Complementarity problem

From Wikimization

(Difference between revisions)
Jump to: navigation, search
(Every implicit complementarity problem is equivalent to a fixed point problem)
Line 1: Line 1:
[http://web.mat.bham.ac.uk/S.Z.Nemeth/ <math>-</math> Sándor Zoltán Németh]
[http://web.mat.bham.ac.uk/S.Z.Nemeth/ <math>-</math> Sándor Zoltán Németh]
-
(In particular, we can have <math>\mathbb H=\mathbb R^n</math> everywhere in this page.)
+
(In particular, we can have <math>\mathbb{H}=\mathbb{R}^n</math> everywhere in this page.)
== Fixed point problems ==
== Fixed point problems ==
Let <math>\mathcal A</math> be a set and <math>T:\mathcal A\to\mathcal A </math> a mapping. The '''fixed point problem''' defined by <math>T\,</math> is the problem
Let <math>\mathcal A</math> be a set and <math>T:\mathcal A\to\mathcal A </math> a mapping. The '''fixed point problem''' defined by <math>T\,</math> is the problem
Line 17: Line 17:
== Nonlinear complementarity problems ==
== Nonlinear complementarity problems ==
-
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>F:\mathbb H\to\mathbb H</math> a mapping. Recall that the dual cone of <math>\mathcal K</math> is the closed convex cone <math>\mathcal K^*=-\mathcal K^\circ</math> where <math>\mathcal K^\circ</math> is the [[Moreau's_decomposition_theorem#Moreau.27s_theorem |polar]] of <math>\mathcal K.</math> The '''nonlinear complementarity problem''' defined by <math>\mathcal K</math> and <math>f\,</math> is the problem
+
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>F:\mathbb{H}\to\mathbb{H}</math> a mapping. Recall that the dual cone of <math>\mathcal K</math> is the closed convex cone <math>\mathcal K^*=-\mathcal K^\circ</math> where <math>\mathcal K^\circ</math> is the [[Moreau's_decomposition_theorem#Moreau.27s_theorem |polar]] of <math>\mathcal K.</math> The '''nonlinear complementarity problem''' defined by <math>\mathcal K</math> and <math>f\,</math> is the problem
<center>
<center>
Line 31: Line 31:
== Every nonlinear complementarity problem is equivalent to a fixed point problem ==
== Every nonlinear complementarity problem is equivalent to a fixed point problem ==
-
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>F:\mathbb H\to\mathbb H</math> a mapping. Then the [[Complementarity_problem#Nonlinear_complementarity_problems | nonlinear complementarity problem]]
+
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>F:\mathbb{H}\to\mathbb{H}</math> a mapping. Then the [[Complementarity_problem#Nonlinear_complementarity_problems | nonlinear complementarity problem]]
<math>NCP(F,\mathcal K)</math> is equivalent to the [[Complementarity_problem#Fixed_point_problems | fixed point problem]]
<math>NCP(F,\mathcal K)</math> is equivalent to the [[Complementarity_problem#Fixed_point_problems | fixed point problem]]
-
<math>Fix(P_{\mathcal K}\circ(I-F))</math> where <math>I:\mathbb H\to\mathbb H</math> is the identity mapping defined by <math>I(x)=x\,</math> and <math>P_{\mathcal K}</math> is the [[Moreau's_decomposition_theorem#Projection_on_closed_convex_sets | projection onto <math>\mathcal K.</math>]]
+
<math>Fix(P_{\mathcal K}\circ(I-F))</math> where <math>I:\mathbb{H}\to\mathbb{H}</math> is the identity mapping defined by <math>I(x)=x\,</math> and <math>P_{\mathcal K}</math> is the [[Moreau's_decomposition_theorem#Projection_on_closed_convex_sets | projection onto <math>\mathcal K.</math>]]
=== Proof ===
=== Proof ===
-
For all <math>x\in\mathbb H</math> denote <math>z=x-F(x)\,</math> and <math>y=-F(x).\,</math> Then <math>z=x+y.\,</math>
+
For all <math>x\in\mathbb{H}</math> denote <math>z=x-F(x)\,</math> and <math>y=-F(x).\,</math> Then <math>z=x+y.\,</math>
<br>
<br>
<br>
<br>
Line 57: Line 57:
==== Variational inequalities ====
==== Variational inequalities ====
-
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space <math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>F:\mathbb H\to\mathbb H</math> a mapping. The '''variational inequality''' defined by <math>\mathcal C</math> and <math>F\,</math> is the problem
+
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>F:\mathbb{H}\to\mathbb{H}</math> a mapping. The '''variational inequality''' defined by <math>\mathcal C</math> and <math>F\,</math> is the problem
<center>
<center>
Line 74: Line 74:
==== Every fixed point problem defined on closed convex set is equivalent to a variational inequality ====
==== Every fixed point problem defined on closed convex set is equivalent to a variational inequality ====
-
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space <math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>T:\mathcal C\to\mathcal C</math> a mapping. Then the [[Complementarity_problem#Fixed_point_problems | fixed point problem]] <math>Fix(T)\,</math> is equivalent to the [[Complementarity_problem#Variational_inequalities | variational inequality]] <math>VI(F,\mathcal C),</math> where <math>\,F=I-T.</math>
