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PREFACE 

The following notes contain a survey of those 
properties of convex cones, convex sets, and convex functions 
in finite dimensional spaces which are most frequently used 
in other fields. Emphasis is given to results having appli­
cations in the theory of games and in progrBmming problems. 

Chapters I and II center about the interaction of 
the two features of convexity in linear spaces and affine 
spaces: i. the original definition of a convex set BS a set 
containing all segments whose endpoints are in the set and 
2. the existence of B support through every boundary point. 
The convex hull of a set is the set of all centroids of points 
in the given set,while its closure is the intersection of all 
halfspaces containing the set. This fact may be considered as 
the kernel of many of the applications of the concept of con­
vexity. It indicates Blso the important (though not quite 
complete) self-duality of the theory. The projective and -
it is believed - most general formulation of this duality is 
given at the end of Chapter II. 

The first part of Chapter III deals with the well­
known elementary properties of continuous convex functions. 
No differentiability assumptions are made, but the directional 
derivative which always exists is investigated and used ra.ther 
extensively. The second part of the chapter contains recent 
investigations. By means of a suitable polarity, an involutory 
correspondence between convex functions is established and 
applied to a generalized convex programming problem. Finally 
the level sets of a convex function are studied and the exist­
ence of a convex function with given level sets is discussed. 

Since the end of the last century numerous papers 
have dealt mainly or partially with convex sets or functions. 



Many results have been discovered several times in different 
formulations - often adapted to particular applications in 
other fields. No attempt has been made in these notes to 
quote for each theorem the first paper in which it appears 
in the formulation chosen here. In fact most of the basic 
concepts and results can be traced back in one form or 
another to the very first papers on the subject. Short 
historical notes and references are gathered at the end of 
this report. 



Chapter I 

CONVEX CONES 

§ 1 • PRELIMINARIES 

Let 1? be an n-dimensional Euclidean vector space 
with origin o, vectors x,y, ... , inner product (x,y), 
norm 1/x//=,(x,x), and metric d(x,y) = /lx- yff. Identify 

the vector x with the n-tuple lxx·:n1] of its coordinates with 
respect to a particular 
orthonormal basi~ of Ln. 

n 
Then ( x, y) = x 'y = ~ xi Y i ~ 

i=1 
A subset M of Ln is called a cone if o is in M and 

x E. M implies AxEM for every non-negative real scalar>-. The 
particular cones consisting of a non-zero vector x and all 
its multiples Ax (A~ O) are rays. A cone which contains at 
least one non-zero vector is therefore just the union of the 
rays it contains. 

Since all non-trivial cones may be thought of as 
sets of rays, it is desirable to introduce a topology on 
these rays from the topology on Ln. This might be done by 
defining the angle 

x•y 
¢l(x,y) =arc cos llxll /lyl/ (o~¢l~lT) 

as a metric on Ln - o. This angle depends only on the rays 
(x) and (y) to which x and y belong. It may be thought of 
as the Hngle between the two rays. The proof that this 
angle is indeed a metric for the rays, in particular that 
it satisfies the triangle inequality; is not obvious. An 



equivalent metric is 

[x,y] = ~2 - 2x'y 
llxll llyll 

This new metric is the chord distance between the two points 

11~1! and g on the unit sphere llzll = 1 • That is 

[x,y] = d( 11~11 ' n}irl· 

Clearly [x,y] depends only on the rays (x) and (y). [x,y] 
also satisfies the defining conditions for a metric on the 
space of rays. The geometric description shows that the 
two metrics are topologically equivalent. 

A sequence of rays (x~ ) is said to converge to a 
ray (x) if [x~ ,x]---~" o. A ray (x) is called a limit ray of 
a cone M if there is a sequence of rays of the cone which are 
different from (x) and which converges to (x). A closed cone 
or a closed set of rays is a cone which contains all its 
limit rays. A cone is closed in this sense if and only if 
it is closed in the usual topology of Ln. A cone is open 
if and only if the complementary set of rays is a closed 
cone. This is equivalent to the definition-: 

DEFINITION. M is open if and only if 
for every ( x) in M there is an E: > o such 
that all rays (y) with [x,y] (E are in M. 

The set of such rays (y) is called an E: -neighborhood of 
(x). An open cone as a set in IP is an open set of Ln plus 
the origin. A ray (x) is called an interior ray of a cone 
M if M contains an E neighborhood of (x) for some E: > o. 
A ray (x) such that the complementary cone to the cone M 
contains a neighborhood of (x) is called an exterior ray 
of M. A boundary ray of a cone M is a limit ray of M which 
is not an interior ray of M. 

2 



With any cone M there is 8Ssociated a smallest 
linear subspace S(M) of Ln which contains M. This space 
may be defined as the intersection of all subspaces con­
taining M. The dimension d(M) of the space S(M) is called 
the linear dimension of the cone M. In the theorems which 
follow S(M) will often play a more important role than Ln 
itself. For these results cones, open or closed relative 
to S(M), and interior, exterior, and boundary rays relative 
to S(M) will be considered rather than their counterparts 
in the topology of the full space Ln. They will be called 
for simplicity relative interior, relative exterior, and 
relative boundary rays. 

§ 2. CONVEX CONES 

A cone C is convex if the ray (X+Y) is inC whenever 
(x) and (y) are rays of C. Thus a set C of vectors is a con­
vex cone if and only if it contains all vectors 

Ax +jAY(~,/~ o; x,y E. C). 

The largest subspace s(C) contained in a convex cone C is 
called the lineality space of C and the dimension l(C) of 
s(C) is called the lineality of C. 

LEMMA 1. If (x) is an interior ray of a 
convex cone C relative to S(C) and (y) is a 
boundary or interior ray of C relative to S(C), 
every ray (,\x +fy), where A and/' are posi­
tive real numbers, is an interior ray of C 
relative to S(C). 

PROOF: 
Case 1: (y) = (-x), that is (;\ x +;lAY)= (x) or (y). 

It will be shown that C = S(C). It may be assumed that y~ C. 

3 



* * * Otherwise there is a y € C so close toy that (x ) = (-y ) is 
* * in a neighborhood of (x) contained in C. Thus, x and y 

satisfy the assumptions of the lemma. Let z + o, ± x be any 
vector in S(C). Consider the plane P spanned by x and z. 
Now C n P contains an angle around (x). In this angle there 
is a ray (x) such that z is in the~~utb ~ngle determined by 
(x) and (y). Hence z is a linear combiMtion of x and y 
with positive coefficients. Therefore z is in C and C = S(C). 
The lemma follows in this case because every ray of S(C) is 
relative interior to S(C). 

Case 2: (y) + (-x) which implies (Ax +)J.Yl + (y). 

2. 1 : y E. C. There is an~ ) o such that C 
contains an ~-neighborhood of (x) relative to S(C). It has to 
be shown that there is an E) o such that C contains an 
E -neighborhood of ( Ax +JY) relative to S( C). Consider first 
an arbi tr·ary E) o. Let ( z) be any ray in the E -neighborhood 
of (AX +)AYl· Put z =Ax +jAY+ v and suppose z is normalized 
so that 1/zll = II Ax +fYII. Then 

+ v' AX l!v 112 2 
II ,\x +fYII 

= 

hence 

llv 11
2 < E 

2 
I lAx + fY 11

2 
• 

Consider now the vector x + ~ for which ~(x + 

The distance of (x + Iv) from (x) satisfies 

. 2 1 
[ 1 12 __ 2 _2 llx II + xv 'x 
X+ -;;V, X 

/1 llx + ~v llllx II 
4 

. Iilv II < 1ti( 
= ilx II + * ll.v II }.I I 

4 

1 
r:v) + fY = z. 



This will be less than7 
2 when E Hence 

1 x + ;:;r andz are inC whenEis this small. 

2, 2: y 4 C. There is a sequence of vectors 
y~ E C tending to y, Since the bound found forE remains 
greater than a positive constant when y varies in a bounded 
region, there is a fixed E) o such that the f. -neighborhood 
of ~x +fYJJ is inC for!!'= 1,2,,.. , Since ,\x +f'Y>J--Ax +/Y 
every vector z for which [z , Ax + jJ y] (t: wi 11 be in this 
neighborhood for sufficiently large ~ , This completes the 
proof. 

The following list gives some of the more important 
simple properties of convex cones. 

convexity. 

1. The closure C of a convex cone C is convex. 
This follows directly from the definition of 

2, The interior of a convex cone C relative to 
S(C) is a convex cone. 

This is a corollary of Lemma 1. 
3· A convex cone has interior rays relative 

S( C). 

This follows because the set of vectors v C\) = 

}1 x
1 + + ,\ dxd (where x 1 , , .. , xd are fixed vectors of C 

which form a basis of S(C) and A,, ,,., \dare positive 

variables) form a set of rays inC which is open in S(C). 

4, In every neighborhood of a relative boundary 
ray (z) of a convex cone C there is a ray exterior to C. 

Let (x) +- (-zl be any relative interior ray of C. 
If N is a given neighborhood of (z) select some ray (w) 
inN such that w = -r

1
x + z,1) o, (w) is therefore a ray 
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near (z) in the plane of (x) and (z) such that (z) is in the 
smaller angle between (x) and (w). If (w) were not an exter­
ior ray of C, Lemma 1 would state that all rays ( ilx +f<W) 

(~ ,)!> 0) would be relative interior rays. In particular (z) 
= ( 7 x + w) would be a relative interior ray. Hence (w) is 
an exterior ray of C. 

This property does not hold for cones in general as 
is shown by the example of the cone which is the whole space 
with exception of one ray. 

5. A convex cone C and its complemex~ have the same 
..eP<-ie;u'.:n 

rays . ltM vw.M>.~-4/&.tr Cow-X.~u.. 
This is merely a rostatemebt of Property 4. 

boundary 

6. fl convex cone which is everywhere dense in Ln 

This follows from Property 4. 

§ 3 . SUPPORTS 

A closed half-space defined by a relation x•u ~ o 

for a fixed u t o is called a support for a cone M if M is 
contained in this half-space. 

THEOREM 1 • If C is a convex cone and ( z) 
a ray exterior to C, there is a support of C 
which does not contain (z). 

To prove this theorem a vector 
that x'u ~ o for all x inC and z'u > o. 

u must be found such 
It will certainly be 

sufficient to show this for any closed convex cone, since a 
ray exterior to a cone is also exterior to the clos~re of the 
cone. Since the rays of a closed cone form a compact set, 
there is some ray (x0

) such that [z,x0
] =min [z,x]. It can 

be assumed without loss of generality that liz!!= llx0 ll = 1. 
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Case 1, (z,x0
) min [ z, x J ~~ 2 . Then 

(X)E.C 

xo ' -z and any vector u such thet x'u < 0 defines a support 
for C for which z~u > 0. 

Case n [x,x0
] < 2. Since [ z ,x J is a mono-c ' 

tone decreasing function of z'x if z and X are unit vectors, 

[ l X < 0 x~6n z,x implies z' lfXlr = z•x for all xc;_ C. 

Because x°C C and x~C implies that (1- e)x0 + ex~C (o); e ~ 1), 

it follows that 

(1-e 'x0 + ex o z' ~~~~~~-- < z'x for any o < e ( 
II ( 1-e )x0 

- ex ll 
and any x,; C. 

Therefore 

( Z 1 X - Z 1 XO) / 
. " 

2 ( 1 -e) ex0 'x- 1 

If e tends to zero, the limiting relation 

is derived. \The right side is the derivative of the square 

root with r-espect to e at e •· o. ' Hence 

x'(z !z'x0 )x0
\ < o for all x in C. 

Since -~ rnd x 0 are linearly independent 

z - (z'x0 )x0 t o . 

Therefore the vector- u -_, z - ( z 'x0 )x0 defines a ha lfspace of 

7 



suppo.rt for C. Now z 1 (z- (z•x0 )x0
) = 1- (z'x0

)
2 which is 

gret>ter thPn zero since z and x 0 are not opposite unit 

vectors. This completes the proof of Theo.rem 1 • 

COROLlARY 1 • A convex cone which is 

not the whole of Ln has a support, i.e. it 

is in some half-space. 

There must be at least one ray (z) not inC if C ~ Ln. 

If this is not an exterior ray then by Property 4 there is some 

other ray ( z 1 
) which is an exterior rt>y. Theorem 1 says that 

C is contPined in a halfspace not conttlining this exterior ray. 

COROLLARY 2. If ( z) is a boundary 

r·ay of C there is a supporting half-space, 

x'u ~ o, to C such that z'u = o that is 

z is on the boundary of this support. 

Let z' , .. , , z t be a sequence of vectors exterior• 

to C and converging to z. For each t there is P support 
. . I t <-

SUCh that x'ur:~; o for xE C, zt u;;; 0. The uu may be 

assumed to be m"i t vectors Rnd hence contain a subsequence 

which converges to some vector u. Now x•u ~ o for all x EC 

and z 1 u ). o, Since z E C, z 'u = o. 

section of 

hull of M. 

§4. THE CONVEX HULL AND THE NORMAL CONE 

If M is a cone, the cone IMI which is the inter-

1'.11 convex cones contPining M is called the convex 

The convex hull of M is the smt>llest convex cone 

2 



containing M. 

For any cone M, IMT:) IMI because IMI is a closed 

convex cone containing M end hence M and IMI. The more 

interesting question is when iM-i C IMI thet is when IMI = IMI. 
Examination of the possible two dimensional cones shows that 

iMJ "~ IM I if d (M) " 2. It wi l1 be proved later that if M 

consists of B finite number of rays 

l( IMI) o the equelity also holds. 

not bold in general is shown by the 

• 
M ~ (vectors (x1 ,x2 ,x

3
) I 

or if M is closed and 

That the equality does 

following example in L3: 

Here M · .. , M end IMI is the open half-space defined by x~> o 

plus the line x
1 

.. x
2 

~. o. On the other hand IMI is the 

closed he lf-space defined by x'.! > o. 

THEOREM 2. The closure IMI of the 

convex hull of a cone M is the intersection 

of en the supports of M. 

The intersection I of all supports of M is a closed 

convex cone contEJining M. Therefor·e I :) IM I . 
If '· z; were a ray of I which was not in the c lased 

convex cone iM', it would be an exterior ray to fM1 and hence 

by Theorem l there would be e homogeneous hyperplane separa­

ting (z) from IMI and hence from M. The halfspace defined by 

this hyperplPne which contained M would be a support of M 

which did not contain ( z). Therefore IM I :J I. 

The cone M* formed by all vectors u such that 

x'u < o for every vector x in a cone M is called the normal 

~one of M; for, it consists of all outer normals of supports 
- * to M. Clearly M* is convex and closed and hence IMI" = M . 

9 



" If M is s subspace, M is its orthogonal complement. 

THEOREM 3, M"" - !Ml 

** If y€ M , then y'u ~ o for all u such that x'u ~ 0 

for all x in M. Therefore y is in the 

of M which is defined by z•u ~ o for a 

hslf spsce of support 

t . l Ul.nM*. par lCU ar 

Now as u ranges over M*, this hslf spsce ranges over all 

supports of M. Therefore y is in the inter·section of the • 
supports of M and hence in !MI by Theorem 2. Since M** is a 

** -- ** convex closed cone, it follows that M ~ !MI, Hence M = !MI. 

COROLlARY: If C is a closed convex cone 
c** = c. 

* Because of this relation, the normal cone C is also 

caned the polar cone of C when C is closed and convex. 

THEOREM 4: For any two cones M and N 

and 
~ ·"' " * (M '' N J --' M U N 

If u'x {, o for' all xE MvN then u'x ~ o for all X£M 

end for all x inN, and conversely. Hence 

. * "n * (M V N J =' M N 

Substitution of M* for M snd N" for N in this equation gives 

* *-* ** ** (M u N ) = M n N . If the normal cone is now considered 

* * * * 'i<·* t - ~ " * M v N c: ( M V N 1 =, , !M I f) ! N I ) C ( M n N) , 

1 0 



COROLlARY: If C and D are convex cones, 

" c"n D.,. t (C + D) = 

and 
- " (C n D) = C* +D* . 

For general cones M and N, !M v N I .::::> M + N.::::>M uN. 

Since ( fM V N l )* = (M \J N )*, (M + N)" = (M v N)". Hence for 

convex * * * * * * -- c*"~ D** __ cones (C + D)· = C n D . J.llso (C + D ) , , 

c n:o. * * ** - - * Therefore C* + D* = ( C + D ) = ( C n D) . 

THEOREM 5. For any cone M, 

d(M) + l(M*) = n 

and 
1( !MI) + d(M") ~ l( !MI) ,_ d(M*) = n 

From the definition of the normal cone, it follows 
* . * * * ** * * ~ that s(M )CM implies s(M ) .::::> M :J M. Now s(M ) is a sub-

* * space of dimension n -l(M ) . Therefore ri -l(M ) 2 d(M). On 
. * * . - * . the other hand S(M):JM. Hence S(M) C M . Slnce S(M) lS a 

subspace of dimension n- d(M), it follows that n - d(M) ~l(M*). 

H~nce l(M*) + d(M) = n. Substitution of M" forM in this 

relation gives 

l(M**) + d(M") = l( !MI) + d(M") = n. 

Since 1 ( !M I ) ~ 1 ( IM I ) the theorem is proved. 

~ The sum M + N of two cones M and N is defined as the cone 
of all vectors x+y, x.sM,y.::N. 

1 1 



COROLLARY: For a closed convex cone C 

l(C) + d(C*) = n 

and 
l(c*) + d(C) = n. 

§ 5 . THE CONVEX HUlL AND POSITIVE LINEAR COJVIBINATI ONS. 

THEOREM 6. Any vector x 
. \ r 

the form x = )..1x• + ... +1\rx 

t\s£ o. 

of !MI is of 
for xl' E M and 

This follows immediately because the set of all such 
non-negative finite linear combinations is in !MI and on the 
other hand these linear combinations do form a convex cone. 

THEOREM 7. Any vector x + o in !MI is 
a positive linear combination of linearly 
independent vectors in M. (This shows that 
any vector of !MI can be expressed as a non­
negative linear combination of some d (M) 
vectors of M where d(M) is the linear dimen­
sion of M.) 

