>=-p2
R(1,2)<=p2
R(2,4)==R(1,2)

H=W*A_a'+A_a*W-B_a*R-R'*B_a'

W - Epsilon1*eye(2*n) == semidefinite(2*n);
Epsilon2*eye(2*n) + H == -semidefinite(2*n);

v_W'*W*v_W>=Epsilon1*eye(4)

cvx_end

else

cvx_begin

variables p1 p2 W(4,4) R(2,4)

minimize (p1+p2)

subject to

W(1,1)>=Epsilon1
W(2,2)>=Epsilon1

W(1,1)<=p1
W(2,2)<=p1
W(3,3)==W(1,1)
W(4,4)==W(2,2)

R(1,1)>=-p2
R(1,1)<=p2
R(2,3)==R(1,1)

R(1,2)>=-p2
R(1,2)<=p2
R(2,4)==R(1,2)

H=W*A_a'+A_a*W-B_a*R-R'*B_a'

W - Epsilon1*eye(2*n) == semidefinite(2*n);
Epsilon2*eye(2*n) + H == -semidefinite(2*n);

v_H'*H*v_H<=-Epsilon2*eye(4)

cvx_end
end

lamda_W=min(eig(full(W)))
lamda_H=max(eig(H))

% v_W=eig(full(W))/max(eig(full(W)))%%Cálculo del normalized eigenvector
% v_H=eig(H)/max(eig(H))

%STOP
if(lamda_W>=Epsilon1)
if(lamda_H<=-Epsilon2)     para=1
else para = 0
end
else para =0
end

end

R
W
K=R/W```