+
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>T:\mathcal C\to\mathcal C</math> a mapping. Then the [[Complementarity_problem#Fixed_point_problems | fixed point problem]] <math>Fix(T)\,</math> is equivalent to the [[Complementarity_problem#Variational_inequalities | variational inequality]] <math>VI(F,\mathcal C),</math> where <math>\,F=I-T.</math>
===== Proof =====
===== Proof =====
Line 85: Line 85:
==== Every variational inequality is equivalent to a fixed point problem ====
==== Every variational inequality is equivalent to a fixed point problem ====
-
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space <math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>F:\mathbb H\to\mathbb H</math> a mapping. Then the [[Complementarity_problem#Variational_inequalities | variational inequality]] <math>VI(F,\mathcal C)</math> is equivalent to the [[Complementarity_problem#Fixed_point_problems | fixed point problem]] <math>Fix(P_{\mathcal C}\circ(I-F)).</math>
+
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>F:\mathbb{H}\to\mathbb{H}</math> a mapping. Then the [[Complementarity_problem#Variational_inequalities | variational inequality]] <math>VI(F,\mathcal C)</math> is equivalent to the [[Complementarity_problem#Fixed_point_problems | fixed point problem]] <math>Fix(P_{\mathcal C}\circ(I-F)).</math>
===== Proof =====
===== Proof =====
Line 102: Line 102:
==== Every variational inequality defined on a closed convex cone is equivalent to a complementarity problem ====
==== Every variational inequality defined on a closed convex cone is equivalent to a complementarity problem ====
-
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>F:\mathbb H\to\mathbb H</math> a mapping. Then the [[Complementarity_problem#Nonlinear_complementarity_problems | nonlinear complementarity problem]]
+
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>F:\mathbb{H}\to\mathbb{H}</math> a mapping. Then the [[Complementarity_problem#Nonlinear_complementarity_problems | nonlinear complementarity problem]]
<math>NCP(F,\mathcal K)</math> is equivalent to the [[Complementarity_problem#Variational_inequalities | variational inequality]]
<math>NCP(F,\mathcal K)</math> is equivalent to the [[Complementarity_problem#Variational_inequalities | variational inequality]]
<math>VI(F,\mathcal K).</math>
<math>VI(F,\mathcal K).</math>
Line 130: Line 130:
== Implicit complementarity problems ==
== Implicit complementarity problems ==
-
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>F,G:\mathbb H\to\mathbb H</math> two mappings. Recall that the dual cone of <math>\mathcal K</math> is the closed convex cone <math>\mathcal K^*=-\mathcal K^\circ</math> where <math>\mathcal K^\circ</math> is the
+
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>F,G:\mathbb{H}\to\mathbb{H}</math> two mappings. Recall that the dual cone of <math>\mathcal K</math> is the closed convex cone <math>\mathcal K^*=-\mathcal K^\circ</math> where <math>\mathcal K^\circ</math> is the
[[Moreau's_decomposition_theorem#Moreau.27s_theorem |polar]]
[[Moreau's_decomposition_theorem#Moreau.27s_theorem |polar]]
of <math>\mathcal K.</math> The '''implicit complementarity problem''' defined by <math>\mathcal K</math>
of <math>\mathcal K.</math> The '''implicit complementarity problem''' defined by <math>\mathcal K</math>
Line 139: Line 139:
ICP(F,G,\mathcal K):\left\{
ICP(F,G,\mathcal K):\left\{
\begin{array}{l}
\begin{array}{l}
-
Find\,\,\,u\in\mathbb H\,\,\,such\,\,\,that\\
+
Find\,\,\,u\in\mathbb{H}\,\,\,such\,\,\,that\\
G(u)\in\mathcal K,\,\,\,F(u)\in K^*,\,\,\,\langle G(u),F(u)\rangle=0.
G(u)\in\mathcal K,\,\,\,F(u)\in K^*,\,\,\,\langle G(u),F(u)\rangle=0.
\end{array}
\end{array}
Line 147: Line 147:
== Every implicit complementarity problem is equivalent to a fixed point problem ==
== Every implicit complementarity problem is equivalent to a fixed point problem ==
-
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>F,G:\mathbb H\to\mathbb H</math> two mappings. Then the [[Complementarity_problem#Implicit_complementarity_problems | implicit complementarity problem]] <math>ICP(F,G,\mathcal K)</math> is equivalent to the [[Complementarity_problem#Fixed_point_problems | fixed point problem]]
+
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>F,G:\mathbb{H}\to\mathbb{H}</math> two mappings. Then the [[Complementarity_problem#Implicit_complementarity_problems | implicit complementarity problem]] <math>ICP(F,G,\mathcal K)</math> is equivalent to the [[Complementarity_problem#Fixed_point_problems | fixed point problem]]
-
<math>Fix(I-G+P_{\mathcal K}\circ(G-F))</math> where <math>I:\mathbb H\to\mathbb H</math> is the identity mapping defined by <math>I(x)=x.\,</math>
+