By Theorem 6, x = A
1 
x 1 + . . . + A0r for some vectors 

xY of M and some constants \_y. £ o. If the vectors x 1, ••• , xr 

are linearly dependent then there are some real numbers )J-
1 

, 

... ,JAr not all zero such that f 1x 1 + ... +}frxr = o. It may 

be assumed that at least one~J is positive. Let r be an index 
such that 

12 



Min 
j' such that 

Jl'?> 0 

Now 
1 1 1 r Ar ( 1 

X = 11 1x + ••• +;):;X - fT ~1 x + 

\ ~,- Jh 1 \ 
( "1 - ~~)x + • .. + (,..r 

••• + /r?'r) = 

\~:r)xr . 

Since ( --\5 - Ad'~ ) ~ o for a 11 f and = o for 0 = -c, the fi-r:: - ) 
expression above represents x as a non-negative linear com­
bina.tion of fewer than 'r vector·s. Therefore if r is chosen 
minimal, x1, ... , xr must be linearly independent. This 
proves the theorem. 

LEMMA 2. If H is a supporting hyper­
plane to a cone M 

lM n HI = lMI n H. 

Now lM n HI C lMI and lM n HI c H. Therefore 
!M n HI C !M I n H. Consider the union D of lM n HI and the 
open half space determined by H which is a support for M. D 
is convex and it contains M hence lM I . On ths other hand 
D fJ H = lM n HI. Therefore lM fJ HI :::> lMI fJ H. 

LEMMA 3. If s = s ( IM I ) is the largest sub­
space contained in the convex hull !MI of a 
cone M, then 

IM n s I = s . 

The proof is by induction on d -1 where d is the 

13 



linear dimension of M, and 1 is the lineality of !Ml that 

is the dimension of s. 

Ifd=l, s=S(M) soMns=M. Therefore !M"sl 

= !Ml. Since s C !Mlc S(M) a.nd s = S(M), !M n sl = s. 
If d >1 , let H be a supporting hyperpla.ne of M in 

the space S(M). By the preceding lemma !M n HI = !Ml f) H. 

Now !M n HI iB of dimension at most d - 1 and s is the 
largest subspace contained in !M n Hi. The assumption s = 

f (M f) H) n s l therefore immediately yields s = !M n (H 'l s) l 

~ IM n s). This proves the lemma by induction. 

THEOREM 8. Let M be a cone such that 

fMl = S(M). Given any finite set V of 
vectors in M which contains at least one 
non-zero vector, there is a set W of at 

most d = d(M) vectors in M such that the 

vectors of V u W are linearly dependent 
with positiVe coefficients. Conversely, 

if there is a finite set of vectors in M 
which span S(M) and which are linearly de­

pendent with positive coefficients, then 
the convex hull of the rays determined by 

these vectors and, hence, !M l is S (M) . 

1 . 
Let y, ... , yr be the vectors of V. Then by Theorem 

7 the vector -y 1 - ••• - yr is a non-negative linear combi­

nation of at most d vectors in M. 
' Suppose that xi, ... , xr are vectors 

which span S(M) and there exist constants /f > 
1 . 1A r fix + ... +/ rx = o. 

14 
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Let N denote the cone consisting of the rays (x 1), ... , 
(xr). If IN l is not S(Mj, by Corollary 1 to Theorem 1, there 
is some half-space of support relative to the space S(M) for 
N. Let such a half space be defined by the relation x'u ~ o 

for a fixed vector u.j,o. Then xg' u ~ o for f = 1, ... , r. 

Therefor~ <f1x• + •.• + frxr) 1u = o impli~s fgx9' u = o and 
hence xf u = o for all f . Since the xl' span the whole 
space S(M), this is impossible. This proves the last state­
ment of the theorem. 

COROLLARY: If for a cone M, 
!MI = S(M), d = d(M) ) o, then there is 

e. set of at most d + 1 non-zero vectors 
of M which are linearly dependent with 
positive coefficients. There is also in 
M a set of at most 2d vectors spanning 
S(M) which are linearly dependent with 
positive coefficients. 

This follows from Theorem 8 when V consists of one 
vector or d linearly independent vectors. 

The following example shows that d + 1 is the best 
possible number in the first statement. Let x 1 , ••• , xd form 
a basis of a subspace of Ln. The cone M consisting of the 

1 d 1 d rays (x' ), ... , (x ), and (-x - ... - x ) hes d{M) = d and 
contains no set of d vectors which are linearly dependent 
with positive coefficients. The cone consisting of the rays 

1 d 1 d ( x · ) , ... , ( x ) , ( -x ) , ... , ( -x ) is an example s bowing that 
2d is the best possible result for the second statement. 

THEOREl\11 9. Let M be a cone and let 
1 > o be the lineality of IMl. There is 
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a set of at most 1 + 1 non-zero vec-
tors of M which are linearly dependent 
with positive coefficients. There is 
also a set of at most 21 vectors of M 
which span s( fMl) and which are linearly 
dependent with positive coefficients. 
If there is a set of vectors of M among 
which r are linearly independent and 
such that the set of vectors as a whole 
is linearly dependent with positive co­
efficients then r ~ l and the convex hull 

of the rays determined by these vectors 
is an r-dimensional subspace of s( IMl). 

By Lemma 3 this reduces to Theorem 8 and its corol­
lary applied to the cone M n s. 

By means of the preceding results the former state­
ments concerning the va.lidity of IMl = IMl will now be proved. 

THEOREM 10. If M consists of a finite 
number. of rays IM l = IMl . 

- ~ .1 1')9- \ r7J-If x is in IM l there are vectors x =Ar~·x + . . . +1\rv-x , 
'{)-

'V'= 1, ;!', ••• ,in IMl such that x -x as 7J-__,.a&. Here the 
vectors xf~e M and the vectors x 1~, ••• , xr~can be assumed 
linearly independent because of Theorem 7. It can be assumed 
without loss of generality that all the vectors x, xYf, and xf~ 
are unit vectors. By replacing the sequence of x~'s by a 
subsequence of them, r can be made to be constant with 
respect to 19' • P. still finer subsequence can be chosen 
such that the unit vectors xf~ can be made to converge 
to some unit vectors xf. Since there are only a finite num-
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ber of rays in M this means that this subsequence can be 
~ . 

assumed to have xf = xf for all 17- and J . Suppose there-
fore that the original sequence xo- had been chosen so that r 

does not depend uponv. and xll- = A
1

29-x1 + .•• + .:\ rv.xr. 
. . -1 -r 2 

ConSlderthefun~tlOnfy 1 , "'"'fr)= 11j1x· + .•. +/rx ll 

On the sphere L. M/ = 1 this function bas a positive mini-
f=1/ J 

mum m since the x.f are linearly independent. Therefore 

II A 1 x 1 + . . . + A ~xr ~ 2 ~ m ( A ~ + . . . + ,>.. ~) . Since ll A 1 ~x 
1 

+ 

... + A r19- xrll = 1' the AJ19-are bounded by \11" . Therefore 

there is a subsequence of the x"/9- such that for each J', 
\g11----+As as 1J1---. co for some non-negat'ive number AJ There-
fore x = \,x 1 + ... +Air· Hence xis in !M!. 

THEOREM 11. If M is closed and 
1 ( !M! ) = o, then iM1 = !M! . 

Let x be a vector in fiiii! and let xlJ be a sequence 
of vectors in !M! which approach x. Then 

)} 
X = 

some x~v. £ M. 

Here the xJlJ- may be assumed to be unit vectors and r may be 

assumed less than or equal to d the dimension of S(M). As. 
in the proof of Theorem 1 o the sequence x'l} can be selected 
so that r does not depend on 1)1- and xSlJ-- xi' as ,_ ....---.. oo 

Since M is a closed cone and the x~l9- are unit vectors, the 
xJ are also unit vectors in M. If y1, ... , yr are unit 
vectors in S(M) which are linearly independent with non­

negative coefficients, the function llf1y 1 + ... +;tJrYrll = 
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r 
f( f 1, ... , fr) for h"£, o a.nd '1'{;

1 
frs 2 

= 1 is positive and 

continuous. Hence it has a positive minimum m( y 1 
, ••• , yr). 

Consider the function m(z 1 , ••• , zr) over sets of r unit 
vectors ;n M. Any relation A z 1 

+ •.. + )Arzr = o with 

IJ!, o, Z:. A.A 0
2 

= 1 would contradict the hypothesis that 
J g=1 r> . 
!Ml contains no linear subspace (Theorem 9). Hence any r unit 
vectors of M are linearly independent with non-negative co­
efficients. Sets of r unit vectors of M range over a closed 
set in the product of r unit spheres because M is closed. 
Therefore m(z1, ... , zr) has a positive minimum m. Hence 

1/x'~~-11 = ll\, 11x
1

1J.+ ••• + Ar~x:r'~~ "£, m Jt'-~s~· Since 

1P- r\2 
x --x, llx"i9-~ 1•nd, hence, Z' llf7J- are bounded. Therefore 

J'=1 

a subsequence of the x '13- can be chosen so that \SU"-+ \3for 
11---.. o0 • With such a selection 

X = \ 1 x1 
+ • . • + Air so that X E. !M l . 

THEOREM 12. Let C be a closed convex 
cone which is not the whole space Ln and 
let H be the hyperplane which bounds a 
support to C defined by x'u ~ o. Then 
C nH = s(C) if and only if (u) is a rela-

. *. 
tive interior ray of C . 

* Suppose that (u) is a relative interior ray of C . 
* * 1 d-1 Put d(C ) = d and let v, ... , v be vectors such that 

u, v1, ... , vd- 1 form a basis for S(C"'). Consider the vectors 

1 1 d-1 d-1 d 1 d-1 u = u + v , ... , u = u + v , u = u -v - ... ~v . 
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These also form a basis for S(C
4

). 

Suppose that the selected vectors v 1 , ••• , vd- 1 
1 d . 4 are so short that u, ... , u are ln C . This is possible 

4 
because (u) is relative interior to C . Now 

1 1 d u , cr< u + • • • + u J • 

Suppose that x E C fl H. Then x•u 1 ~ o, ..• , x•ud ~ o and 

x•u = o. Hence x•ui = o, ... , x•ud = o. Since the uf 
4 . 

span the subspace S(C ), x is in its orthogonal 
. 4 

which contains s(C) and has dimension n-d(C ). 
complement 
By the 

. * 
corollary to Theorem 5, 1 = n-d(C ) . Therefore the two 
spaces coincide. This proves the sufficiency part of Theo-
rem 12. 

Suppose on the other hand that (u) is a relative 
b d f C* A 1 2 lJ-oun ary ray o . sequence v, v, ... , v , ... can 
then be selected so that x'v~ ~ o does not define a support 

of C but v 11 tends to u. This means that for every vll'- an 
X'tt-EC can be found such that x!J-' v1} > 0. Since w•x "" o for 
any w f S(C4

) and x E s(C), x"' is not in s(C). Write xll-
as yT>- + z.J- where .z 1J- is in s(C) and ytJ- is inC but in the 
orthogonal complement of s(C). Then yif-' vil- = x,_' vfr > o. 
It may be assumed without loss of generality that II Yt}-11 = 1. 
If only a suitable subsequence of the y~ is considered, 
these y~ will converge to some unit vector y. For this 
y, y'u ~ o, and hence y'u = o. However, y is not in s(C). 

This completes the proof of the theorem. 

§6. EXTREME RAYS AND SUPPORTS 

THEOREM 13. If Cis a closed convex 
cone of dimension greater than one and C 
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is not S(C) or a half-space of S(C), 
C is the convex hull of its relative 
boundary rays. 

The assumption that C is not a subspace or a half 
subsp~e means that l =dim s(C) ~ d(C) -2. Since s(C) is 

contained in ever'y supporting hyperplane of C in the space 
S(C) and since there is at least one such hyperplane because 
C t S(C), every ray in s(C) is a relative boundary ray of C. 
Let z be any vector inC which is not in s(C). Since 1 ~ n-2, 

there is a plane P in S(C) which contains the vector z and 
intersects s(c) only in the origin. The at most two dimen­
sional cone P n C contains z but no two opposite rays because 
P (l s(C) = o. Therefore it is a sector of less than 180° in 
the plane P. Hence z is a non-negative linear combination of 
boundary vectors of P n C. A boundary ray of P n C is however 
a relative boundary ray of C. Therefore (z) is in the convex 
hull of theAboundary rays of C. This proves Theorem 13. 
~ 

DEFINITION: A ray (x) of a convex cone 
C is an extreme ray of C if x is not a posi­
tive linear combination of two linearly 
independent vectors of C. 

Clearly this definition does not depend upon the 
choice of the representative vector x. 

THEOREM 14. A closed convex cone C 
with l(C) = o is the convex hull of its 
extreme rays. 
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This is true for a one dimensional cone with l(C) = o 
because the one ray of the cone is necessarily an extreme ray. 

Suppose the theorem has been proved for cones of 
dimension less than d. Let (x) be a relative boundary ray of 

' 

the d dimensional closed convex cone C. Select a supporting 
hyperplane H containing (x). C n His a closed convex cone of 
dimension at most d - 1 • By the induction hypothesis C n H 
is the convex hull of its extreme rays. Since C is all on one 
side of H, an extreme ray of C n H is also an extreme ray of C. 
Therefore every relative boundary ray of C is in the convex 
hull of the extreme rays of C. Theorem 13 therefore gives 
that Cis in the convex hull of its extreme rays. This finishes 
the induction proof. 

For the determination of the extreme rays of a parti­
cular cone it is helpful to note that any ray which is the only 
ray in the intersection of a supporting hyperplane and a convex 
closed cone is necessarily an extreme ray. It is not true, 
however, that for a general convex closed cone every extreme 
ray is. the intersection of a supporting hyperplane and the cone. 
For example if in L3 , Cis the convex hull of a circular cone 
D and a ray (x) such that both (x) and ( -x) are outside D, the 
extreme rays which are at the juncture of the curved surface of 
the cone and the flat surface of the cone are not the inter­
section of the cone with any supporting plane. Any supporting 
plane which contains one of these two rays contains the whole 
two dimensional cone spanned by this ray and (x). 

DEFINITION: A support x'u ~ o of a con­
vex cone C is an extreme support if u is not 
a positive linear combinatio~ of two linearly 
independent outer normal vectors of supports 
of C, in other words if (u) is an extreme ray 

* of C . 
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THEOREM 15. A closed cone C 
with d(C) = n is the intersection of 
its extreme supports. 

This follows from Theorem 14 applied to c* and 
Theorem 6. 

DEFINITION: A cone is called poly­
hedral if it is the convex hull of a finite 
number of rays. 
A subspace is a polyhedral cone. 
It is obvious that a sum of polyhedral cones is 

polyhedral. 
The polar of a polyhedral cone is the intersection 

of a finite number of halfspaces. For, let C be the convex 
hull of the rays (a?), ? = 1, ... , r; then c* consists of all 
vectors u for which u 9af ~ o,J = 1, ... , r. Hence c* is the 
intersection of these halfspaces. 

THEOREM 16. The polar of a poly­
hedral cone is polyhedral. In other words, 
a convex cone is polyhedral if and only if 
it is the intersection of a finite number 
of halfspaces. 

Let C be the convex hull of the rays (ay), p = 1, 
... , r. Thend' is the intersection of the halfspaces u•a5' S: o. 
If (u0

) is an extreme ray of c*, the vector u must satisfy 
n-1' linearly independent equations u0 'al' = o. For, other­
wise there would be an at least two-dimensional neighborhood 
of (u0

) all of whose rays satisfy all the inequalities u•al'~ o 
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a.nd (u0
) could not be extreme. Since there are only a finite 

number of systems of n-1 linearly independent equations n'a 5' = o, 
c* has only a finite number of extreme rays. 

If l(C*) = o that is d(C) =nit follows from Theorem 
14 that c* is polyhedra.l. If d(C) < n this, applied to C in 

* . * S(C), yields that C n S(C) is polyhedral. Now C is the sum 
* * * of C n S(C) and the subspace s(C ) = S(C) , hence polyhedral. 

§7. SYSTEMS OF LINEAR HOMOGENEOUS INEQUALITIES. 

Various theorems on the solvability of systems of 
linear homogeneous inequalities are obtained by specializing 
some of the preceding results to polyhedral cones. 

In this section the inequalities x ~ o or x > o 

for a vector x mean that the corresponding inequalities hold 
for each component. x ~ o means x ~ o but x + o. 

Let A be an m by n matrix. Denote by ~ and x 
vectors in Lm and Ln respectively (both considered as column 
matrices). Let A be fixed, ~ and x variable. Then the follow­
ing statements are valid: 

I. One and only one of the two 
systems 

Ax > o 
and 

A'~=O,~~O 

of linear inequalities has a solution. 

II. One and only one of the two 
systems 

Ax ~ o 
and · 
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A's=o,~>o 
has a solution. 

These statements may be interpreted geometrically 
either in Lm or Ln. In each of these spaces there are two 
mutue.lly polar interpretations depending on whether~ and x 
represent vectors or hyperplanes. The two most convenient 
interpretations are described in the following. 

First interpretation: 
Consider x as a normal vector of a hyperplane and 

the rows of A as vectors in Ln. The existence of a solution 
of Ax > o means thet the cone M consisting of the rays deter­
mined by the row vectors of A has a supporting hyperplene 
whose intersection with M is the origin only. 
case if and only if the lineality of !MI is o. 

This is the 
On the other 

hand, this is equivalent with the non-existence of a non­
trivial linear reletion with non-negative coefficients 
between the rows of A, that is A 't, = o and S~ o imply~ = o 
(Theorem 9). This yields I. 

Let d = d(M) be the linear dimension of M. Then 
d is just the rank of A. 
that is l = l( IMl) > o. 

Suppose Ax > o has no solution, 
From Theorem 9 it then follows that 

there are 1 + 1 or less among the rows of A which are linearly 
dependent with positive coefficients. This together with I 
implies that the system Ax > o of m inequalities has a sub­
system consisting of at most 1 + 1 inequalities which has no 
solution. Now 1 ~ d; hence: Ax > o has a solution if and 

only if every subsystem consisting of d + 1 of the inequalities 
has a solution. 

Consider now the system Ax i o. The existence of a 

solution means that M has a supporting hyperplane which does 
not contain the whole of M. This .is the case if and only if 
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[M\ is not a subspace (Theorem 12). Now 1M] is a subspace, 

if and only if there is a linear relation with positive co­

efficients between all the rows of A (Theorem 8). This yields 

II. 