<math>Fix(I-G+P_{\mathcal K}\circ(G-F))</math> where <math>I:\mathbb{H}\to\mathbb{H}</math> is the identity mapping defined by <math>I(x)=x.\,</math>
=== Proof ===
=== Proof ===
-
For all <math>u\in\mathbb H</math> denote <math>z=G(u)-F(u),\,</math> <math>x=G(u),\,</math> and <math>y=-F(u).\,</math> Then
+
For all <math>u\in\mathbb{H}</math> denote <math>z=G(u)-F(u),\,</math> <math>x=G(u),\,</math> and <math>y=-F(u).\,</math> Then
<math>z=x+y.\,</math>
<math>z=x+y.\,</math>
<br>
<br>
Line 185: Line 185:
== Nonlinear optimization problems ==
== Nonlinear optimization problems ==
-
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space <math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>f:\mathbb H\to\mathbb R</math> a function. The
+
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>f:\mathbb{H}\to\mathbb{R}</math> a function. The
'''nonlinear optimization problem''' defined by <math>\mathcal C</math> and
'''nonlinear optimization problem''' defined by <math>\mathcal C</math> and
<math>f\,</math> is the problem
<math>f\,</math> is the problem
Line 208: Line 208:
== Any solution of a nonlinear optimization problem is a solution of a variational inequality ==
== Any solution of a nonlinear optimization problem is a solution of a variational inequality ==
-
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space <math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>f:\mathbb H\to\mathbb R</math> a differentiable
+
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space <math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>f:\mathbb{H}\to\mathbb{R}</math> a differentiable
function. Then any solution of the [[Complementarity_problem#Nonlinear_optimization_problems| nonlinear optimization problem ]] <math>NOPT(f,\mathcal C)</math> is a solution of the [[Complementarity_problem#Variational_inequalities | variational inequality]] <math>VI(\nabla f,\mathcal C)</math> where <math>\nabla f</math> is the gradient of <math>f.\,</math>
function. Then any solution of the [[Complementarity_problem#Nonlinear_optimization_problems| nonlinear optimization problem ]] <math>NOPT(f,\mathcal C)</math> is a solution of the [[Complementarity_problem#Variational_inequalities | variational inequality]] <math>VI(\nabla f,\mathcal C)</math> where <math>\nabla f</math> is the gradient of <math>f.\,</math>
Line 223: Line 223:
== A convex optimization problem is equivalent to a variational inequality ==
== A convex optimization problem is equivalent to a variational inequality ==
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space
Let <math>\mathcal C</math> be a closed convex set in the Hilbert space
-
<math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>f:\mathbb H\to\mathbb R</math> a
+
<math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>f:\mathbb{H}\to\mathbb{R}</math> a
differentiable convex function.
differentiable convex function.
Then the [[Complementarity_problem#Nonlinear_optimization_problems | nonlinear optimization problem]] <math>NOPT(f,\mathcal C)</math> is equivalent to the [[Complementarity_problem#Variational_inequalities | variational inequality]] <math>VI(\nabla f,\mathcal C)</math> where <math>\nabla f</math> is the gradient of <math>f.\,</math>
Then the [[Complementarity_problem#Nonlinear_optimization_problems | nonlinear optimization problem]] <math>NOPT(f,\mathcal C)</math> is equivalent to the [[Complementarity_problem#Variational_inequalities | variational inequality]] <math>VI(\nabla f,\mathcal C)</math> where <math>\nabla f</math> is the gradient of <math>f.\,</math>
Line 239: Line 239:
== Any solution of a nonlinear optimization problem on a closed convex cone is a solution of a nonlinear complementarity problem ==
== Any solution of a nonlinear optimization problem on a closed convex cone is a solution of a nonlinear complementarity problem ==
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space
Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space
-
<math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>f:\mathbb H\to\mathbb R</math> a differentiable function. Then any solution of the [[Complementarity_problem#Nonlinear_optimization_problems | nonlinear optimization problem]] <math>NOPT(f,\mathcal K)</math> is a
+
<math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>f:\mathbb{H}\to\mathbb{R}</math> a differentiable function. Then any solution of the [[Complementarity_problem#Nonlinear_optimization_problems | nonlinear optimization problem]] <math>NOPT(f,\mathcal K)</math> is a
solution of the [[Complementarity_problem#Nonlinear_complementarity_problems | nonlinear complementarity problem]] <math>NCP(\nabla f,\mathcal K).</math>
solution of the [[Complementarity_problem#Nonlinear_complementarity_problems | nonlinear complementarity problem]] <math>NCP(\nabla f,\mathcal K).</math>
Line 248: Line 248:
== A convex optimization problem on a closed convex cone is equivalent to a nonlinear complementarity problem ==
== A convex optimization problem on a closed convex cone is equivalent to a nonlinear complementarity problem ==
'''Theorem NOPT.'''&nbsp;&nbsp; Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space
'''Theorem NOPT.'''&nbsp;&nbsp; Let <math>\mathcal K</math> be a closed convex cone in the Hilbert space
-
<math>(\mathbb H,\langle\cdot,\cdot\rangle)</math> and <math>f:\mathbb H\to\mathbb R</math>
+
<math>(\mathbb{H},\langle\cdot,\cdot\rangle)</math> and <math>f:\mathbb{H}\to\mathbb{R}</math>
a differentiable convex function. Then the [[Complementarity_problem#Nonlinear_optimization_problems | nonlinear optimization problem]] <math>NOPT(f,\mathcal K)</math> is equivalent to the [[Complementarity_problem#Nonlinear_complementarity_problems | nonlinear complementarity problem]]
a differentiable convex function. Then the [[Complementarity_problem#Nonlinear_optimization_problems | nonlinear optimization problem]] <math>NOPT(f,\mathcal K)</math> is equivalent to the [[Complementarity_problem#Nonlinear_complementarity_problems | nonlinear complementarity problem]]
<math>NCP(\nabla f,\mathcal K).</math>
<math>NCP(\nabla f,\mathcal K).</math>
Line 256: Line 256:
== Fat nonlinear programming problem ==
== Fat nonlinear programming problem ==
-
Let <math>f:\mathbb R^n\to\mathbb R</math> be a function, <math>b\in\mathbb R^n,</math> and
+
Let <math>f:\mathbb{R}^n\to\mathbb{R}</math> be a function, <math>b\in\mathbb{R}^n,</math> and
-
<math>A\in\mathbb R^{m\times n}</math> a fat matrix of full rank <math>m\leq n.</math>
+
<math>A\in\mathbb{R}^{m\times n}</math> a fat matrix of full rank <math>m\leq n.</math>
Then the problem
Then the problem
Line 274: Line 274:
== Any solution of a fat nonlinear programming problem is a solution of a nonlinear complementarity problem defined by a polyhedral cone ==
== Any solution of a fat nonlinear programming problem is a solution of a nonlinear complementarity problem defined by a polyhedral cone ==
-
Let <math>f:\mathbb R^n\to\mathbb R</math> be a differentiable function,
+
Let <math>f:\mathbb{R}^n\to\mathbb{R}</math> be a differentiable function,
-
<math>b\in\mathbb R^m,</math> and
+
<math>b\in\mathbb{R}^m,</math> and
-
<math>A\in\mathbb R^{m\times n}</math> a fat matrix of full rank <math>m\leq n.</math>
+
<math>A\in\mathbb{R}^{m\times n}</math> a fat matrix of full rank <math>m\leq n.</math>
-
If <math>x\in\mathbb R^n</math> is a solution of the [[Complementarity_problem#Fat_nonlinear_programming_problem|fat nonlinear programming problem]]
+
If <math>x\in\mathbb{R}^n</math> is a solution of the [[Complementarity_problem#Fat_nonlinear_programming_problem|fat nonlinear programming problem]]
-
<math>NP(f,A,b),\,</math> then <math>x-x_0\in\mathbb R^n</math> is a solution of the [[Complementarity_problem#Nonlinear_complementarity_problems|nonlinear
+
<math>NP(f,A,b),\,</math> then <math>x-x_0\in\mathbb{R}^n</math> is a solution of the [[Complementarity_problem#Nonlinear_complementarity_problems|nonlinear
-
complementarity problem]] <math>NCP(G,\mathcal K)</math> where <math>x_0\!\in\mathbb R^n</math> is
+
complementarity problem]] <math>NCP(G,\mathcal K)</math> where <math>x_0\!\in\mathbb{R}^n</math> is
a particular solution of the linear system of equations <math>Ax=b,\,</math>
a particular solution of the linear system of equations <math>Ax=b,\,</math>
<math>\mathcal K</math> is the polyhedral cone defined by
<math>\mathcal K</math> is the polyhedral cone defined by
Line 288: Line 288:
and
and
-
<math>G:\mathbb R^n\to\mathbb R^n</math> is defined by
+
<math>G:\mathbb{R}^n\to\mathbb{R}^n</math> is defined by
<center>
<center>
Line 296: Line 296:
=== Proof ===
=== Proof ===
-
Let <math>x\in\mathbb R^n</math> be a solution of <math>NP(f,A,b).\,</math>
+
Let <math>x\in\mathbb{R}^n</math> be a solution of <math>NP(f,A,b).\,</math>
-
Then it is easy to see that <math>x-x_0\,</math> is a solution of <math>\,NP(g,A,0)</math> where <math>g:\mathbb R^n\to\mathbb R</math> is defined by
+
Then it is easy to see that <math>x-x_0\,</math> is a solution of <math>\,NP(g,A,0)</math> where <math>g:\mathbb{R}^n\to\mathbb{R}</math> is defined by
<math>g(x)=f(x+x_0).\,</math>
<math>g(x)=f(x+x_0).\,</math>
[[Complementarity_problem#A convex optimization problem on a closed convex cone is equivalent to a nonlinear complementarity problem|It follows from Theorem NOPT]] that <math>x-x_0\,</math> is a solution of <math>NCP(G,\mathcal K)</math> because <math>G(x)=\nabla f(x+x_0)=\nabla g(x).</math>
[[Complementarity_problem#A convex optimization problem on a closed convex cone is equivalent to a nonlinear complementarity problem|It follows from Theorem NOPT]] that <math>x-x_0\,</math> is a solution of <math>NCP(G,\mathcal K)</math> because <math>G(x)=\nabla f(x+x_0)=\nabla g(x).</math>

Revision as of 23:20, 18 November 2011

LaTeX: - Sándor Zoltán Németh

(In particular, we can have LaTeX: \mathbb{H}=\mathbb{R}^n everywhere in this page.)

Contents

Fixed point problems

Let LaTeX: \mathcal A be a set and LaTeX: T:\mathcal A\to\mathcal A a mapping. The fixed point problem defined by LaTeX: T\, is the problem

LaTeX: 
Fix(T):\left\{
\begin{array}{l}
Find\,\,\,x\in\mathcal A\,\,\,such\,\,\,that\\
x=T(x).
\end{array}
\right.

Nonlinear complementarity problems

Let LaTeX: \mathcal K be a closed convex cone in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: F:\mathbb{H}\to\mathbb{H} a mapping. Recall that the dual cone of LaTeX: \mathcal K is the closed convex cone LaTeX: \mathcal K^*=-\mathcal K^\circ where LaTeX: \mathcal K^\circ is the polar of LaTeX: \mathcal K. The nonlinear complementarity problem defined by LaTeX: \mathcal K and LaTeX: f\, is the problem

LaTeX: 
NCP(F,\mathcal K):\left\{
\begin{array}{l} 
Find\,\,\,x\in\mathcal K\,\,\,such\,\,\,that\\ 
F(x)\in\mathcal K^*\,\,\,and\,\,\,\langle x,F(x)\rangle=0.
\end{array}
\right.

Every nonlinear complementarity problem is equivalent to a fixed point problem

Let LaTeX: \mathcal K be a closed convex cone in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: F:\mathbb{H}\to\mathbb{H} a mapping. Then the nonlinear complementarity problem LaTeX: NCP(F,\mathcal K) is equivalent to the fixed point problem LaTeX: Fix(P_{\mathcal K}\circ(I-F)) where LaTeX: I:\mathbb{H}\to\mathbb{H} is the identity mapping defined by LaTeX: I(x)=x\, and LaTeX: P_{\mathcal K} is the projection onto LaTeX: \mathcal K.

Proof

For all LaTeX: x\in\mathbb{H} denote LaTeX: z=x-F(x)\, and LaTeX: y=-F(x).\, Then LaTeX: z=x+y.\,

Suppose that LaTeX: x\, is a solution of LaTeX: NCP(F,\mathcal K). Then LaTeX: z=x+y\, with LaTeX: x\in\mathcal K, LaTeX: y\in\mathcal K^\circ, and LaTeX: \langle x,y\rangle=0. Hence, via Moreau's theorem, we get LaTeX: x=P_{\mathcal K}z. Therefore LaTeX: x\, is a solution of LaTeX: Fix(P_{\mathcal K}\circ(I-F)).

Conversely, suppose that LaTeX: x\, is a solution of LaTeX: Fix(P_{\mathcal K}\circ(I-F)). Then LaTeX: x\in\mathcal K and via Moreau's theorem

LaTeX: z=P_{\mathcal K}(z)+P_{\mathcal K^\circ}(z)=x+P_{\mathcal K^\circ}(z).

Hence LaTeX: P_{\mathcal K^\circ}(z)=z-x=y, thus LaTeX: y\in\mathcal K^\circ. Moreau's theorem also implies that LaTeX: \langle x,y\rangle=0. In conclusion, LaTeX: x\in\mathcal K, LaTeX: F(x)=-y\in\mathcal K^*, and LaTeX: \langle x,F(x)\rangle=0. Therefore LaTeX: x\, is a solution of LaTeX: NCP(F,\mathcal K).

An alternative proof without Moreau's theorem

Variational inequalities

Let LaTeX: \mathcal C be a closed convex set in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: F:\mathbb{H}\to\mathbb{H} a mapping. The variational inequality defined by LaTeX: \mathcal C and LaTeX: F\, is the problem

LaTeX: 
VI(F,\mathcal C):\left\{
\begin{array}{l} 
Find\,\,\,x\in\mathcal C\,\,\,such\,\,\,that\\ 
\langle y-x,F(x)\rangle\geq 0,\,\,\,for\,\,\,all\,\,\,y\in\mathcal C.
\end{array}
\right.