From Theorem 8 and its corollary it follows further 

that if [M} is a subspace there are 2d or less rays in M 

such that their convex hull is the same subspace; hence: 

Ax L 0 has a solution if and only if every s:l(bsystem with rank 

d consisting of 2d inequalities has a solution. 

Second interpretationL 

Denote the closed positive orthant of Lm, that is 

the set of all S L 0, by D. Consider ~ and the columns of 

A as ~ectors in Lm and let S be the subspace spanned by 

the column vectors of A. The orthogonal complement S* .of S 

consists of the solutions ~ of A' ; = 0. The statements I 

and II then follow by substituting C = S* and C = S in 

the following theorem: 

A closed convex cone C contains 

no point of D except the origin if and 

only if its polar cone C* contains an 

interior point of D. 

This is the case k = m of 

THEOREM 17. Let C be a closed con­

vex cone, D the closed positive orthant, 

and Ek' 0 ~ k ~ m, the subspace of all 

~ectors whose first k components vanish. 

Then C n.DC Ek if and only if, for every 

E > 0, the polar cone C* contains a 

vector whose k first components are great-

er than a fixed positive constant o and whose 

m - k last components are greater than - E. 
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If C is polyhedral the condition may be 

simplified to: c* n D contains a vector 

whose k first components are positive. 

To prove the sufficiency consider an arbitrary vector 
* t; E C n D. The polar Cone C is contained in the half-space 

~' 1? ~ o, '1_ variable. For an 7'L E C * such that ?( 1 ) d', 
... , l(k > r-' -;zk+1 >-E., ... , nm >- c: it follows that 

( ~ 1 + . . . + c:-kJo - ( ~ k+1 + ... + ~ ) E { 
m - 0. 

Since ; ~ o, this can be valid for all £) 0 only if .f1 
... = ~k = 0; that is, if ~ E- Ek. 

= 

The necessity may be seen in the following way. From 
* * * C n D C Ek it follows that ( C n D) ,:) Ek. Obviously, ~ 

* contains the vector ~ = ( 1, ... , 1 ,o, ... ,o). Since (C n D) = 

k m-k 
c* + D* (Corollary to Theorem 4) there are vectors ~ i E c*, 

t;iED*,i=1,2,·:·, !uchthat 'Z.i+z;i-)~. Now 

c:;i ~ o, since l::;"l ED . Hence, given o < [ < 1/2, it 

follows that '2 i ) ~ - E. for sufficiently large i. This 

is the statement of the theorem with I= 1/2. If C is 

polyhedral, c* + D* is closed (Theorem 10). Hence there are 

vectors 7z E c* and 2:; E D* such that "Z + i:; = ~ , and 

the vector 7(_ = :S - (:;" ~ ~ satisfies the requirement for 
every E. ) o. 

Consider again an m by n matrix A. Let m = k + l 

with fixed non-negative integers k and ~. Write 

where the matrices B, [7, 7t , S are k by n, .1 by n, k 

by 1, and l by respectively. Then the following state­
ments hold: 

III. One and only one of the two 

systems 

Bx ) o, r x ~ o 
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a.nd 

B'~+ r·~ = o, ~L o, ') ~ o 

has a solution. 

IV. One and only one of the two 
systems 

Bx ;> o, rx ~ o 

and 

B'~+ r'~ = o, ~> o, s~ 0 

has a solution. 

V. One and only one of the two 
systems 

Bx> o,fx~o, x;; o 

and 

B'~ + 1''5 5;; o, ~;g_ o, ),;; 0 

has a solution. 

VI. One and only one of the two 
systems 

Bx L 0' rx ~ 0' X ;; 0 

and 

has .a solution. 

To prove these statements apply Theorem 17 to the 
following polyhedral cones C: the subspace of all vectors 

(~) satisfying B'~ + r') = o (III), the subspace of all 
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vectors (~:) (x unrestricted) (IV), the cone of all vectors 

(?) satisfying B' 1 + r•) j, o (V), and the cone of all vectors 

(;:), x ;; 0 (VI ) . 

Theorems on systems of infinitely many inequalities 
may also be obtained. Let a~ denote a vector in Ln depending 
on the index~ which may run through any set. Let M be the 
cone consisting of all rays (a<l.). (For instance,o<may be a 
real variable. Then the point a~ might describe a curve in 
Ln for which M would be the cone projecting this curve from 
the origin.) As an example take the following generalization 
of statement I which is derived in the same way as I using the 
first interpretation above: 

The system of inequalities x'a~ > o 
has no solution if and only if there are 
finitely many among the vectors a~ which 
are linearly dependent with positive co­
efficients. 

Let b be a vector with the property that x'b ~ o for 

every x which satisfies all the inequalities x'aot ~ o. 

Geometrically this means that b is contained in all supports 
of M, hence bE fiiiil, If in particular iMI = IMI which is the 

Hi ""'""'-"~ case if« runs through a finite set (Theorem 10) or ifvlM! 
has lineality o (Theorem 11 ), then b is in iMI and, hence, b 
is a positive linear combination of at most n of the vectors 
a~ (Theorem 7). In the general case b is a limit of such 
linear combinations (generalization of a theorem of Farkas). 



ChBpter II 

CONVEX SETS 

§1. lJNEAR COMBINATIONS OF POINT SETS 

The cones of ChBpter I were always considered to be 
in an n-dimension Euclidean vector space Ln. In a vector 
space the origin or zero vector is necessarily distinguished 
and its coordinate representation is invariant under a change 
of the coordinate basis of the space. 

Convex sets, however, are more naturally thought of 
in ann-dimensional affine space An. If a particular coordi­
nate system hes been chosen a point is described by the 

p:,] -
n-tuple x =l;n of its coordinetes. Denote the point with 

A 

coordinates x by x. If t is e fixed n-tuple and T is a non-
singular n x n matrix, 

x___.x = T(x- t) 

is a transformation of the representation of An in terms of 
the coordinates xi into a representation in terms of coordi-

nates xi. For An all allowable coordinate transformations 

are of this type. 
In terms of particular coordinates the expression 

r 
x =S.. \xi' (,\,real) represents a point i which is a "linear 

J=l J 
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"' combination" of the points xl' If ).5'~ 0 (s = 1, ••• , r), 

" " x is called a non-negative linear combination of the xJ . 

If A~> 0 (f = 1, ... , r), ~is a positive linear combination. 
These definitions a.re not independent of the choice of coordi­
nates, for if x = T(x-t) 

r 
~ 

f=1 

r 
= L Ao T(x.l' -t) 

J=1 J 

=T( f. \ xg -t) + ( 1 -
_s>=1 J 

r 
= ~ ,c_· 

g=1 
+ ( 1 

r 

J~ A.f )Tt 

This shows.that if the coo~inates ~instead of x are used 
the linear combination of x , ... , x with coefficients 
A,, ... ,Ar may be a point which is different from i. It 

r 
should be noted that this difference depends on ;E_ )., and 

A .f=1 J 

t but not on the points xf . In the particular case that 
t = o, that is the change of coordinates does not shift the 

r r 
origin, z ~ xf = Z. A.f x~ . 

_)=1 J=1 
This is also the case whenever 

r r 
Z. ..\1 = 1. These linear combinations with L. AP = 1, for 

J=1 . . J' =1 J . 

which the resulting point is independent of the choice of 
coordinates, are particularly important as the following ex­
ample shows. 

A line through the points with coordinates x0 and x 1 

is just the set of all points represented by 
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Those points on thi~ line ;~Zith o ~ e ~ 1 form the segment 
between the points x0 and x1 . 

,.._ 1\ 

The points x0, ... , xP are defined to be linearly 
dependent if 

/ox o + • • • + fpxP = o 

for some real numbers frr with 

fo + 

Iffo is one of the non-zero /if 

x0 
= }.,x1 

+ ••• + .\pxP where All'= -:"and E.\ = 1. 
1 o 1f=1 7r 

.1\ 

Therefore the point x0 is expressed as a linear combination 
of the other points in a fashion which is independent of the 
choice of coordinates. 

Equivalently the points 
dependent if and only if 

1 
0 

x1 

rank 

xo 
n 
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f'p 
x are linearly 

xP 
1 

< p . 



That two points are linearly dependent means they 
a.re tbe same point. Three points are linearly dependent pre­
cisely when they are collinear. Similarly four· points are 
coplanar if and only if they are linearly dependent. 

A p-flat is defined to be all points with coordinates 

. . • + f. = 1 p 

/' A 

d 0 xP an x , ... , 

are linearly independent points. Note that a p-flat is a 
p-dimensional affine space. Similarly a p-simplex is the set 
of points with coordinates 

x = \x0 + . . . +\xP where A0 + ... + \P = 1 , ) ~ o (y = o, ... , p), 

/'. j\. 

and x 0
, ••• , xP are linearly independent. 

P lthough all the proofs that follow are a.ffine proofs, 
it is desirable for conceptual clarification occasionally to 
introduce a projective interpretation. Identify the point 

[1:) of An with the point [71-lof the projective space Pn. 

Ax n 

With this identifica.tion An may be thought of as the "finite" 
portion of Pn. (The "hyperplane at infinity" consists of the 
projective points with first coordinate o.) It is now seen 

A A 

that the points x0
, ••• , xP of An are linearly 

only if the projective points with coordinates 

are linearly dependent that is 

rank < p. 
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If M and N are sets of points in' An, M+N is 
defined to be the set of all points x~ for £ in M and 
"' _...-'\ ...c::,._ y in N. Since x+y may be different from x+y7 M+N must 
be expected to vary with the choice of coordinates. However 
x+y always differs from x+y by (1 - (1+1))Tt. Therefore 
M+N is determined up to a translation. 

The set of points with coordinates 
is some point in M is denoted by A M. 

Ax where 
A 
X 

Relative to a fixed coordinate system the following 
rules of calculation are valid: 

1) (M+N) + 0 = M + (N,·O) 
2) M+N = N+M 
3) A()lM) = ( >..;t)M 
4) A ( M+ N) = )- M+ A N 
5) (A +j-<)M C \M+p.M. 

It is not true in general that (A +jt)M = A M+~M, for if 
~ = -A + o, (A +~)M consists of only the origin while 
>. M +fA M contains more points if M has at least two points. 
It is true, however, that (A+/'" )M = AM +rM if M is a 
flat and ;\ +jl- + 0 or if ). ~ o, /A-~ o, and M is a con­
vex (see below) set. 

The previous calculation with linear combinations 
of points shows that a sum ;Jf;

1 
1-f M f 

choice of coordinates if 
r 
~ Ar = 1, 
f=1 

mined up to a translation. 

is independent of the 

otherwise it is deter-

The distinction between the points of An and their 
coordinate n-tuples is not important for the properties which 
follow. Therefore the point ~ will be identified with its 
coordinate n-tuple x from now on. 
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S 2. CONv'EX SETS AND THE CONVEX HULL OF A SET 

A set M is called convex if M contains every seg­
ment joining a pair of points from M. Expressed in terms of 
coordinates this means that (1-G)x + Gy (0 ~ G ~ l) repre­
sents a point in M whenever x and y are in M. 

An example of a convex set is the "ellipsoid" of all 
n 

points x such that Q(x,x) ~ 1, where Q(x,x) = Z aijxixj 
i,j=l 

is a positive semidefinite quadratic :form. 
n 

With the notation Q(x,y) = Z aiJ.xiyj' 
i, j=l 

Q(Ax+/'y, /.x+fA-Y) = 

(l) 
>.2Q(x,x) + 2 Af' Q(x,y) + fi-2Q(y,y) ~ 0 

for all real ).. , ~ • For >. = - ;U = 1 this yields 

2Q(x,y) ~ Q(x,x) + Q(y,y). 

Use of this in (1) when A= l - G, ;U = G, 0 ~ G ~ 1, gives 

Q((l-G)x + Gy, (l·G)x + Gy) ~ (1-G) Q(x,x) + G Q(y,y). 

This shows that. Q((l-G)x + Gy, (1-G)x + Gy) ~1 whenever 
·Q(x,x) ~ 1, Q(y,y) ~ l. Hence the ellipsoid is convex. 

convexity. 

Certain properties of convex sets will now be listed. 

1.. If the sets Mo< are convex Q Me( is 
also convex. 
This follows immediately from the definition of 
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2. If the sets M.f(g=1, ... , r) are 

convex, then £ ).~ Mf is convex. 
)1=1 ) 

r 
If x and y are in ~ AoMJ , 

~ =1 J 

and 

r 
y = 2:- AeY~ for some xrs and yS in M. 

5'=1 ) 
Now 

(1-e)x + ey = Z Av((1-e)x~' + ey~). 
2 =1 .} 

r 
Therefore Z:. AyMg is convex if the sets My are. 

f=1 

). If M is convex and N1 , ... , Nr 
are any sets such that N9cM, then 

for all x1 in N1CM and x 2 in N
2
(M because M is convex. 

~ence ~1 N 1 + A2N2 CM. Assume the property has been proved 

for r = s - 1 ~ 2 • Now 

\ ,\,N1 + ... + As_1Ns-1 As \ 
+ •.• +AN = I \ (1- ) +AN s s 111 + ... +11s_ 1 s s 

if l::t= 1 and As+ 1. This last condition may be assumed 
J' =1 j 

without loss in generality. By the induction assumption 

\1 As -1 
\ N1 + .. . + I ' N 1 c M if 

A1 + .. • + "'s-:-1 · 111 + "· + "s-1 s-
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From the case of r = 2 it follows that ~ 1 N 1 + ••. + \sNs eM if 

The convex hull !Ml of a set M is defined to be the 
intersection of all convex sets containing M. By Property 1, 
it is the smallest convex set containing M. 

4. If N1, ... , Nr are sets such that 

Nsc M (M any set), 

;\~ 0 ( ~ = 1 ' ••• ' 

r 
then L: \,N_~ C IM l if 

s=1 J 

r) and £ Ay = 1 . 
f'=1 

This is an immediate consequence of Property 3 and 
the definition of lMl. 

r 
A point x = E \ x9 ( Ao~ 0, 

~=1 s J 

f. \s = 1 ) is called a 
5' =1 

centroid of the points x~. 

5. The convex hull !Ml of a set M 
consist of all centroids of all finite sets 
of points from M. 

That all such centroids are in lMl follows from 
Property 4. To prove the reverse inclusion, it is sufficient 
to show that the set of centroids is convex. Suppose 

r 
x = 2::::_). x'5 

S=1 S 

(1-e)x + ey = (1-e) 

is a centroid of x 1
, 

• • 0 ' 

J' 6 for some x and y in M. Then 

s 
e :£ M

6 
ycr and hence ( 1 -e )x + ey 

o=1 F 

r 1 s x,y, ... ,y . 
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6. If z ElM!, z is a centroid of 
linearly independent points of M. (A 
set of linearly independent points in 
M contains at most n+1 points.) 

Suppose z = A0x 0 + ... + Arxr( f \r, = 1, As~ o) 
j'=1 J 

where x 0 , ... , xr are linearly dependent, that is there are 

real numbers ~~ such that 

Min 1_ 
!/;: 0 fg 

Then z 

and 

and 

Ag- ~~ j),g ~ o. Repetition 
6 for any particular z. 

of this procedure proves Property 

7. If M and N are convex sets 

IM VN! = U ((1-e)M+eN) 
o<e~1 
=-

This follows because every point of IM v N! is a 
centroid of a point from M and a point from N. 

8. If M0 is any set and 

= U ( ( 1 -e )Mi + eMi) ( i 
0~8~1 

=0 1 ' 2 ' 
I 

then IM0 ! = Mk'where k is the smallest 

integer such that 2k is greater than or 
equal to n+1. 

This is a corollary Df Property 6. 

§3. l\IIE'l;'RIC AND TOPOLOGY 

... ). ' 

If a particular coord-inate system has been chosen, 

37 

t 0. 



the definition 

gives a Euclidean metric on An(x
1

, ••• , xn). This metric 

is not an invariant of An for d(x,y) is invariant only under 
orthogonal transformations of coordinates. In general 

d(x,y) "" ~Q(x;, ' · · · ' xn, Y 1 ' • • • ' Y n) 

' ' where xi end yi 
quadratic form. 

are new coordinates and Q is a positive definite 
V'Jhile this metric is not an invariant of An, 

the uniform topology it defines is. From here on it will be 
assumed that An has this topology. It is convenient to con­
sider An metrized with a particular Euclidean metric. This 
is no actual restriction of generality, but it allows simple 
geometric interpretation of the theorems. 

9. If M
1 

is a non-empty open set of 
An and ~ 1 is a non-zero real number, 

A1M1 + ... + ArMr is en open set for any 

sets M9 ( ~==2, ... , r) Bnd for Ag 
(~=2, ... , r) any real numbers. 

·If M
1 

is open and A 
1 
+ o, \

1 
M

1 
is also open. Now 

N = (j (),
1
M

1 
+ x). Since .\,M

1 
+xis open when M is 

x.:N 
open, ). 1M1 + N is open. Let N = ·\M2 + ... + A:JV!r . 

1 o. If M1, ... , Mr are closed sets 
and M2, ... , Mr are bounded, A, M1 + •.• + ,\,Mr 

is closed. 



Suppose z is a limit pointot\M1 + o .. + ArMr. 
• .,_ \ 119- 1 ~-r'-" f't> Then there lS a sequence x = 1\

1 
x + .. o + llyr' ( x ~ My) 

such that x'S' converges to z as 19--______,. oc. Since M
2

, ••• , Mr are 

closed and bounded, it may be assumed that x~-& converges to 
f . M f o '\9- ( \ 2 ~ \ xr "'J some x ln s or J = 2, ••• , r. x A2x + . . . + 1\r 

\ 1\9- \ 1 must also converge, so 111x converges to some point A
1 
x of 

\M1. Therefore z = ),x1 
+ . o. + Arxro 

If M is any set and U is the open unit sphere with 
center at the origin of the coordinates,M + EU is the c-neigh­
borhood of M. If M is convex, this neighborhood is also convex. 
If M is closed and U is the closed unit spher·e M + c:U is a 
closed e-neighborhood of M. 

11 o If Cis a convex set Cis 
also convex. 

~ d "" This is true because if x -x Em y_y, the points 
of the line segment joining x and y are limit points of the 
points on the segments joining x~ to y~. 

Let S(M) denote the intersection of all the flats 
containing a set M. This is just the flat with any maximal 
set of linearly independent points of M as 8 basis. The 
dimension d(M) of S(M) is called the linear dimension of M. 

A point is called a relative interior D9int of M if 
it is interior toM relative to the topology of S(M). (Note 
the_t if M is a point, that is d(M) = o, this point is 8 rela­
tive interior point of M. ) A boundary point of M is called 
a relative boundary point if it is a boundary point relative 
to S(M). Since points of S(M) are exterior toM relative to 
S(M) if and only if they are exterior to M relative to A~, 
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no distinction need be made between exterior points and rela­
tive exterior points. 

12. If Cis a convex set with 
d(C) > o, then every point of C is a limit 
point of C. 

If d(C) > o end x is any point in CJ there must be 
some other pointy in c. xis a limit' point of points on the 
segment joining x and y. Since this segment must be inC, x 
is a limit point of C. 

13. A convex set C has relative 
interior points. 

Let d = d (C) and suppose x0, ... , xd are linearly 
independent points of C which span S(C). The d-simplex spanned 
by x 0, ... , xd has interior point~ reletive to S(C) and hence 
C does elso because C conta.ins this simplex. 

14. If xis a relative interior 
point of a convex set C and z is in C, 
all points of the segment joining x to 
z with the possible exception of z are 
reletive interior points of C. If z 
is a relative boundary point of C, the 
points on the line through x and z which 
are separated from x by z are exterior 
points of C. 

Suppose y = (1-e)x + ez foro~ e < 1. Let Ux(£) 

be the open sphere of radius E with center x. If x is rela­
tive interior to C, there is some E> o such that Ux(E) llS(C)CC. 
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Let z-& be a sequence of points of C converging to z. The set 
((1-e)Ux(~) + ez~) is an open sphere of radius (1-6)£ and 

center (1-e)x + ez~. From the convexity of C 
((1-~)Ux(~) + ez~) n S(C) is contained in C. Since z~--- z, 
( 1 -e )x + ezll-- y. Therefore for 'IT sufficiently large y is 
interior to (1-e)Ux(E) + ez~. Hence y is relative interior 
to C. This proves the first statement of Property 14. 

Suppose z is a relative boundary point of C and 

y = (1-e)x + ez (e > 1 ). Now z = ~Y + (1 - ~)x so that, if y 

were not an exterior point of C, z would be in the relative 
interior of C by the first part of Property 14. This contra­
diction proves the second statement. 

15. If Cis convex, the relative 
interior of C is convex. 

This is a corollary of Property 14. 

16. If Cis convex and everywhere 
dense in S(C), C = S(C). 

This is because a convex set C with no exterior 
points in S(C) can have no relative boundary points and hence 
is S(C) itself. 

§4. PROJECTING AND ASYMPTOTIC CONES, a-CONVEXITY 

A ray Picx + p) consists of all points ( 1 -e )p + ex 

for e ~ o. ·The J2ro.]ecting cone PP(M) of a. set M from a point 

p is defined to be u Px· (If M = p, set Pp(M) = p;) Note 
x<:M 

that PP(M) need not be closed when M is closed. For example if 
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M is an (n-1 )-flat and p is a point outside M, Pp(M) is an 

open half-space through p plus the point p. 

17. If Cis convex, Pp(C) is 

convex (for any p). 

This is a direct consequence of the definition of 

DEFINITION: A set C is called 
s-convex if for every point p not in 
C , s ( P p ( C ) ) 1\ C is empty . 

18. An s-convex set C has the 
property that if x e: C and yE- C, 
p = (1-e)x + ey is inc for o(e(1. 

s(Pp(C)) contains the line xy and hence s(PP(C)){\C 

is non-empty. This shows that p is in C. 
Property 1 8 shows that a s -convex set is convex. 

Clearly closed and relatively open convex sets are s-convex. 
On the other hand an open triangle with one point of the 
boundary adjoined is convex but not s-convex. 

DEFINITION: If M 
p any fixed point, the 

is any set and -set of rays px 
which are the limit of a sequence of 
rays ~,. where x~e M and x~-"" is 
called the asymptotic cone Ap(M) of 

M with vertex p. 

19. AP(M) is closed for any M and p. 
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An ordinary diagonal process shows that a limit ray 

of AP(M) is a limit ray of rays fiX, x"M, x-oo. 

20. For any set M and any points 

p and q 

This follows because the convergence of 
~ - ~ ~ as x --.."" implies that qx"' converges to qx = px + 

and conversely. 

21 • If M is any set and p is 

any point 

Ap(M) = nn[Pq(M) + (p-q)] 
q-cA 

- --px"' to px 

( q -p)' 

By definition Aq(M) C Pq(M). Therefore by Property 20 

AP(M) CP"'""q-;(-;:-;M,.-) + (p-q) for every point q. Suppose Pi ~ Ap(M). 

There is then a neighborhood N£(pX) of rays emanating from p 

such that N,Jpx) (as a point set) has a bounded intersection 

with M. A point q in NE:.(px) can therefore be selected so that 

(NE (px)+q-\))nM is empty. For this q, x4-Pq(M) + (p-q). 

This completes the proof of Property 2i. 

17 and 21 • 

22. For a convex set C and 

any point p, Ap(C) is convex. 

This may be rega.rded as a corollary of Properties 

23. If Cis an s-convex set 

and pis any point of C, AP(C) is 

the set of all rays contained in C. 



' Denote by AP the cone consisting of all rays emana-

' ting from p and contained in C. Obviously APCAP(C). Let -(px) be a rey of Ap(C). Then there is a sequence of points 

x"'E C such that x""--.. <>D and (p;ofJ-) -..(:pi). Since the segments 
pxil' are in C, (PJ'C) C C. From the Property 18 it follows that 

-... . 
( px) C C if p E C . Hence Ap = AP ( C ) . 