Remark

The next result is not needed for the alternative proof and it can be skipped. However, it is an important property in its own. It was included for the completeness of the ideas.

Every fixed point problem defined on closed convex set is equivalent to a variational inequality

Let LaTeX: \mathcal C be a closed convex set in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: T:\mathcal C\to\mathcal C a mapping. Then the fixed point problem LaTeX: Fix(T)\, is equivalent to the variational inequality LaTeX: VI(F,\mathcal C), where LaTeX: \,F=I-T.

Proof

Suppose that LaTeX: x\, is a solution of LaTeX: Fix(T)\,. Then, LaTeX: F(x)=0\, and thus LaTeX: x\, is a solution of LaTeX: VI(F,\mathcal C).

Conversely, suppose that LaTeX: x\, is a solution of LaTeX: VI(F,\mathcal C) and let LaTeX: \,y=T(x). Then, LaTeX: \left\langle y-x,F(x)\right\rangle\geq 0, which is equivalent to LaTeX: -\|x-T(x)\|^2=0. Hence, LaTeX: \,x=T(x); that is, LaTeX: x\, is a solution of LaTeX: Fix(T)\,.

Every variational inequality is equivalent to a fixed point problem

Let LaTeX: \mathcal C be a closed convex set in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: F:\mathbb{H}\to\mathbb{H} a mapping. Then the variational inequality LaTeX: VI(F,\mathcal C) is equivalent to the fixed point problem LaTeX: Fix(P_{\mathcal C}\circ(I-F)).

Proof

LaTeX: x\, is a solution of LaTeX: Fix(P_{\mathcal C}\circ(I-F)) if and only if LaTeX: x=P_{\mathcal C}(x-F(x)). Via characterization of the projection, the latter equation is equivalent to

LaTeX: \langle x-F(x)-x,y-x\rangle\leq0

for all LaTeX: y\in\mathcal C. But this holds if and only if LaTeX: x\, is a solution to LaTeX: VI(F,\mathcal C).

Remark

The next section shows that the equivalence of variational inequalities and fixed point problems is much stronger than the equivalence of nonlinear complementarity problems and fixed point problems because each nonlinear complementarity problem is a variational inequality defined on a closed convex cone.

Every variational inequality defined on a closed convex cone is equivalent to a complementarity problem

Let LaTeX: \mathcal K be a closed convex cone in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: F:\mathbb{H}\to\mathbb{H} a mapping. Then the nonlinear complementarity problem LaTeX: NCP(F,\mathcal K) is equivalent to the variational inequality LaTeX: VI(F,\mathcal K).

Proof

Suppose that LaTeX: x\, is a solution of LaTeX: NCP(F,\mathcal K). Then LaTeX: x\in\mathcal K, LaTeX: F(x)\in\mathcal K^*, and LaTeX: \langle x,F(x)\rangle=0. Hence

LaTeX: \langle y-x,F(x)\rangle\geq 0

for all LaTeX: y\in\mathcal K. Therefore LaTeX: x\, is a solution of LaTeX: VI(F,\mathcal K).

Conversely, suppose that LaTeX: x\, is a solution of LaTeX: VI(F,\mathcal K). Then LaTeX: x\in\mathcal K and

LaTeX: \langle y-x,F(x)\rangle\geq 0

for all LaTeX: y\in\mathcal K. Choosing LaTeX: y=0\, and LaTeX: y=2x,\, in particular, we get a system of two inequalities that demands LaTeX: \langle x,F(x)\rangle=0. Thus LaTeX: \langle y,F(x)\rangle\geq 0 for all LaTeX: y\in\mathcal K; equivalently, LaTeX: F(x)\in\mathcal K^*. In conclusion, LaTeX: x\in\mathcal K, LaTeX: F(x)\in\mathcal K^*, and LaTeX: \langle x,F(x)\rangle=0. Therefore LaTeX: x\, is a solution to LaTeX: NCP(F,\mathcal K).

Concluding the alternative proof

Since LaTeX: \mathcal K is a closed convex cone, the nonlinear complementarity problem LaTeX: NCP(F,\mathcal K) is equivalent to the variational inequality LaTeX: VI(F,\mathcal K) which is equivalent to the fixed point problem LaTeX: Fix(P_{\mathcal K}\circ(I-F)).