COROLLARY: If C is an arbitrary 
convex set and p is a relative interior 
point of C, AP(C) is the set of all rays 

~~~t~ c f"'~ f tu--4 

Apply 23 .to the relative interior of c. 
Consider the cone Ap(C) (C convex) as a cone of the 

linear space of the vectors with initial point p. AP(C) 

then contains a largest subspace s (Ap (C)) with dimension 

l(A~)) (the line~lity of Ap(C)). This subspace considered in 

An is the largest flat in Ap(C) containing p. 

24. If C is an s-convex set, C is 
the union of 1-flats parallel to s(AP(C )), 

that is 

By Property 23, Aq(C) for q any point of C simply 

-consists of all rays qx contained in C. Therefore C contains 
S(Aq(C)) = s(Ap(C)) + (q-p). Hence C is just 

u~(Ap(C)) + (q-pu. 
qEC 
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If C is a. convex set in three space and 1 (Jip (C)) = 1 , 

Property 24 says that C is a cylinder. 

§5. BARRIERS AND NORMAL CONES 

Any oriented (n-1 ) flat F may be described as the 
set of all points x such that x'u = u

0 
where u is a vector 

in the positive normal direction.to the flat. If sup x•u < u
0

, 
xEM 

F is called a bound of M and the set M is said to be bounded 
in the dir·ection u and to be in the "negative" half-space of F. 
If sup x'u = u , F is called a supporting flat for M and the 

x~M 0 

negative half-space ofF (the points with x'u ~ u
0

) is called 

a support of M. Note that if u and u
0 

define a supporting 

flat for M, u and u
0 

+ € ( E.> o) define a bound of M in the 

direction u. A flat which is either a bound or a supporting 
flat of M is called a barrier of M. 

25. If M is any set and pis a 
fixed point, all vectors from p which 
are positive normal vectors of barriers of 
M through p form ~ closed convex cone 
Np(M), the normal cone of Mat p. This 

cone is in the linear space of vectors 
with origin p. If the projecting cone 
PP(M) is interpreted as being in the 

* same space Np(M) = Pp(M) . 

This equation just states that all the barriers of M 
containing pare supporting hyperplanes of Pp(M). 



Property 25 is of particular interest when M is 
convex and p is a relative boundary point of M. Pp(M) is 

not the whole space because the ray p(p-x) contains no points 
of M if p +xis in M (Property 14). This cone has a support­
ing hyperplane, and hence M has a supporting flat through p. 

26. If M is any set, the vectors 
from the coordinate origin which are posi­
tive normals to barriers of M form a convex 

* cone BG-(M)C (A&(M)) . If M is convex 
* B(}(M) = A~(M) . 

If x'u { u and i'v { v for all x in M,_ 
- 0 - 0 

x'(~u + fv) ~ Au
0 

+)l.Vo (A;;; O,f;;; 0) for all x in M. There-

fore if u and v are in B(')-(M), ~u + fv (A;:; 0, f;;; 0) is also. 

This shows that B~{M) is a convex cone. If the flat defined 
by x'u = u

0 
is a barrier for M, the flat of points x such 

that x'u =Max (u0
, p'u) is a barrier forM U AP(M). Hence 

the hyperplane of vectors y with y! u = 0 in the linear space 
with origin pis a supporting hyperplane of the cone Ap(M). 

* Therefore if u E B(')-(M), u E (A~(M)) . 
Suppose now that M is convex. Let s = s (A&(M) ) 

;c;-.,..-;"'> * and l = l(Ao-(M)). To prove B(')-(M) = (A&(M)) ·, it is sufficient 
to show that if a ray is not in B~(M), it is not a relative 
interior ray of (A&(M))*. By Property 24, the relative 
interior of M is the union of 1-flats parallel to s. If the 
n-1-flat defined by x'u = u

0 
is not a barrier forM, the 

structure of M shows that there is a pointy in Mns* (s* is 
the orthogonal complement of s) such that y'u > u

0
. For au 

not in B(')-(M), such a y may be selected for each u
0

• From 
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these y•s a sequence which tends to infinity may be chosen so 
~ _,. 

that the rays ey (or (y)) converge to a ray ~z (or (z)) in 
A~(M), Since (y) is in s" for each y, (z) is also in s". In 
Chapter I it was shown that the supporting hyperplane to a 
convex cone C corresponding to a relative interior ray of the 

* polar cone C intersects Conly in s(C). Therefore (u) is not ... 
a relative interior ray of A&(M) and B~(M) = (A&(M)) , 

That this equation cannot be strengthened to 
Be-(CJ = AC'J(C)" for C convex is shown by the following example. 
In the x1, x2 plane let C consist of all points such that 

x2 ~ ex1 . Then B~(C) is the half-open quadrant defined by 

x1 ~ o, x2 < o. 

x1 ~ o, x2 ~ o. 

A,_(C) is the closed quadrant given by 

·* Therefore (A 0(M)) is not B~(M) but its 

closure. 
Note that if coordinates with a different orlgln ~ 

had been used for An, the set B~ 1 (M) would be a translate of 

B~(M). More precisely 

Property 26 
above 

shows that BIJ(M) determines A\'1-(M), 
demonstrates that A~(M) does not but the example 

determine BG(M) uniquely. 

§6. SEPARATION THEOREMS 

27. If C and D are closed convex 
sets with an empty intersection and C 
is bounded, there is a support H of C 
such that D n His empty. There is also 
a support H' of D such that C f\ H' is 
empty. 



Since D is closed there is a point p(x) in D such 
that the minimum of the distance from points of D to a fixed 
point xis attained at p(x). Because Cis compact, there is 
a point q of C such that the distance from q to p(q) = p is 
less than or equal 
any point y of D. 

to the distance from any point x of C to 
Let H be the half-space of points with 

x' (p-q) ~ q' (p-q). 

The oriented flat which bounds this halfspace passes through 
q and has p-q as normal vector. If x is some point in C 
different from q the segment from x to q is in C. The short­
est distance from this segment to p is either llx - pll, the 
length of the altitude from p of the triangle (p,q,x), or 
II q -pi!. By assumption the last of these three possibilities 
must be the case. For this to happen, however, the vector 
x - q must make an obtuse or right angle with p - q. There­
fore C is in H. If H' is the halfspace defined by 

x' (q-p) ~ p' (q-p) or x• (p-q) ~ P' (p-q) 

an analogous argument shows that Dis in H'. Since H n H' = ¢~ 

H fl D = H' n C = ¢ and H and H' are the desired supports. 

28. If C and Dare convex sets 
such that no common point is relative 
interior to both C and D, there is in 
S(CvD) a (d(CuD)-1 )-dimensional hyper­
plane separating C and D. (i.e. there is 
a vector u and a number u

0 
such that 

x•u ~ uo for all x in C and x'u ~ uo for 

all x in D.) 
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The theorem for the closures of C and D implies 
the theorem for C and D. Therefore assume C and D are closed. 
Suppose xis a point in CI\D relative interior to Candy is 
a point in cnD relative interior to D. By Property 14, 
(1-S)x + ey (o<e<1) is a point which is relative interior to 
both C and D. By the hypothesis of the theorem this is 
impossible. Hence it can be assumed that C () D contains ~ 1\iO 

relative boundary points of one of the sets (say C). If in 
particular C consists of a single point p, C (\ D is empty 
since p is relative interior to C. This case when C is a 
point disjoint from D is covered by the last theorem. Assume 
therefore that d(C) > o. Define 

cD=((1 -~JC+~p)nuP(JJ-) (1J=1,2, ... , J 

where p is a fixed point and Up(~) is the closed sphere of 

radius ~ and center p. C17- is just a linear contraction with 
center p of the part of C near p. Choose p as a relative 
interior point of C. Then C~ is in the relative interior 
of C by Property 1 4. Ther'efore C'IJ n D is empty. Theorem 27 
asserts that there is a hyperplane defined by x•u11 

= u~ 
11- i} such that x•u ~ u

0 

In particular p'u"" ~ 

for 

ul'i 
0 

X E C,_ and .,_ 
~ q'u (q 

x'uV'- 2 u11-
- 0 

any point of D) . 

Suppose the vectors u~ had all been normalized to length one. 
Then a subsequence of the ~ could be selected so that the 
corresponding u11 converge to a vector u and the corresponding 
u~ converge to a number u

0
. For u and u

0
lx'u ~ u

0 
for all x 

in D and x'u ~ u
0 

for all x in the relative interior of C. 

It immediately follows that x'u { u for every x in C. 
- 0 

If D is just a single relative boundary point of C, 
Theorem 28 states tha.t there is a supporti:rig hyperplane of C 



through this point. 

29. For any set M, !M! = Is = Ibd =Ibr 

where I~ is the intersection of all the 
~ 

supports of M, Ibd is the intersection of 

the half-spaces on the same side of a bound 

as M, and Ibr is the intersection of all 

half-spaces on the same side of a barrier 

as M. 

Clearly fMI c Ibrc Is C Ibd. If p is not in !M!, by 

Theorem 27 there is a support of M (defined by x 1 u S. u ) which 
- 0 

does not contain p. For € sufficiently small, the hyperplane 

defined by x 1 u = u
0 

+ E is a bound of M which separates M from 

p. Therefore p f Ibd and !M! = Ibr = Is = Ibd · 

30. fMl ~ !M! for any set M and 

~ = !M! if M is bounded. 

That !M! ::::> !MI is obvious. If x is in !M I, 

x = lim 
1?--+,. 

r s~ 
LA~= 1' X t. 
.}'=1 

M) for a fixed 

r ~ d(M) because of Property 6, 

sequence may be seleot,ed so that 

r 
X = I.). X~ 

j' =0 f 

Since M is bounded a 
J~ j' \ _\ 

X ---- X , II J'~'- AJ. 

Since x.fe. M, x E. !MI and iMl = !MI. 
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§ 7 , CONVEX HULL AND EXTREME POINTS 

31, If M is any set and H is any 
supporting hyperplane iM 1'\ Hl = iMl n H. 

Clearly iM f\Hl C iMI 1'\ H, If I is the interior of 
the support of M bounded by H, the convex set I v iM n H l :::> M. 

Therefore I v iM f'l HI ::::> iM I and 

iM 1'\ HI = i ( (I v iM n HI ) II HI = (I v iM n H l ) 11 H J iM l n H, 

32, If C is a closed convex set 
which is neither a flat nor a half­
flat, then G is the convex hull of 
its relative boundary points, 

Let p be any relative interior point of c, It is 
sufficient to show that there is in S(.C) a line L through p 
which has no other point in common with Ap(C), For, then 

C "L is bounded and L contains two relative boundary points 
such that p is on the segment determined by these points. 
If d(Ap(C) ( d(G), there is clearly a line through p which 

has no other point in common with Ap(G), If d(Ap(C)) = d(C~, 

Ap(G) is neither a flat (because C would equal Ap(C) and be 

a flat) nor a half-flat (because G 
This means l(AP(C)) ~ d(AP(C)) -2, 

would be a half flat), 
Since in S(Ap(C)) = S(C). 

there is a support to AP(C) which has only s(AP(C)) in 

common with Ap(C), t'here is a line Lin S(C) with the 

required property, 
A point of a convex set is called an extreme point 

if it is not interior to any segment in the convex set, that 
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is, it is not the centroid of other points of the convex set. 

33. A closed bounded convex set 
is the convex hull of its extreme points. 

This is obvious in one dimension. If C is n dimen­
sional and p is a boundary point of C, there is a supporting 
hyperplane H of C passing through p. Now the extreme points 
of the n-1 dimensional closed bounded convex set C n H are ex­
treme points of C. This is because any segment not in H 
containing a. point of H as an interior point would have to 
pierce H, i.e. have points on both sides of H. From the 
theorem in n-1 dimensions, it follows that p is a centroid 
of extreme points in C n H. Therefore the relative boundary 
of C is in the convex hull of the extreme points of C. By 
Theorem 31, C itself must be in the convex hull of its ex­
treme points. This completes the inductive proof of 
Theorem 33· 

§8. POlARITY IN THE PROJECTIVE SPACE 

DEFINITION: A point set C in the pro­
jective space is called p-convex if it has 
the following properties: 

' 
1) C is not the entire projective 

space but not empty. 
2) C is connected. 
3) Through every point not inC there 

is a hyperplane which has no points in common 
with C. 

A hyperplane set r in the projective space 
is called p-convex if it has the following 
properties: 
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1 ) r does not contain all hyperplanes 
of the projective space but is not empty. 

2) I is connected o 
3) In every hyperplane not in I there 

is a point which is in no hyperplane of r . 

Let C be p-convex a.nd choose any hyperplane outside 
C as the plane at infinity. Then C is an s-convex point set 
in the affine space. For let x and y be any two points inC, 
and suppose there were a point z on the finite segment xy 
which is not in C. Then there would be a hyperplane through 
z which does not meet c. This hyperplane (together with the 
plane at infinity) would separate x and y in contradiction 
to the assumption that Cis connected. Hence, C is convex. 
Let p be any point not in Co There is a hyperplane through 
p not intersecting Co Now this hyperplane bounds a support 
to Pp(C), hence it contains s(Pp(C)). This proves the 

a-convexity of C. 
Conversely, every s-convex point set in the affine 

space is p-convex in the projective space obtained by ad­
joining the plane at infinity. For, the points at infinity 
do not belong to C and they are in a hyperplane which does 
not intersect C. C is obviously connected. Through every 
exterior point of C there is a bound to C. Through every 
point y E: C but not in C there is a supporting hyperplane 
which has no points in common with C. This is true because 
Py(C) has a supporting hyperplane which intersects PY(C) 

only in s(Py(C)), and s(Py(C))IlC is empty. 

34. If C is a p-convex set, the 
set r of all hyperplanes which have no 
point in common with C is p-convex. 
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35. If r is a p-convex hyperplane 
set, the set C of all points which are 
in no hyperplane of r is p-convex. 

PROOF: The two statements are duals of each other; 
hence it is sufficient to prove one. Let C be given and 
denote by r the set of all hyperplanes not intersecting c. 
Since C is not empty r does not contain all hyperplanes. 
Choose one of the hyperplanes of r , as the plane at 
infinity. Every other hyperplane of rthen is a barrier to 
C. Since the barriers form a convex set and since there are 
barriers which are arbitrarily far away' r is connected. 
Every hyperplane which is not in r contains a point of C and 
no hyperplane through this point is in \ . 

Obviously the set of all those points which are in 
no hyperplane of I is exactly the origina.l point set C. Hence 
the sets c and r determine each other in this simple way. 

Consider any such pair of sets C, I and apply any 
correlation S = Ax. Then r* = AC and c* = A'_, I form 
another pair of the same kind. If the correlation is in­
volutory, that is if A=± A', we have 

** c = c . 

* In the case A= A', C is called the polar body of C with 
respect to the quadric x'Ax = o. By means of the bilinear 
equation x'Ax* = o the polar body c" 
follows: For each fixed point x € C 

* * a hyperplane in I , and C consists 
are on no such hyperplane. 

Let 

C" 0 1 
A = . . . . 

0 0 
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* of all points x which 

0 ) 0 
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and choose x
0 

= o as the plane at infinity. Then the bi­

linear equation is 

The origin corresponds to the plane at infinity. In the 
* euclidean space, putting x

0 
= x

0 
= 1, we have the polarity 

with respect to the unit sphere. To a bounded convex set C 
with the origin as an interior point corresponds a c* with 
the same properties. If C is open c* is closed and conversely. 
The closures of C and c* obviously determine each other, and 
this gives Minkowski's polarity for convex bodies. 

Let C be a closed convex cone whose vertex is the 
origin. * Then C is 

if it is defined 
has to be added. 

by 

the polar cone 

means of r* = 

Replace now n by n+1, 
coordinates by x

0
, ~ 0 ~ J xn' z, and 

0 
0 

A = 

0 
-1 

of C in the former sense, 

AC. Otherwise the origin 

denote the homogeneous 
consider 

0 0 -1 
1 0 0 

0 1 0 
0 0 0 

The corresponding bilinear equation is 

This is the polarity with respect to the paraboloid of 
1 ti 2 2 2 l"f th "nh revo u on z = x 1 + ... + xn e l omogeneous co-

ordinates are interpreted as rectangular coordinates, The 
infinite point of the z-axis, that is, the point with all 
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-11-x = o and z = 1, corresponds to the plane at infinity, 
x

0 
= o. To all other points at infinity correspond hyper-

planes parallel to the z axis. The origin corresponds to 
the hyperplane z* = o. If a convex set C has an asymptotic 

~ * cone which contains the positive z-axis, the polar set C 
has the same property. For a closed convex cone C whose 
vertex is the origin and which contains the positive z-axis. 
the polar set c* is a half-cylinder generated by open half­
lines whose end points make up a closed convex set in z = o. 
This polarity is especially useful in treating convex 
functions. 



CHAPTER III 

CONVEX FUNCTIONS 

l. DEFINITIONS AND ELEMENTARY PROPERTIES 

DEFINITION: Let D be a convex set 

or An(x1 , •.• ,xn). A real-valued function 

f(x) defined for X in D is said to be 

convex in D if 

r( (1-e)x + ey) ~ (l-8)f(x) + 8f(y) 

for 0 ~ 8 ~ 1 and X and y in D. If 

< is always valid for 0 < e < 1 and X 

and y distinct points in D, f(x) is 

said to be strictly convex in 

tion r(x) is called concave 

D. A runc­

(strictly 

concave) if -f(x) is convex (strictly 

convex). 

If f(x) is a function defined in the set D of 
n 

A , the set of n+l( ) all points in A x 1 , •.• ,xn,z such that 

x =(x1 , ..• ,xn) 

[D, f]. 

is in D and z ~ r(x) will be denoted by 

For each of the properties listed below the domains 

of the functions are always assumed to be convex unless a 

contrary assumption is explicitly made. 

l. The function f(x) is convex 

in the set D if and only if the set 

[D,f] is convex. 
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If f(x) is convex in D and (x,z
0

) and (y,z1 ) 

are points of [D,f], 

(l-8)z0 + 8z 1 ~ (l-8)f(x) + 8f(y) ~ f((l-8)x + 8y). 

This means the point ((l-8)x + 8y, (l-8)z
0 

+ 8z1 ) is in 

[D,f}. The proof of the reverse implication is even more 

obvious. 

2. If f(x) is convex in D and 

x = My + b where M is an n by m matrix 

and b is a vector of An, then f(My+b) is 

convex in the inverse image of D, that is in 

the set of all y = (y1 , •.. ,ym) for which 

My + b E D. 

• 
This is true because 

3. If 

functions in 
r 

f f (x), 
D and 

f' =0,1, .•• ,r, 
..\.i ~ o, the 

2: )..ff"' (x) is also convex in D. 
j'=O J 

are convex 

function 

This follows from the rules for adding inequalities. 

4. If f (x) is convex in D, 

xf' 
r 

6- D, ~ f; o, and z )..! = l, 
y=o 

r 
r A f f( Z Ar xl) ;S, Z jf(x ). 

f=O r=o 

The definition of convexity says that this is true 

if r = l. If A = l the statement is trivial. Suppose 
0 r 

Ao < l. Because of l - ).. = z >.,f' Property 4 for r - l 
0 

j'=l 
and l yields 
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r A t 
f ( 2.: l- )\ X ) 

.f' =1 0 

r 
+ (1- ).. ) z 

0 f=l 
Ae f (x f ) 

1- ). 
0 

Property 4 follows by induction. 

5. A function f(x) is both con­
vex and concave in D if and only if 

it is linear in D. 

The sufficiency of the condition is obvious. If 
f(x) is both convex and concave in D, Property 4 applied to 

f and -f yields 

(*) 

r 
for ~ f, o, z Af= l. If r equals the linear dimension 

y=o 
of D and the points x~" are linearly independent, (*) shows 

that f is linear in the simplex 

r f 
Suppose now that x = Z flr x , 

f=O 
of D. Application of (*) to the 

1 r - z 
r+l f=O 

xf of the simplex gives 
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with vertices x.P 

r 
z f'lr"" 1, is any point 

y=O 
point x and the centroid 



f'or 0<8<1. = == Since the 
. r 1-8 

polnt Z ( +l 
.f =0 r 

) f ' + 8~f x .·· is in 

the simplex with vertices 

it follows from (*) that 

x f f'or some 8 suf'ficiently small, 

The ref' ore, 

and 

( r ( 1-8 ) f ) r r z r+l + 8 .uf x = z 
f=D I f=O 

. r 
f'(x.f) + 8f'( z 1'-.,xf) 

f=O ' 

r f r f' 
r ( z .. · ,Jl,.x ) = z ~"' r ( x ) • 

y=o J r=Cf ) 

6. If' f'JJ(x), JJ= 1,2, ...• , are con­
vex functions in D and fv(x) converges 
pointwise to f(x), f'(x) is also convex 
in D. 

This is because the inequality def'ining convexity in 

D for f'(x) is the limit of the corresponding inequalities 

f'or f)) ( x) • 

7. If' rex' (x), wheve o< runs through 
any set, ave convex functions in D, the 
set of' all points x of' D at which 

s~p f~ (x) is finite is convex and 

s~p f'~ (x) is a convex f'unction in this 
set. 
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finite. 
Define g(x) ~ ~P f~ (x) 

Let x and y be any two 
where this sQpremum is 

pointe for which s"'up f<l( 
is finite ,_. _Then 

f~ ((1-Q)x + 9y) ~ (1-G)f~ (x) + Qf~ (y) 

~ (1-Q)g(x) + Gg(y). 

This shows that s~p t( (1-G)x + Gy) is f'inite and 
g((l-9)x + Gy) ~ (1-G)g(x) + Gg(y). 

8. If f(x) is convex in D 
and cp(t) is a monotone increasing 
convex function over an interval which 
contains the values of f(x), cp (f(x)) 
is convex in D. 

From the convexity of f' a:nd the monotone charac­
ter of 7> , and from the convexity of ·rp 

Cf(f( (1-G)x + Gy)) ~ f( (1-G)f(x) + Gf(y)) 

~ (1-G) )l'(f(x)) + Gf(f(y)). 

9. If f(x) is convex in D 
and D' is a compact set in the rela­
tive interior of D, f(x) is bound­
ed above in Dr. 

Cover D' with a finite number of closed simplexes 
contained in D. Every point x of' D' is a centroid of 
the vertices of any simplex which contains it. By Property 
4, f(x) is less than or equal to the maximum of f(x1 ) 
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as 
Since the nunlber' •:i' 

i:1 D' • 

tl::,e ver'tiees 

sirr:plices is 

Gi' a simplex containing x. 

fircite, f(x) is bou..."lded above 

10 •~ ~(~) is ~ D l·t l·~ • ~.., .1. "" c·:nvex ~:r:. , u 

bsunded belc•w in every bounded subset of D. 

J Let x be a fixed poir"t relative interior to D. 

Select a positive mmber 6 so srr.all that, in the flat spanned 

by D, the closed spher'e K about x 0 with radius 5 is in 

the relative i::J.terior r:f• D. FDr ar: arbitrary pc,int x in 

D, denote by y tr.:at pc.i:;.t of tLe li!:e joining x and x 0 

which does not separ'ate x and x0 and which is a distance 5 
from x 0

• This def'inition :l..nsures that y Ei K C D. From the 

convexity of :r it f'cllows that 

j' 
f +S f(y) 

where f' der.otes the distance \\ x-x0 1\ • Her~ce 

Sinee K is compa::t ar •. d relative i.:,teric·r tc· D, f(y) is 

b:~ur!ded above (Proper·ty 9). Hence f'(x) is bou;n.ded below 

for' .f bo:.r:1ded. 

11. !.f. f'(x) is a '~·.:.r.v•::·x function 

in D whieh attaiY.s a :maximum value at a 

relative intericr p-'1::_nt cf D, the~'l 

f'(x) is ~~oy:sta!ct in D. 

Suppose 

point x 0
• If x. 

small positive 1(. 

f(x) has a maximum at a relative interior 

is any poi!'lt of D, fer some sufficiently 

tl':e pcid Y"" (1+ "'?. )xc - 'l_X is also in D. 
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f(x
0

) = f(l+~ x + l~JZ y) ~ l+'\ f(:x:) + l~?z. f(y) ~ f'(x
0

). 

Hence f(x) = f(x0
). 

This argument also shows that a convex f'lli~ction cannot 
have a local maximum in a relatively open neighborhood tLnless 
f(x) is constant in that neighborhc,od. If this does )1_appe::1, 
the next property shows tr_at this constar:t value must be a.n 
absolute minimum of f(x). 

12. If f(x) is convex in D, 

r(x) has at most one local minimum. 
If there is such a minimum

1
it is an 

absolute minimum and is attained on a 
convex set. 

Suppose there is a local minimum at 
point x of D, 

0 
X • For any 

if 9 is a suff'iciently slnall positive number. :tience 
f(x) L f(x0

) and f(x0
) is the absolute minirnQm of' f. 

lf x0 and x1 are two points at which .f(x) attains its 
minimum value I", 

Hence f also attains its minimum at (l-9)x0 + 9x1 • 

13. Let f (x) be a eon vex fu:w-

tion defined in a 
tains a flat F. 
(non-homogeneous) 

set D which con­
If there ex;!.sts a 
linear fu..n•:::tion 
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.f. (x) in An sueh t}l.a t f'(x) ~ 1 (x) in 

F, then f'(x) - _f.(x) is constant in F 

and in every flat which is a translate of' 

F and is in the relative :L"iterior of' D. 

The f~~ction g(x) ~ f'(x) - 1 (x) is convex in D 

and non-positive throughout F. If x0 is a fixed point in 

F and :x: is any other poi,:'lt 1..':1 F, the points x A = 

(1- A )x0 + A x are i::t F for all A • If ). > 1 the con­

vexity of g(x) implies that 

Letting ). -> 0o gives the relation 

If' A< 0, it follows .from the convexity of g(x) that 

Letting ).. -> - oo shows that 

Hence g(x) is constant over F. Suppose that for the vector 

v the translate, Fi ~ F + v, of F is relative interior to 
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D. Select A > 1 

is in D. With x 

so large that the point 

and x ~ as before, the 

convexity applied to the points 

x), gives 

X
o 1 +Tv, 

xo + A v 
A -1 

definitior:. of 

x 0 + v; and 

By Property 9 g is boLL"lded above in a neighborhood of x~ + v. 

Hence, (1 - j)g(x0 + ).. A_1v) is LL"liformly b,:nx:n.ded above for 

all sufficiently large A • Thus g(x+v) is bounded above 

for x E F, that is to say g is boLLl'lded above in Fr. 

That g is constant on F
1 

follows from the first part of 

the theorem applied to the function g in the flat Ff. 

Property 13 is also a consequence of Chapter II, 

Property 24 applied to the set .[D,f]. 

14. Let f(x) be cGnvex in D and 

let p be a relative interior point of D. 

Assume that f(x) is linear 0:1 each of 

finitely many (fL"lite or infinite) seg-

ments in D which have lir:early inde-

pendent direetions and which :r..ave p as 

a common ir..terior point. S:':'".:en f(x) is 

linear over the convex hull of these 

seg..ments. 



There is a (r:orc-homoge:r~eous) linear fu."lction 1!. (x) 

in f(x) along the segments. Hence, 

the convex fu:~ctiort g(x) = f(x) - f. (x) vanishes en the seg­

ments. Now every poi::J.t x of the co:1vex hull of the segments 

:nay be written 

- r f 
X- ZA.,X' 

.f=O ' 

\ > /li = o, 
r 
:2'; ),,..=; l, 

f=O J 

with po:L"'lts 
f 

X belo::J.ging t0 the segme:Ets. Hence, by Property 

4 

g(x) ~ 
r 
z:Afg(x~")=O. 

y=o 

But p is a relative interior point of the convex hull and 

g(p) = 0. T1-~erefore (Property 11) g(x) is identically zero 

ir, the convex hull cf t"1e segmercts. 

DEFIRITimJ. A fu':',ction f(x) def:L"led 

in a co:-:.e D with the origin as vertex is 

said to be positively homogeneous (of degree 

l) in D if .f(Ax) =), f(x) for every 

x e D a:1.d all )., f;, o. 

15. A positively ho!".c:ge:::ecus function 

.f(x) in a convex co:'le D is convex in .D 
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if' and only if' 

r(x+y) ~ f'(x) + r(y) 

for every x and y in D. 

Convexity or f(x) implies 

~r(x+y) = r(~x + ~y) ~ ~f(x) + ~f(y). 

On the other hand this inequality implies ror 0 ~ 8 ~ 1 

that 

f( (l-8)x + 8y) ~ f( (l-8)x) + f(8y) = (l-8)f(x) + 8f{y). 

Important examples of positively homogeneous con­

vex runctions are the support functions of point sets in An. 

DEFINITION. Let M be an arbitrary 

point set in Ano Denote by B(M) the 

convex cone with the origin as vertex 

consisting of all vectors s such that 

M is bounded in the direction s 
(Chapter II, Section 5). The fw.1.ction 

~ sup x 1 ~ 
X E. M 



defined in B(M) is called the support 

function of Mo 

That hM( s) is positively homogeneous in B(M) is 

clearo That it is convex follows from Property T· 

Obviously, hM( ~) ~ hN( ~) in B(N) if M C N. 

If II ; II = 1, hM( S) is the distance from the 

origin to the supportiP~ flat of M with positive normal 

vector ;; • Thus, hM( ;- ) determines all the supports of 

M. The converse holds because hM(S) is positively homo­

geneous. Therefore M and fMJ , the closure of the con-

vex hull of M, have the same support fur.ction. Also two 

sets· M and N have the same support function if and only 

if {M1 = fNJ. 
Let M be a point set with the support function 

hM( S) and A a real number. Then the set ), M has the 

suppDrt function A~(~) defined in B(M) if A ?; o, 
and tJ::.e support flL-r:tction -,\~(-s) defined in -B(M) 

A < Oo 

If M a"'ld N be point sets with the support 

fU!wtions hM( ~) and hN( S ) , the set M + N has the 

support function 

defined in B(M) n B(N). This follows because 
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sup . (:x:+y)' S 
x+yEM+N 

=sup (x•;;+Y'S) = 
:x:EM 
yEN 

sup :x:' s + sup y •l; . 
XE M y€ N 

2. CONTINUITY AND DIFFERENTIABILITY OF CONVEX 

FUNCTIONS OF ONE VARIABLE 

The case of a convex function ~(t) over a convex set 

D of A1 X-oo<t<oo) will now be considered. Here D must 

be an interval (open, closed, or half-open, possibly un­

bounded). If xI y and 9 I 0 or 1, the inequality used 

in Section 1 to define convex fun.ctions is equivalent to 

for any three points t 1 < t 2 < t 3 of D. If x = y or 

G = 0 or 1 the inequality of Section 1 is valid for all 

functions. Hence the present inequality is no weaker than 

the previous one. 

16. If ~(t) is convex in D 

cjJ(t3)- ¢J(t2) 
t3-t2 

for t 1 < t 2 < t3' Conversely, if one 

of these inequalities is satisfied for 

all t 1 < t 2 < t 3 in D, the fu_11ction 
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q'(t) is convex L~ D. 

The f'irst inequality of Property 16 follows from the 

defining inequality above by subtraction of sPCt1 ) from both 

sides and division by t 2 - t 1 • Reversal of the steps proves 

the opposite implication. Similarly the second inequality of' 

Property 16 is also equivalent to the defLYJ.ing inequality. 

Property 16 shows that 't(t+h)h if'(t) is monotone 

decreasing as h -·>·+ 0. Hence, the right hand derivative 

9'Ct+h)- !tCt) 
h 

exists and is either f'inite or - oo. SLmilarly the left hand 

derivative 

lim 
h -> + 0 

<fl(t-h)- )l?(t) 
- h 

exists and is either finite or +00. From Property 16 it 

also f'ollows for an interior point t of D and a 

sufficiently srr:all E > 0 that 

f -- ' 
Since <fJ + < oo and cp _ > - oo, both derivatives are f'inite 

at any interior point of' D. This irr~lies the continuity of'~ 

in the interior of' D. Furthermore, at a::.y point where one of 
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the derivatives is continuous the two derivatives agree, i.e. 

c:p (t) has an ordinary derivative. Since both derivatives 

are monotone increasing fu.c'l.ctions, they have at most a de-

num.erable nUlnber of jUlnp discontiLuities. For a sufi'icient-

ly sll1all fixed h '/ 0, g?(t+h)h ~(t) is contir"uous LYJ. an 

arbitrary closed interval interior to D. ~'here:f'ore 

1> ~ ( t) is the lim t or a decreasi::1g sequence o:f continuous 

:functions and consequently is upper semicontinuous. Similar-
t 

ly cp _ ( t) is lower semiconti!w.ous. The combitJation of 
i 

semicontinuity and monotoneity shows that cp + ( t) is continu-

ous from the right and <f'~(t) is continuous from the lef't. 

These :facts may be sUl!.!!!1ari.zed as f'ollows: 

17. If' )P(t) is a convex £'unction 

in an interval D, at every interior point 

of' D it is conti!mous a.11.d has finite one-
I I 

sided derivatives ~-(t) and ~+(t). 

These derivatives are monotone increasi.ng 

fQncti.ons whi.ch have identical values 

everywhere except .tor.an at riiostdenumerable 

number of poL11ts where they both have 

jUlnps. The value o:f f ~(t) at a jUlnp 

is the lef't hand limit, while the value 

of 
f 

1+(t) i.s the right hand linr..it. 

18. If cp (t) is a convex .fun.ction 

in D, ~"(t) exists everywhere in D 
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except on a set of Lebesgue measure zero. 

Where it exists it is r::.o':".-negati ve. 

This follows from the Lebesgue theorem that a monotone 

fu:rcction has a derivative almost everywhere. 

19. A function c(J(t), which is 

continuous in an interval D ar..d is twice 

differentiable i~ the interior cf D, is 

convex Ln D if 'f" (t) ~ 0 for all t 

in the interior of D. 

A:;cordir_g to 16 it 0::1ly :rJ.S.s to be shown that 

cp(t2)- cp(tl) 

t2-tl 
f; 0 

for a.::1y t 1 < t 2 < t 3 . :I'his is true, because repeated applica­

tion of the Theorem of the Mea:'l shows that the left hand side, 

apart from a positive factcr, equals so::rce value of cp". 

20. Under the same assUlllptions as in Property 

19 c{J( t) is: strictly convex if and o::1ly 

1:r 'f 11 
( t) ~ 0 for all t in the interior 

of D, but is t:ot ide:ctically zero in any 

(no~!-trivia.l) subinterval of D. 
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Property 20 is equivalent to t:he fact that cp(t) 
is convex but not strictly c:ox:vex if' a~1d only if' it is coE­

vex in D and linear on soxr:e subi:Lterval of' D. Here the 

latter condition is obviously su.f'ficder."t. That it is nec­

essary is seen i."1 the following way. If' ep( t) is convex 

but not strictly convex there are values t
0 
~d t 1 such 

that 

for 0 ~ Q ~ 1 

This :means that 

at 9
0 

and is, 

and y(e0 ) "" 0 for so:me G
0

, 0 < G0 < 1. 

the convex f'unztio:1 )b ( ~) bas a l!'Axi:mu:m 

therefore~ const~t (Property 11). 
The behavior of' a convex function 'f(t) at the 

endpoints of its domain D may be described in the follow­

ing way: <p(t) is :monotone either b. the whole of D or 

in each of two complementary subintervals of' D separated 

by a point at which <f(t) is a mir,i:mu:m (property 12). 

Hence, as t approaches an er:.dpoL>:tt e of D, cp ( t) has 

a .finite or i:nfinite li:n:H. If e is fi:rdte, li:m cp(t)>-OQ 
t -> e 

because o.f Property 10. If e belongs to D, the convexity 

of r:p(t) implies lirr,: cp(t) ~ <f(e). 0:-1 the other hand, 
t -> e 

it is easy to see t:r.a.t cp (e) z.cay be gi ve:1 ar1 arbitrary 

value satisfyir.,g this ir._equality wi.thout viclating the con­

vexity of cp ( t) . It is ofter:. ccnver:ie::xt to redef'i!te D 

and cp ( t) in the following :ma::c'1er: If' e l.s an. endpoi!1t 

of D belonging to D, cr,a:-cge the value of cp a.t e, if' 

necessary, so tbat !fJ(e) = l:l.:-'2 (t). If e is a finite 
t -> e 

endpoi."lt of D not belongi:::Jg tc:, D, a.::xd if' lim a:J ( t) 
t -> e 1 

is finite, adjoir.L e to D and def'i!Ie c:o(e) = lim m(t). 
l t -> eT 

By these inessential changes a evnvex ru:.1ction 9' ( t) is 

obtained Which is co:::,tinuou.s Iy, the whole ir1terval D of 

73 



definition and ~(t) --> oo as t approaches a finite end­

point of D which is not in D. For a function with these 

properties the set [D, ~1 is closed. Conversely if the 

convex set [D, $P] is closed, '1 is such a function. 

3. CONTINUITY PROPERTIES OF CONVEX FUNCTIONS 

OF SE'JERAL VARIABLES 

21. Suppose f(x) is a convex func­

tion over a convex set D of An and D' 
is a compact convex set in the relative 

interior of D. Let f) > 0 be such 

that the closed relative 8-neighborhood 

D" = Dt + 6 U of D1 is also in the 

relative interior of D. Here U denotes 

the closed unit sphere of that subspace 

through the origin which is a translate 

of the minimal flat containing D. Let 

M and m be numbers such that 

m ;;?, f(x) ;;?, M in D" (Properties 9 and 

10). Under these conditions 

I f(x+y) - f(x)j ~ M- m 
8 

for any x E Dl and any vector y for 

which X + y E D". 

If y = 0, the statement is trivial. If y f o, 
consider the function f(x+ty) of the real variable t for 

flxed x ED', y E S(D) - x. This is a convex function at 
0 6 IIYII ;£ t :::_ IIYII • From Property 

0 0 < t ~ ----;17'-1 y"ll-

least in the interval 

16 it follows that for 
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s 
_r _( :x:_) -_r_( :x:_s=--.:'l.w~I-"-Y:..u.I,.,.....I_Y_) II Y II ;; f'(x+ty)-.f(:x:) 

t 

Hence 

I r(x+ty) t r(x) I :i :!Ls m.IIYII • 

If II y IJ ;;;, [; , the value one r.ay be su.bsti tuted for t. The 

inequality obtained is obviously also valid when II Yjj > S 
provided :x: + y e D". 

The i:nequality in 21 shows that f satisfies a uni­

form: Lipschitz conditior~ in Dr. Herwe a unif'orm:ly bOU.."l.ded 

fam:ily of convex functions over the domain D11 is equicontinu­

ous in D'. From: this f'ollows 

22. If a set of co~vex functions 

over a relatively ope:n corlvex set D is 

urilform:ly bou~ded in every co:rcpact sub­

set of D, a sequence of furtcJtioris r:ay 

be selected from this set so that t~:e 

sequence converges :i.:·: D to a ::.onrex 

f'lL'lction. Moreover, thJ.e coEvergence 

is Ui::iform in any compact su.bset of D. 

An im:m.ediate consequez:c'e C·f 21 is 

23. If f(x) is e::)::~vex i:: D, 
it is ccrcti:::.uous h: the relative 1:.:_­

terior of D, 

T.P.e beravior of a ccmvex .fu:·cc!tion at the bour,dary cf 

its domain is essentially des:::ribed by 

24. If f'(x) is •:O:cve:K 1:: D 
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and y is a relative boundary point of D 

lim f(x) > - oo • 
X ) y 

If y 6 D 

lim f(x) ~ f(y). 
X > y 

The first statement follows from Property 10 and the 

second is true because 

lim f(x) ~ lim f( (l-e)x0 + ey) 
X ) y e-> l 

< lim ((l-G)f(x
0

) + ef(y)) 
"' G -> l 

= f(y) 

is valid for any fixed x 0 
E D .• 

Let 

for 

number. 

and define f(O,O) 
Then f is convex over 

to be an arbitrary non-negative 

the half-plane x2 > 0 plus 

the origin. Now lim f(x) 
X==> 0 