Implicit complementarity problems

Let LaTeX: \mathcal K be a closed convex cone in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: F,G:\mathbb{H}\to\mathbb{H} two mappings. Recall that the dual cone of LaTeX: \mathcal K is the closed convex cone LaTeX: \mathcal K^*=-\mathcal K^\circ where LaTeX: \mathcal K^\circ is the polar of LaTeX: \mathcal K. The implicit complementarity problem defined by LaTeX: \mathcal K and the ordered pair of mappings LaTeX: (F,G)\, is the problem

LaTeX: 
ICP(F,G,\mathcal K):\left\{
\begin{array}{l} 
	Find\,\,\,u\in\mathbb{H}\,\,\,such\,\,\,that\\ 
	G(u)\in\mathcal K,\,\,\,F(u)\in K^*,\,\,\,\langle G(u),F(u)\rangle=0.
\end{array}
\right.

Every implicit complementarity problem is equivalent to a fixed point problem

Let LaTeX: \mathcal K be a closed convex cone in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: F,G:\mathbb{H}\to\mathbb{H} two mappings. Then the implicit complementarity problem LaTeX: ICP(F,G,\mathcal K) is equivalent to the fixed point problem LaTeX: Fix(I-G+P_{\mathcal K}\circ(G-F)) where LaTeX: I:\mathbb{H}\to\mathbb{H} is the identity mapping defined by LaTeX: I(x)=x.\,

Proof

For all LaTeX: u\in\mathbb{H} denote LaTeX: z=G(u)-F(u),\, LaTeX: x=G(u),\, and LaTeX: y=-F(u).\, Then LaTeX: z=x+y.\,

Suppose that LaTeX: u\, is a solution of LaTeX: ICP(F,G,\mathcal K). Then LaTeX: z=x+y\, with LaTeX: x\in\mathcal K, LaTeX: y\in\mathcal K^\circ, and LaTeX: \langle x,y\rangle=0. Via Moreau's theorem, LaTeX: x=P_{\mathcal K}z. Therefore LaTeX: u\, is a solution of LaTeX: Fix(I-G+P_{\mathcal K}\circ(G-F)).

Conversely, suppose that LaTeX: u\, is a solution of LaTeX: Fix(I-G+P_{\mathcal K}\circ(G-F)). Then LaTeX: x\in\mathcal K and, via Moreau's theorem,

LaTeX: z=P_{\mathcal K}(z)+P_{\mathcal K^\circ}(z)=x+P_{\mathcal K^\circ}(z).

Hence LaTeX: P_{\mathcal K^\circ}(z)=z-x=y, thus LaTeX: y\in\mathcal K^\circ. Moreau's theorem also implies LaTeX: \langle x,y\rangle=0. In conclusion, LaTeX: G(u)=x\in\mathcal K, LaTeX: F(u)=-y\in\mathcal K^*, and LaTeX: \langle G(u),F(u)\rangle=0. Therefore LaTeX: u\, is a solution of LaTeX: ICP(F,G,\mathcal K).

Remark

If LaTeX: \,G=I, in particular, we obtain the result every nonlinear complementarity problem is equivalent to a fixed point problem. But the more general result, every implicit complementarity problem is equivalent to a fixed point problem, has no known connection with variational inequalities. Using Moreau's theorem is therefore essential for proving the latter result.

Nonlinear optimization problems

Let LaTeX: \mathcal C be a closed convex set in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: f:\mathbb{H}\to\mathbb{R} a function. The nonlinear optimization problem defined by LaTeX: \mathcal C and LaTeX: f\, is the problem

LaTeX: 
NOPT(f,\mathcal C):\left\{
\begin{array}{l} 
Find\,\,\,x\in\mathcal C\,\,\,such\,\,\,that\\ 
f(x)\leq f(y)\,\,\,for\,\,\,all\,\,\,y\in\mathcal C
\end{array}
\right.
</p><p>~\equiv~
\begin{array}{rl}
	Minimize & f(x)\\
	Subject\,\,\,to & x\in\mathcal C
\end{array}
</p><p>

Any solution of a nonlinear optimization problem is a solution of a variational inequality

Let LaTeX: \mathcal C be a closed convex set in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: f:\mathbb{H}\to\mathbb{R} a differentiable function. Then any solution of the nonlinear optimization problem LaTeX: NOPT(f,\mathcal C) is a solution of the variational inequality LaTeX: VI(\nabla f,\mathcal C) where LaTeX: \nabla f is the gradient of LaTeX: f.\,

Proof

Let LaTeX: \,x\in\mathcal C be a solution of LaTeX: NOPT(f,\mathcal C) and LaTeX: y\in\mathcal C an arbitrary point. Then by convexity of LaTeX: \mathcal C we have LaTeX: x+t(y-x)\in\mathcal C, hence LaTeX: f(x)\leq f(x+t(y-x)) and

LaTeX: \langle \nabla f(x),y-x\rangle=\displaystyle\lim_{t\searrow 0}\frac{f(x+t(y-x))-f(x)}t\geq0.

Therefore LaTeX: x\, is a solution of LaTeX: VI(\nabla f,\mathcal C).

A convex optimization problem is equivalent to a variational inequality

Let LaTeX: \mathcal C be a closed convex set in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: f:\mathbb{H}\to\mathbb{R} a differentiable convex function. Then the nonlinear optimization problem LaTeX: NOPT(f,\mathcal C) is equivalent to the variational inequality LaTeX: VI(\nabla f,\mathcal C) where LaTeX: \nabla f is the gradient of LaTeX: f.\,

Proof

Any solution of LaTeX: NOPT(f,\mathcal C) is a solution of LaTeX: VI(\nabla f,\mathcal C).

Conversely, suppose that LaTeX: x\, is a solution of LaTeX: VI(\nabla f,\mathcal C). By convexity of LaTeX: f\, we have LaTeX: f(y)-f(x)\geq\langle\nabla f(x),y-x\rangle\geq0 for all LaTeX: y\in\mathcal C. Therefore LaTeX: x\, is a solution of LaTeX: NOPT(f,\mathcal C).

Any solution of a nonlinear optimization problem on a closed convex cone is a solution of a nonlinear complementarity problem

Let LaTeX: \mathcal K be a closed convex cone in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: f:\mathbb{H}\to\mathbb{R} a differentiable function. Then any solution of the nonlinear optimization problem LaTeX: NOPT(f,\mathcal K) is a solution of the nonlinear complementarity problem LaTeX: NCP(\nabla f,\mathcal K).

Proof

Any solution of LaTeX: NOPT(f,\mathcal K) is a solution of LaTeX: VI(\nabla f,\mathcal K) which is equivalent to LaTeX: NCP(\nabla f,\mathcal K).

A convex optimization problem on a closed convex cone is equivalent to a nonlinear complementarity problem

Theorem NOPT.   Let LaTeX: \mathcal K be a closed convex cone in the Hilbert space LaTeX: (\mathbb{H},\langle\cdot,\cdot\rangle) and LaTeX: f:\mathbb{H}\to\mathbb{R} a differentiable convex function. Then the nonlinear optimization problem LaTeX: NOPT(f,\mathcal K) is equivalent to the nonlinear complementarity problem LaTeX: NCP(\nabla f,\mathcal K).

Proof

LaTeX: NOPT(f,\mathcal K) is equivalent to LaTeX: VI(\nabla f,\mathcal K) which is equivalent to LaTeX: NCP(\nabla f,\mathcal K).

Fat nonlinear programming problem

Let LaTeX: f:\mathbb{R}^n\to\mathbb{R} be a function, LaTeX: b\in\mathbb{R}^n, and LaTeX: A\in\mathbb{R}^{m\times n} a fat matrix of full rank LaTeX: m\leq n. Then the problem

LaTeX: 
NP(f,A,b):\left\{
\begin{array}{rl}
	Minimize & f(x)\\
	Subject\,\,\,to & Ax\leq b
\end{array}
\right.

is called fat nonlinear programming problem.

Any solution of a fat nonlinear programming problem is a solution of a nonlinear complementarity problem defined by a polyhedral cone

Let LaTeX: f:\mathbb{R}^n\to\mathbb{R} be a differentiable function, LaTeX: b\in\mathbb{R}^m, and LaTeX: A\in\mathbb{R}^{m\times n} a fat matrix of full rank LaTeX: m\leq n. If LaTeX: x\in\mathbb{R}^n is a solution of the fat nonlinear programming problem LaTeX: NP(f,A,b),\, then LaTeX: x-x_0\in\mathbb{R}^n is a solution of the nonlinear complementarity problem LaTeX: NCP(G,\mathcal K) where LaTeX: x_0\!\in\mathbb{R}^n is a particular solution of the linear system of equations LaTeX: Ax=b,\, LaTeX: \mathcal K is the polyhedral cone defined by

LaTeX: \mathcal K=\{x\mid Ax\leq0\}

and LaTeX: G:\mathbb{R}^n\to\mathbb{R}^n is defined by

LaTeX: G(x)=\nabla f(x+x_0)


Proof

Let LaTeX: x\in\mathbb{R}^n be a solution of LaTeX: NP(f,A,b).\, Then it is easy to see that LaTeX: x-x_0\, is a solution of LaTeX: \,NP(g,A,0) where LaTeX: g:\mathbb{R}^n\to\mathbb{R} is defined by LaTeX: g(x)=f(x+x_0).\, It follows from Theorem NOPT that LaTeX: x-x_0\, is a solution of LaTeX: NCP(G,\mathcal K) because LaTeX: G(x)=\nabla f(x+x_0)=\nabla g(x).

Remark

If LaTeX: f\, is convex, then the converse of the above results also holds. In other words, LaTeX: NP(f,A,b)\equiv NP(g,A,0)\equiv NOPT(g,\mathcal K)\equiv NCP(G,\mathcal K).

We note that there are also many nonlinear programming problems defined by skinny matrices (i.e., m>n) that can be reduced to complementarity problems.

Since a very large class of nonlinear programming problems can be reduced to nonlinear complementarity problems, the importance of nonlinear complementarity problems on polyhedral cones is obvious both from theoretical and practical point of view.

Personal tools