= 0 ·while lim f(x) = + oo. 
X--) 0 

This example shows that "lim" in 24 cannot be replaced by . 
"lim" and that the inequality cannot be strengthened. 

25. Let f(x) be convex in a rela-
cv 

tively open convex set D. Denote by D 
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A function obtained in the way described in 25 has 

the properties given in the 

DEFINITION: A convex function f(x) 

defined in a convex set D is called 

closed if lim f(x) = 00 for every 
X--> y 

relative boundary point y of 

is not in D, and lim f(x) 

D which 

= f(y) 
X > y 

for every relative boundary point y of 

D which is in D. 

A closed convex function may be obtained from any con­

vex function by removing the relative boundary pointsof its 

domain and then extending the function in the way described in 

25. 

26. If f(x) in D is a closed 

convex function lim f(x) = f(y) where 
X --> y 

y is any point in D and X approaches 

y along a segment belonging to D. 

Letting x approach y along the segment from x 0 

to y is the same as allowing e to approach one from below 

in the expression (l-8)x0 + 8y. Since 

f((l-8)x 0 + ey) ~ (l-8)f(x0
) + 8f(y), 

lim f((l-8)x0 + 8y) < f(y). 
= e --> 1 

On the other hand, 

statement. 

f(y) = lim f(x). This proves the 
X--> y 

27. A convex function f(x) 

is closed if and only if the set 
of An+l is closed. 
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the set obtained by adding to 
rv 
D 

all relative boundary points y 

for which lim f(x) < oo • 
X > y . 

Define 

for y 

and X 

nit ions 

f(y) = lim f(x) 
x-> y 

in D but not in 

in 
rv 
D. With these 

D is convex and 

rv 
D 

defi-

f(x) 

is a convex function in D. 

If 0 and 1 two points y y are any of D, 
are sequences xoi and li 

X $ i "' 1,2.,noo,. of points 

such that oi > o 
X - y' xli -> yl and 

lim f(x0 i) ~ lim f(x)~ 
i -->oo x · > y 0 

lim f(x1i) ~ lim f(x). 
i -->oo x --> y1 

Now for 0 ~ 8 ~ 1 

Hence 

lim 
X-> (l-8)y0 

there 

from 

~ (l-8)f(y0
) + 8f(y1 ) < oo. 

This shows that (1-G)y0 + Gy1 E D and that 

77 

D' 



Suppose the set [D,f} in An+l is closed. Let 
and xi E D a sequence 

lim f(xi) = 
y be a relative boundary point of D 
of points converging to y such that 

i -->oo 
lim. f (x). If this lim is finite, the sequence of points 

X--) y 

(xi,f(xi)) in [D,f} converges to the point (y,. lim f(x)) 
X--)' y 

in ID:rfl· This means that y ED and f(y) ~ lim f(x). 

From 24 it now follows that 
-:x:->y 

f(y) = J.1m, f(x). Conversely, 

suppose 
points 
( y ,z). 

x->y 
the function is closed. Consider any sequence of 
(xi,z~) in [D?f} which converges to a point 
Since zi !;;; f(x:L), z L lim f(x). This implies 

-X-> y 

y ED and z ~ f(y),. that is (y,z) E [D,f]. 

4. DIRECTIONAL DERIVATIVES .AND 

DIFFERENTIABILITY PROPERTIES 

28. If f'(x) is convex in D,. 
the udirectional derivativeu 

f! (x;y) = lim 
t -> + 0 

f(x+ty) - f(x) 
t 

exists and is either f'inite or - oo 
for any x in D and any vector y 
such that x + y is in the projecting 
cone Px(D) •. For a fixed x, 
f'T (x:~y) is either finite for all y 

in the translate Px(D) - x of the 
projecting cone, or it is -oo for all 
re+ative interior vectors y of' 
Px(D) - x. When fr(x;y) is f'inite 
in Px(D)- x:,. f'(x;y) is a positive­
ly homogeneous, convex function in 
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Px(D) ~ x. It: X is relative interior to 
D, the cone Px(D) ~ x is a subspace and 
f'l (x;y). is f'inite .for all y L"l this sub­
space. 

~~ above lim2t is the right hand derivative at t = 0 
of' the .function r(x+ty) of' t which is de.fined and convex 
at least in scme interval 0 < t < b. Thus the limit exists 

= 
and is < oo (Property 17). If' x is relative interior to 
D, f(x+ty) is de.fi:ned and convex in s=e interval containing 
t = 0 in ita intericr a.nd, herwe, fl (x;y) is finite. 

He:nce 

(*) 

If' )..> o, 

f(X+ Aty) - f(x) 
t 

= 1 .f(x+.A ty) - .f(:x:) 
/1. )..t 

:ft(x; 'Ay) = .Af'(x;y) 

for ). > 0. This equation is clearly also valid 
I:f f! (x;y) = - oo f'or a particular y, it must 
or~ the ray genera ted by y in l' x (D) - :x:. If y0 

are in Px(D) - x) 

for A = 0. 

be i.:tfini te 
and y1 

If' 

.f(x+t(yo+yl)) - f(x) = 

t 

fl(x;;y) is -oo on any ray (yo), 

it must be -oo on every ray which is 
and arty other ray (yl) of' Px(D) -· x. 
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:fT (x;y) "" - 00 in the whole relative interior of Px(D) - x. 
If f' (x:;y) for the x considered is - oo for no y, the 
above lnequafil-y gives fl (x;y0 +y1) ~ fl (x;y0

) + rr(x;y1). 
This combined with equa:til7lt- (*) shows that fl (x;y) is a 
positively homogeneous, convex function of y in the cone 
Px(D) - x (Property 15). 

That f1 (x;y) need not be - oo on all relative 
boundary rays of Px(D) -x when it is - oo on the relative 
interior rays is shown by the following example: Let D be 
a closed strip o:f a plane and let :f(x) be a convex function 
over D with its graph half of a circular cylinder. I:f x 
is a boundary point or D, :rt (:x;y) = - oo in any direction 
:from x into the interior of' D but is finite in the two 
directions along the edge o:f D. 

29. If :f(x) is convex in D 

:for all x and x0 in D. If r(x) 
is positively homogeneou.s and convex 
in a convex cone D 

:f(y) b :f! (x;y) 

for all x and y in D. 

I:f x0 and x are in D, :f(x0+t(x-x0
)) is a con­

vex function of t in an interval i:lcluding 0 ~ t ~ 1. 

Hence for t )' 0 

because the left hand side decreases as t decreases (Property 
16). Substitution of one for t gives 
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that is the first statement of 29. If f(x) is positively 
homogeneous 

This and substitution of y for x - x0 gives the second 
statement from the first. 

30. If f(x) is convex in D, the 
supporting hyperplanes of the set [D,f(x)J 
which contain a fixed point (x0 ,f(x0

)) are 
identical with the supporting hyperplanes 
of the corresponding set 
[P

0
(D), f(x0

) +fl(x0 ;x-x0
)] forthe 

X 
function f(x0

) + fr(x0 ;x-x0
) of x. 

The set [P 
0

(D), f(x0
) + ft (x0 ;x-x0

) 1 is a convex 
n+l x o o cone in A with vertex (xJ,f(x )). This follows easily 

from the facts that P 
0

(D) is a convex cone and that 
f' (x0 ;y) is positivel§ homogeneous in y. Hence every 
supporting hyperplane of this set goes through (x0

, f (x0
) ) • 

Furthermore 

because of Property 29, and the inclusion DC P 
0

(D). Every 
X 

supporting . 0 . 0 0 
hyperpla..'"!e of the set [P 

0 
(D), f(x ) + fl (x ;x-x ) J 

X 
is thus a supporting hyperplane of 
(x0

, f(x 0
)). 

[D,f(x)) through 

To prove the converse consider a supporting hyperplane 
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or [D,f(x)l which is not parallel to the z-axis and which 

contains (x0 ,.r(x0
)). Its equation :may be written 

with SOllie vector u I 0 in An. Now 

Hence, replacement of x by x0 + t (x-x0
) e D for 0 < t ~ 1 

gives 

and 

Since f' (x0 ;y) is positively homogeneous in y, the laat 

inequality holds for all x E P 
0

(D). This means that a 
X 

supporting hyperplane of [D,f(x)] through (x0 ,f(x0
)) and 

not parallel to the z~axis is also a supporting hyperplane 
of [P 

0
(D), f(x0

) + ff (x0 ;:x:-x0
) J. 

X 

A supporting hyperplane of [D,f(x)J through 

(x0 ,f(x0
)) which is parallel to the z-axis has an equation 

or the form (x-x0 ) ru = o. For this u 

for all x ED 

Clearly this inequality also holds for all x E P 
0

(D) 
X 
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be0ause every x E P 
0

(D) may be written x = x0 + A(x1-x0
) 

l X 
>dth x G D, A > G. This means that the given hyperplane 

= 
parallel to the z-axis is a supporting hyperplane of 

[P 
0

(D), f(x 0
) + f'(x0 ;x-x0

)]. 
X 

31. Let f(x) be convex in D, and 
let x0 be an arbitrary point of D. Then 
there is a supporting hyperplane to [D,f(x)] 
which contains the ·point (x0 ,f(x0

)) and 
which is not parallel to the z-axis if and 
only if fr (x0 ;y) is finite for all y in 
p o(D) - xo. 

X 

Suppose 
tive interior to 

( 0 1 0) l ft x ;x -x is finite for some x rela-
P 

0
(D). The ray in An+l with initial 

X 
point (x0 ,f(x0

)) and direction determined by the vector 
(x1-x0

, :r•(x0 ;x1-x0
)) is a relative boundary ray of the con­

vex cone C = [P 
0

(D), f(x 0
) + f'(x0;x-x0

)]. Hence, in the 
X 

minimal f'lat S(C) containing this cone there is a support-
ing h;y·perplane H of C which contains this ray. If H 
were parallel to the z-axis, its intersection with the hyper­
pla.'"le z = 0 would be a supporting flat of P xo (D) • On the 

other hand it would contain the relative interior point :x:1 

of P 
0 

(D), but this is impossible. Now H can be extended 
X 

to a supporting hyperplane in An+l of C not parallel to 
the z-axis. From 30 it follows that H 
[D,f(x)]. The converse follows fr\1m the 

also supports 
inequality 

obtained L'1. the proof of 30 for any supporting hyperplane 
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of [D,f'(x) J which is not parallel to the z-axis. 

Now let f(x) be convex i...'l an TI'""dimeneional convex set 

D, and let x'> be a fixed interior point of D. Consider 
0 the function on the line x = x + ty where y is an ar-

bitrary fixed vector in An. In some ixrterval f(x 0 +ty) is 

a convex function of t whose right ha~derivative at t = 0 

is ff (:x0 ,y) and whose left hand derivative at t = 0 is 

-f' (x0
; -y). Hence f (x0 +ty) is differentiable at t = 0 

0. . 0 Hand only if' -rf(x ;-y) = f'l (x ;y) that is H 

f'or> arbitrary real ), • Theref'ore the partial derivatives 

of r(x) exist if' and only if' ror all real .A 

i where the u, i = l, ... ,n, denote the ~~it vectors 

(o, ..• ,o,l,O, •.• o). The partial derivatives have the values 

If'theyexist, ff(x0 ;y) 

From Property 14 it then 

is linear on every coordinate axis. 

follows tr~t fl(x0 ;y) is linear 

over the whole y-space. Hence 

is the total differential or f(x). 

32. Let f(x) . be convex in an 

n-dimensional convex set D. Let x 0 
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be an interior point o:f D and suppose that 

fY(:x:0 jy) is a linear :fU.."l.ction of y. Then 

':f(:x:) is dif:ferentiable at x = x 0
• 

This statement is equivalent with the :following: To 

every c > 0 there is a S > 0 such that 

:for all u.."l.it vectors u a."l.d 

the definition of ff (x0 ;y), 

vector y there is a 6 (y) 

0 < t ~ [; . Fro:m. Property 29 and 

it follows tt>..at f'or each fixed 

such that 

(*) 

c- ( i n f'or 0 < t ~ 0 y). Apply this to the vectors y, i = 1, .•• ,2, 

all of whose coordinates have the value + 1 and put 

b = min b (yi). Then ( *) is valid for each y "" yi and 
i 

0 < t ·~ f) • Now for any fixed t in this interval 

:f(x0 +ty) - f'(x0
) t:rt (x0 ;y) is a convex f'U.."l.ction o:f y since 

f 1 (:x ;y) is linear in y. lien.ce ( *) is valid for all y in 

the convex hull of the points yi (Properties 4 and 29), in 

particular for all u..l'l.it vectors u. This proves the statement. 

33. Let f(x) be convex j_n a relative­

ly open convex set D of dimension d, and 

let y be a :fixed vector parallel with the 

minimal flat containing D. Then :ft (:x:;y) 

is ru1. upper sem.:ieontinuous function of x 

ll1. D. The ordinary derivative o:f f(x) 

iil the direction y exists everywhere in 

D with the possible exception of' a subset 

of' d-measure :zero. Where it exists the 

derivative is a continuous :function of x. 
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In everYy compact subset of D the f'J.::J.ctio:n .f' (x;y) 

of :x: is the limit o.f a decreasL~ sequence of continu.ous 
.f(x+tiy) - f(x) 

functions t;1 where t 1 > 0 ~ t-; -> 0. P..ence 

:fi (x;y) is upper semicontinuous. The ordir.a.ry derivative o:f 

.f(x) in the direction y exists at a point x i:f a.'1d only 

if" .f~ (x;y) = -.f' (x;-y). Now f' (x;y) + .f' (x;-y) ' o, sirrce 
rr(x;y) is positively homoge:neous a:-d co:wex in y. Hence 

the set of points at Which the derivative G.oes :1ot exist is 

the set o:f x at which f'r(:x:;y) + f 1 (x;-y) > 0. Thus this 

set is :measUJ:'able. Its intersection with a line parallel to 

y contains at most a denumerable nu:m:ber (>:f 

17) . Therefore the set r.a.s d-measu...-r>e zero, 

is upper se:micontinuous f'or ever•y f;txed. y, 

lower semicontinuous and, hence, f\ (x;y) 

the set .at which f'' (x;y) + :fl(x;-y) = 0. 

points, (Property 

Since :f1(x;y) 

-:f 1 (x;-y) is 

is continuous in 

34. If' f'(x) is t:ocrve:x: i:1. an open 

convex set D, it is differentiable with 

continuous part.ial derivatives everywhere 

in D except for a set .. :Jf :r::.easure zero. 

Apply 33 to eaeh of' t11e unit vectors ui = ( 0, ••. , 0, 

lt 0., ••• ~ 0) on the coordinate axes instead of to y. For 

each i = l, ••. ,n, there is a set 0f measure zero at which 

does not exist. The U:."'lio:.'1. U of' these sets has 

:measure zero. At every x in D but outside U 

derivatives exist, that is f 1 (x;y) is linear in 

dif'f'erentiable (Property 32) • 'I't>e co:1.tL1.u1ty of 

derivatives is a:n immediate co;;:tseque:L;e of 33. 

35. if' :f."(x) is a twiGe differ­

entiable function L'1 a.>1 ope::1 d-::>::.vex set 

D, f'(x) i.s convex i.n D if a.nd o11ly 

if the quadratic form 
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is positive semidefinite for every x in D. 

From the .fact tJ:o..at f(x) is convex if and only if' it 
is convex on every straight segment in D and from Properties 
18 and 19 it :follows tbat r(x) is convex if' and only if 

n 
= Z f.J.(x)y1yj L 0 

i,j=l l . -

for all x ED and all y. 
A su:fficient condition that a function f(x), twice 

dif:ferentiable in an open convex set D, is strictly.convex 

in D is that Z.f'ij(x)yiyj is positive defhite. It is even 
su.fficient tbat the form is positive semidefinite for all x 
in D a.'Id the determina..l'lt det. r ij (x) is not identically zero 
on a.~y segment in D. 

5. CONJUGATE CONVEX FUNCTIONS 

In Chapter II, Section 8, polarity with respect to 
the paraboloid 

in An+l(x1 , ..• ,:x:n,z) was described. This polar;Lty will now 
be used to define an involutory correspondence between closed 
c:::mve:x: :fmwtions. 

An+l For the sake of brevity, a flat h will be 
called vertical or non-vertical according as it is or is not 
parallel with the z•axis. The polar hyperplane to a point 
(x,z) o.f An+l bas the equation <:::, + z = xt l; , where 

n+l · ) ( ~ ;c; ) are variables h the space A ( C:l' •.• , s ; .. !'?:, • 
Let f(x) h C be a closed convex function. To each poht 
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(x,z) :L'l [a,rl let ccrrespo::~d tr.e elcsed. upper half'-space 

£:; f:; x' s 4 z buur"ded by the polar hypersplane t.o the poi::xt. 

'l'ne intersection of all these l:'.alf~spaees f'or (x,'Z) 1:, 

[C1 ,rJ is a cloa.ed convex set [C,rJ* i:--c ArH·l. Si.n.ce 

X'~ - i'(x) G:'; :x;r s - z f'or all (x,z) E [C,r], it 1~;. 

suf':ficient to ctrn:sider the half~spa:ee 

X E C1. 

* Hence, [tJ,.fl is the set [ r, Cf} for the f'll!1CtioTc 

<:; = dJ( S) =· <J:u:p (xt ,S - f'(:Jr;)) 
l X 6 C 

defined in the proJection r in the 2:; -direction of' 
* [C ,f'] on the hYperplane c:; = 0. T!-.is f."'';cwtior, is oo:rive:x 

* an:d closed silwe [C, f'] iS cccvex ~'ld ·:,l>7Sed. A point i:; 
is in r ll' a.'r!d o:nly li' the fuJ:::;1.tioT:: ;li::V s - r(x) is bou,;nd­
ed above f'or ::t E C. 

Th.e set [ r p cpJ may a1sc be c·bt;ai):.:ed fi'om [c,rJ 
in a dual way. A !'CC!t-vertical hyperpla:rce has a:n equation or 
the form z = x' ~ ~ i:; with (x,z) variable. Its pole is 

the point ( ~ , L,) o If and orcly if th.i.S h:yper<pla!:e is a 

barrier to [C,f')~ we hav.e f'(x) ;:;, x~ ~ - c:; f\:Jr all 

x E C, that is ( s, 1:::,) E [ r, </)] o :::'!lJ.lSp Ir, fl .is t':le 

set of the poles c•f' all :::o:::.-verti:•al barriers to [c,:r l. 
Sir1ce there exist such barriers (Prop< siti>::::.s 28 a::1d 31), 
[ f7 , rp ] is :r,ot empty. 

If g (:X:) is a closed e0.:cc'ave f'u·Lc;tio~! defi:ned 1:::: 

the convex set D, let [D,g] de::ct;e t::r~e rclt:;sed cc"~"V$X set 
of' all points (x, z) in K1.+l such t:-:;at ;g;. E D at;,d 

z :i g(:x). To a p.oil-.t (x;z) il:. [D,g] let correspo:r,d the 
closed lower half~space L; :i x! ;; - :c; bcw:ded by the p·clar 

hyperplane of the poittt. T.he i:-::~tersectic!: o.f all these r.alf'­
spaces is the set [Ll, Jb] fer t:t.e cloSE:d -:;cr.-:•ave fu:::-::ti<:.:::J: 
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!:U' (xv S - g(x)) 
XeD 

~er:::.:~w<h\l! ir-il the set .6 (;f' all pc.·i:zt.s ;; f':.:r.' wrci:·h }::r ~ - g';>t/ 
.;l<IJ\J!:~?Jd b'i'l-®'W :!.lrt D-. A!!i :t.1 the '!O~!>:t caa:e 11 ~ Ll ~ )t- 1 is the 

set: 6f t:h~ ~lee of all non-vertical varriers: k· [D,g). 

e.:;p (x g S 
X E ~ 

dJ;i\.t'}l'IMoi il.t the set (' ~f' all pc111!.tS ~ for 

WA-eh X~ S * f' (X) is bl!ll\\ll::ded above f:.•r X 

crnr(:x:). 
Let g; ~%) ~~ D be 61P:Z:<>aVe a:n.:i <:l<':Ysed, 

~e .. tl".e ~l1!'15ed ooneav\'! ~t:l.on 

defined a~ the set Ll. 
which x~ 'S - g(x) is 

i:'ll" {x' ; - g (x )j 
xe-D 

of all points s f' .. 1: 

b(.J!t;,ded below f\ r :t: 

i:~ D is ;::alled the ''· ur,juga t~?: ru.::" of 
Dvg(x). 

Fr·"~ what Y:as been sai.1 it f'cllc;ws t:r.at eq_uivalent 

'ief:i:::;;.itior;;s: ·~:f the con,ju.gate fl.:l.":".;::;tio::ts are 

I'nese sh•::w tr,at '{! ( €;) is the <mpp·:.rc; f\t-:-cctio:"l 

set [ C ~f 1 :f:;.r the argument { ;- P =1) a::1.d t:Lat 
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the support f'U.!'l(;tion. of' [IJ,g] for (~ r ,1). 
From the above remarks the following gecrJr~tri:::al 

interpretations of the conjll.gates of er.r;nrex: and c:mwave i'U:>:LCf­

tians are i:l!llli:ediately derived: 

36. Let f'(x) i-n C be oonvex 

and let cp ( s ) 
Then (' C011:-

(or concave) and cloaed, 
in f7 be its conjugate. 

sistl!! of' all ~ suc;h that rr< "'] ~tt ··""'!J..1." ...... o 

bOunded in the direction of' the vector 

(~,-1) (or (-Ll)), a':'ld -rp(s) 
is the z:-L"'tercept 0£' t':J.e supporting 

hyperplane of [C,f'] with the zwrroal 

vector ( 5 ,-1·) (or (- S",l)). 

As already mentioned, t:r~e c:,:-rrell'po:'l.dence def'i::red 

above between <Jlosed convex or' ooncave functions is involutory: 

3'7 • If 'f ( ~ ) in f1 ig the 
conjugate of the clcsed co~1vex (or ('.on­

cave) f'urrction f'(:x:) in C, t::1en 

f ( :x:) in C is the cmn,j;zga te uf' 

)tl(~) in f7. 

Let 
.o;.< 

f (;x:) in C * be the ''- o!rjuga te of <P ( s );, f1 . 
* * From the preee<ling statement!'! it folloi!i:s that 

intersectio::J. of all supp::>rts tc> [C,f} whc,se 

[C ,:f 1 is t.he 

planes are ~on-vertical. 

follows from: the 

boundi:r;.g hyper­
* * 'I'hus th.e statem:ent [ C , f 1 = [ C:, f 1 

LEMMA: A closed convex set M in 

An+l havir~ supports bOU;.J.ded by non­

vertical hyper'plane.s is the ix:.terse0tion 

of all these supports. 
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Since Jill is the intersection of' all its supports, 

the statement is that the supports bou.nded by vertical hJ7Per...; 

planes :may be omitted without changing t!l.e intersection. A 

point ( F; 0
, c:; 

0
) not in M is outside sonre bound or suppo;r>t; 

of M. It has to be shown that there is su,~h a bound or 

support bounded by a non-vertical hyperpla."le. Let H be a 

barrier of M such that ( s 0 , c:;
0

) is separated frena M by 

H but ( S 0 , [:; 
0

) is not on H. If H is no~c.~vertical 
there is nothing to prove. Suppose H :is vert.ical and let 

HI. be a non-vertical barrier of M. , The hyperplanes H and 

H' divide the space An+l into. four wedges, one of which 

contains M but not ( E; 0
, C:: 

0
). Now turn H about the inter~ 

section of H and Hf away from the wedg.e containing Jill, but 

so little that H remain'S in the wedges adjacent to that wedge 
0 containing Jill a;:-J.d that ( ~ , 1 2:; 

0
) is still separated frOlli. 

M. The hJ'I)erplane obtained bounds a bound or support with the 

requil:'ed properties. 

36. ·Let f(x) in C and 7-J(~) 

in f7 be conjugate closed convex: functions. 

Then 

xrs ~ f(x) + jO(~) 

To every x E C for which fl (x,y) is 

finite for all y for which it is defined, 

there is at least one ~ € I' such that 

equ:ality is valid, and dually. For concave 

fU:nctions the inequality is reversed. 

The inequality follows i:mm:ediately from the definition 

of' the conjugate function. The statement concernL'1:g the eq:\lality 

sign is a consequence of' Propositions 31 and 36. 
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In ge::-:eral there :!.s 1:-;1;, a:U:.{ple relatio'r;. betwee-:c_ the 

prope:r>ties C'f' the d<)Jl!a:i!ls !J an.i fl r::f t'!<!Ci ('<:,:~,jugate . f".tTI/":­

tions. To a poi;:£t :x: in d correepol:td all pC:i!s.ts .; c,f' 

r With the p.r'Cperty that tf'J><)]J.g~ t!'J.e fF;;i:::t (x,f'(:X:)) 

there i.a a av.pportir~g nyperpla:rte t<) ::a,:r] with the ~rormal 
direction (.;, ~1), and duall:;r. Tbus, t;he ('torrespc;:::den~e 

between the sets depe::rds stro:rxgly o;;, t:':ce beJ::~v:J..cit:' o.f the 

f'u..'!ction f'(x). But there 1~:~ or.e ver.•y Sll!!P.le direct :r>ela­

tiun between C and !' w~J!.\C:J::~ will play a role i::~ the 

f'ollawing: 

If' c;r"e of the sets is bou:r::d.ed 1:-:; tt..e d.irecti<:>::t 7'?_ , 

the asymptotic (:one of' the other one <.mr"tai::,ta the ray with 

the directiun '7... 
This is seen in the f'<>llGwi:ng way: Suppose that 

C 1B bou."lded in the direction '7.. 'I'h.en; [a,t] i:s JJou:nded 

in the dlr>ectlon (?( ,o) a:J:~d like eyery set rc~r]~ i., 

some direction ( s , -1). Sin.ce the dir-e~.~ti:r:J$ 1~1 which a 
set is boui1ded f':orm a ccmvex cor~e, IC,f'] is b<'ur~ded in 

a.ll direct;io!"LS: 

the half-line 
( s + f 'Z '-.1) ' f {;, 

s+r">Z· f~ 0 · 
Itt the r'e:mai::::i:r:.g part of 

0. J:l:e:tce r COT£tai.J:tS 

f'U:~Ictions: are eon,aidered. The cr:r•resp::,:rc3.i~lg reslllt:s f'or ec:;,­

cave f'u.r~ctia:::_s: are obtai:n:ed by rath.e.I:' c.bv:l..cv.s c:"Jan.ges follU'!<!­

i:~g front the fact that c,,..f' a:::ii -r,- c:p are conjugate 

if' C, f' and {' , f are co::Y:;luga te. More ge!Lerally z 

39- Let f(x) . :!. .•• C be a C'l<.:.sed 

COnveX f'WLI;tiO:U arcd <f ( S) i:! r itS 

conjugate f'u:notio~t. ':::!.-ten f'c:r> ar(y real 

A I 0 the co-r::ju.gate f'u:::..~Lt::s::. cf' 

>.. :r (:x:) is"' c i.s A ]0 ( i:-) b. ).. e. 
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sup (x' E; - A f(x)) 
XEC 

f'or A > o, s E A r and 

sup (xr S ... Af(x)) =A 
X E CJ 

:for A < o, :; E A r . 

iill:' (x~$" - r(x)), 
X e G "' 

Other obvious consequences of the defir:.ition of con.~ 

ju:gate f'U..nctior~s are the followir.g ~ 

4o. tet f(x) 
convex function and 

be a closed 

i:r;; (1 its 
con.ju:gate function., The:E the co:njugat:e 

function of' f(x) + k i::: C, k a con­
stant, is <:p( s) - k in f7. 'I'he cox~­

jugate f1L'1C'tic1n of' f(x-v ) in C1 + v , 

v a con.stant vector, is cp ( s ) + v 1 s 
in: /'. 

The first stateme:::t :Ls (~lear' and the seco::o. follows 

sup (x1s -f'(x-v )) - s:up ((:x:-v)?s - f(x-v) + v'~· 
x E C+v x•v €- C 

Now let r1 (x) ire c1 and f 2 (x) :tu C2 be closed 
convex i'tL.YJ:ctions, where c1 and c .. , nave poi:r!ts i:r" co:m:m:on. 

c 

'I'hen rl (x) + f2(x) is a convex ftmetio:n dei'ined i?:l cl n 02. 
It is easily seen: that this f'mrction is closed. To prove it, 
let y be a relative bou.n:dary poi:d of c1 fl c2 • If' 

y G c1 n C12 , we have f l (x) -> 1\ (y), f 2 (x) -> f 2 (y) as X 

approaches y on an:y segment in c1 (\ a2 (Proposition 26). 



Hence r1 (:x:) + r2 (:x:) ~> :!:\ (y) + r 2 (y) u..'rlder the same 

condition. Thi.s :iJnpHes that ~ (r1 (x) + r 2 (x)) < oo 
. X-> y 

as x approaches y arbitrarily and (again by Proposition 

26) that this liln is f 1 (y) + r 2 (y). If y is not in 

cl n c2, we .b..ave either f 1 (:x:) -> Oo or f2(:x:) ~> 00 

as x -> y, and hence r 1 (x) + r 2 (x) ->oo, since r 1 
and :r2 are bounded below in a neighborhood or y. 

41. Let r 1 (:x:) in c1 and f 2 (x) 
in c2 be closed convex functio:'ls with 

the conjugates <?1 ( ~ ) ;1.:1. rl and 

Cj)2 (~) in r 2 • ASS\L'll.e that Cl fl C2 
is not empty. Denote by rf ( ; ) .L"' (1 
the conjugate of' the function f 1 (x) + f 2 (x) 

in c1 n c2 • Then 

To prove the f'irat. statement, it will be shown that 

the conjugate of' the £'unction c:p on the set I' defined by 

(*) is f 1 (x) + f'2 (x) in C1 (1 c2 • According to an obgerva• 

tion made in connection with the definition of the conjugate 

function, f'1 (:x) and r 2 (x) are the support funetiom> of 
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the sets [ T'l' 9\l and [ r2, f>z] 
Now, the set U\.• f 1 1 + [ 1'2 , tf2 l, 
is boQ~ded in all directions (x,-1) 

with (x,-1) . as argu:ment. 

are bounded, and conversely. .lienee, the 

its closure, 

[ f"'l' <f'll 
support 

f'WJ.Ction of' [ f'1 , 'f1 J + [ f'2 , f 2 J take:'l for (x,-1) is de­

fined in c1 !l c2 and equals f 1 (:x:) + f 2 (x) (see the end of 

Section 1 of this Chapter). The two last statetr8nts of' 41 

follow f'rom the fact that [ r 1' fll + [ f1, f2] consists 

o:r an points cs .. t;) for which .; = ~ 1 + ~ 2 , s1 e- G_, 
!;2 E [72 and ~ = t;'"l + c;-2, ~1 ~ CflC'€;1), 

2;'z f: <f2C~2). 
For the application of this result which will be made 

in Section 6 it is important to have suf.ficient conditions in 

order that the inf' in the statement of Proposition 41 may be 

replaced by min. This may obviously be done if' [ 1"'\, Cf1 J + 
[ P2 , f 2 ] is closed, which will be the case i:f' c1 and c2 
have points in common which are relative interior to both 

sets) that is, if c1 and c2 car~ot be separated by a hyper­

plane of' S(c1 U c2 ) in the sense of t.he Separation Theorem 

28, Chapter II, Section 6. However, this condition is not 

necessary. Necessary and sufficient conditions in te~~s of 

c1 ,f1 and c2,r2 are rath.er complicated and will not be 

:formulated here. To the extent that the question is of 

importance it will be diseussed :L"l Se0t:l.D!1 6 in a slightly 

different and more intuitive formulation. 

Let CC>( , f o( ( x) where c/. runs through any set, be 

closed convex f'ur.:ctions. Let C C Q CCX' be the set of those 

poi11ts x at which s,;tp f'o< (x) is finite and define 

f'(x:) ·='sup f'IX (x) for x E c. Accor•ding to Proposition 7, 
0( 

C is convex, and f(x) is a convex fun;;tion in c. This 

f'ollows also from the relation 

[C,f"] - n [Co< ,fo< J, 
o( 



which shows in addition that f(x) is closed in C. 

42. Let C~ , f~ (x) be closed 

convex functions and f; , ~(x) their 

conjugates. Assume that the set C in 

which S,;fP f~ (x) < 00 is not empty and 

put f(x) = s~p f~ (x) for x E C. De­

note by r ' cpu; ) the conjugate of 

C,f(x). Then 

(f,pl= f~lJ;<,f.<l} ' 

H! rc(1 c r c 1!/ ~ 1 

and, for s E [ IJ f"!.t J , 

where 

n 
= inf Z 

i=O 

)-i ;;; o, 

' 

that is, for a given 5 the inf has to 

be taken over all represen.tations of $" 
as a centroid of n + 1 points taken 

from any n+l of the sets !; . 

First observe that [C,f] = Q [C« ,fo< L Thus the 

polar hyperplanes of the points of [C,f] are on the one hand 

the non-vertical barriers of. [ r' cp l ar.d on the other hand 

the eommon non-vertical barriers of the sets [ f; , cpo(]. Hence, 

the sets rr,cpJ and w [ ;; ' fo( ] 
bounded by non-vertical hyperplanes. 

have the same supports 

From the above Lemma it 

now follows that 

of U [ !";. , 'fc< ] • 
ol.. 

[ {' .• cp] is the closure of the convex hull 

From Proposition 6., Chapter II, Section 2, 

97 



we have that every point of LI) [ T:;, 'fo( 11 is a 

centroid of at most 

2:- o(i c:o(. ~ rc(i c; ) , 
n + 2 points ( S "\ z:--o(. ) , S c(i E 

l 
ro(.' 

l 

l 

i = O,l,oo.,n+l. 

';:: n+l 
5 = z 

i=O 

).. 2:-o(i 
i s ' 

Thus 

n+l 
z 

i=O 

with This shows that [ y ~ ~ C r C [ f/ T; J 
and that 'f( $) is an inf of the form in 42, but where ~ 
is the centroid of n + 2 points. That n + 1 points are 

suf~~cient is seen in the following way: The n + 2 points 

( S 2
, ~o(.) are the vertices of a (possibly degenerate) simplex 

l 

in A n+l The vertical line through the point ( S, 2;" 
0

) inter-

sects the simplex in a segment containing this point. That 

point ( ~ , ~in) of this segment for 

on some face of the simplex and, hence 

which 2:; is minimum is 

is a centroid of at most 
o(. c;: 

n+l ofthepoints ($ 2
, o(i)" Since 2;"min~c:;0 , 

the expression for f ( 5) the original representation of 

may be replaced by the new one as the centroid of n + l 

points. This completes the proof of 42. 

43. With the notations of 42 

assume that the 

that f(x) ) a 

constant, Then 

n + 1 functions 

set C is bounded and 

in C, where a is a 

if c > 0 is given, 

fe>(i(x), i=O,l,ooo,n, 

may be chosen from the functions fc( (x) 

such that 

for suitable 
n 
Z ...\. = L 

i=O 2 
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Since [C,f] is closed, C is bounded, and f is 

bounded beloW', it follows that f (x) has a l'!lini!l!Ull! z
0

, 'I'hen 

z = z
0 

is a suppO!'ting hyperplane of [ C, f L and so 

cp(o) = - Z'
0

, The assu:m.ption that c ia oounded implies 

:fu.rther that f7 is the whole ;; -space and t:r.at consequent­

ly, f7"" f IJ ~}, In parUcn1Iar, the expression i"or fCs) 
in 42 l'!lay be ap!}lied i"or .; = 0, gi v:Ln.g 

f(O) ~ inf 

where 
n n . o(i ,.\. z o, z A4 = 1, z .A 1 s = o. 

~ ~ i=O ~ i~ 

n + 1 points £; o{i E f1o( and 
i 

Hence there are 

such that 

<-z +E, 
0 

For the corresponding functions f.:Xi (x), x € ~ C o( i' 

Pr"oposition 38 gives 

?z -E>a-E, 
0 = 

which is the desired result. 

If closed convex functions Co<, fo( (x) are given, 

the question arises U..l'rder WhiO'h conditions f(x) = ScifP fo< (x) 

does exist, L e, :l5 finite for some x, This is the case if 

and only if the sets [Co< ,fo<' 1 have a co:m:mon point, which 

in turn is the case if' and o?:J.ly if the sets [ f7.t, fo<] .b..aye 
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a common non-vertical barrier. There will be such a ~ommon 

non-vertical barrier if' [ !/ ( fZ. , f<X J} is not the whole 
space An+l while { U {/,_ 1 is the whole An, i.e,, if 

ol [ !/ ~} has no barrier. The latter part o.f the eondition is 

satisfied if t.he asymptotic cones A
0 

(CO( / of the sets CO( 

have no common ray, for the existence of a common barrier to 

the sets ro( implies the existence of a common ray of the 

cones A
0

(CO( ). (Compare the remark following 38,) To en­

sure that . {I) [ ~ , 'foe]~ is not the whole space it is 

sufficient to assume that there is a fixed hyperplane 

z = xt ~ 0 
- C 

0 
such that any n + 1 of the sets [Cc< ,fO( ] 

have a common point below this hyperplane, T'hen the point 

(:;
0
,(

0
) ·cannot belong to [U [ ~' <f'o<]k, If it did, it 

o( o(. 

would be the centroid of n + 1 points ( ~ J..·' 2:;'" o< ) taken 
i 

from certain n + 1 sets [ r'O(., 'fat..], i = 0,1,, .. ·,n. In other 
J.. l n 

words there would be numbers A i ;;; 0, . Z A i "' l, such that 
l=O 

~0 
n 1 <;: o(i 

=2:/\ .. ? ~ 
i=O 2 ~o = .~ '\ C:o(. 

l=O l 

From 42 applied to the n + l functions C c<."fO(. (x), 
l l. 

i = 0,1, ••• ,n, it would now follow· that z =· x' s0 
· 2; 0 

is a barrier to (I [Co( , f 0( } which contradicts the assumption. 
~ i i 

Thus the following theorem is proved: 

be 44. Let 

vex functions. Assume that the 

closed con­

asymptotic 

cones of the sets Co< have no common ray 

and that there is a fixed non-vertical 

hyperplane below which any n + 1 of the 

sets [Co< ,fo< J have at least one point in 

common. Then all the sets [C oZ _, f o( J have 
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~ Q\-k [J}~S 
a conm:ro:n pobt, ~/s;;tP f:« (:x:) is 
.fmite .for at least o:r:,e x. 

In the special case where all f:o< are identi.cally 

zero (and hence the sets Co< are clc;sed) the existence of a 
hyperplane with the required property is obviou,s (ar;y hyper­

plane z = z
0 

> 0 will suf:f'ice) and 44 becomes Helly's 

Theorem: 

45. Let Co< be closed convex sets 
in An. Assume that the asyntptotic cones 

of' the sets CIX have :r~o c0ll1lll0tr ray and 

that any n + 1 of' the sets :r.aye a co:romon 

point. Then all sets have a cOI!'l.ti!Ol':l. poir't. 

Obviously the assumptio:::: that the asylllptotic cor:,es 

of' the CO( have no comm.o!L ray may be replac;ed by the usual 

one: There are sets aJI'!ong the Co( Which have a nor,-elllPtY, 

bounded intersection. 
Finally some special cases a::JJd applicatior~s cf con­

jugate convex :fttti:(~tions ·will be :::r:e!"tioned. 
Let f(x) be ide~·,tically zero i:: a .:olcsed col:Ve:X: 

set C. The co:cjugate f'Wcc·t:'l.J:c 

is the suppcrt f'unction of' 

directions .; in which C 

C, a:::cd I' hl the cor:e of' those 

ls boU:.'lded. This i:m;plies that 

every support f~ction is closed. Co:c~versely, let cp("t;) 
be defined, positively homogeneous, co~cvex, and closed in a 

convex cone {" • Then [ P, <f] is a cone with the origh1 

as vertex, an:i her~ce all r"o~c-vertical suppcrti:::ig hyperplanes 

to [ r", f} pass through the or:'l.gir:. TrJ,a memw that the 
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conjugate 

vex set C 
C). Hence 

i' ( x) of cp (.; ) is ide:rrtic'ally Z:era in some con­

( which lllllst be closed si:noe i'(x) ;ts closed in 

46. A function f (?) defined .in a 
convex cone r is the support fitr.:ction of 

sollte point set if and o:r~ly if it is positive­

ly homogeneous, c:o:rwex, a~rd clused i:r.: f1 • 

In the pato.ticLllar case :Eo< (x) ;: 0 the cjJ ( ~ ) 
of Proposition 42 is the support fu.:':,.c:ticr:t of the intersection 

C = (\ Co< expressed in ter'llls of' the suppm't functions fo< ( ~ ) 
of' the sets Co( • Because of' the ho:mcge:r:eity of' the functions 

Cfo< the expression :may here be written 

where that is .• the irJ.!' has to be 

takett c·ver all represe~:.tatic:Is cf S as a s·i.1J!I cf' :r, + 1 pz:'li:nts 

takexL frol!:i rur:y n + 1 cf the sets .E?o< • 
Go::lSider agal:::. a11 arbitra.r·y o:cvex ~:c.·t:io:r• f(x) 

:.: lc.•sed 1:1 a .::o:nvex set Cf, Der:.ote it:~ o• t>..:,1ugate by fi , <p ( s ) , 
The support:Llg :tryperpla.!1e ~ = x;1 ;n - tp( ;; 0

) to [e,.rl 
with ::-~or:mal directiz::n. ( $0 ,-1), 5° E '(7, intersects [C.,f'] 

i:rr. a (possibly empty) closed c-,;:r.nrex. set, Let C ( ~ 0
) den<>te 

t:tu=: proje.-::tion of tl:Ii.s set o::., t:he :tq'perplar,e z: = 0. 'I'.tw.s, 
x is in C ( ~ 0) if !L'?.d only if' \'"•:1:'(11}) is in the hyper­
plane z: = x 1 5° ·~ 9' ( f 0

·); that ls, it 
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a supporting hyperplane to [ r, cp] having normal direction 

(x,-1) and passing through (s 0
, )t'(~ 0 )). In particular, 

C( $ 0 ) is empty if and only if' there is no non-vertical 

supporting hyperplane to [ r' cp] through ( ~ 0 ' <:p( s 0 )). 

This is the case only if' S 0 is a relative bou..""ldary point 

of f7 at Which the directional derivative rf'(; 0 ;7z) is 

infinite. Dually, to a given x0 E C there corresponds a 

subset of r with the analogous properties. This set will 

be denoted by (7 (x0
) • Obviously, x 0 E: C ( ~ 0 ) implies 

s 0 E r(x0
), and conversely. 

The direotional derivative £' 1 (x0 ;y) as a fu:nctior! 

of' y is convex but not necessarily closed in its do:r.ain 

P 
0 

(C) - x0
• But if' it is not closed it my be made so by 

X 
the unessential changes described in co~""lection with Propo-

sition 25. Then we may speak of' its conjugate i'U..'lction, which 

is identically zero since f t (x0 ;y) is positively homogeneous. 

To find the domain of' the conjugate, consider .first the cch­
vex .function f(x 0

) + .f' (x0 ;x-x0
), X €' P 

0 
(C), or, if nec1-

x 
essary, the function obtained by closing it. Fro:m Propc,sition 

30 it follows that the conjugate of this function i8 the 

li.r1ear function 

Application of Proposition 40 now shows that the cc)njugate of 

f l (x0 ;y) (or of the fuxwtion obtained by closing it) is de­

f'bedin r(x0
). 

Let x 0 E C be such that f¥ (x0 ;y) is finite. 

Denote by f(fl ,x0
) the linea~ity of the cone 

c M =(Px
0

(C) - x ,f' (x;y) ]; that is, the maxiill.!.lm :number of 

linearly independent directions in which r(x) is differ­

entiable at x0
• Then 
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where d( r (x0
)) is the dilnen:sio:n or r (x0

). T'o prove this? 

observe that if the cone M is laid orr from the point (0,1), 
'*" its normal co:ne M intersects the !::iyperglm:.e z = 0 in 

X -

r("x:0
). Hence d(lf) = 1 + d( r(x''J) a:d.,, by the corollary 

to :::'heorem. 5, Cr,apter 1., Seztio:n 4 7 i{M) + d(M·~:) "'n +1. 

Suppose "ww tr,at C is 'P""~" arr.d trJat r(x) is 
dif'ferentiable in C. ':'t-.e:-, ror every :11:<' E C, r (x'":) con­

sists of O!:e poi::t ;; 0 whose co:":J~di.:rrates are t~1e partial 

derivatives or r at the pc:i.:1t ::1'~
0

• :He1o:je, t:•:.ere is a one-

valued mapping X -> ~ of C :_:_ct.: r aeterm.L:ted by 

If' .• moreover, f { ~ ) satisfies: t:•.e· sa":t:.e .. :(•cL:iition:; as r (x). 

i.e. if f(:x) is stri.~.tly convexJ t:::b ::::appL1g i::> 0!1e-to-or1e 

and, be:,ause or the i:':'cv:: lutory c:rcara::oter of' t~:e oo::1~ugate re­

lation, the i:nverse ::r!appi:r"g !lrtcst be give::c by xi = a ( . 
' i 

This leads t:hE, f,-~~11 '.~g p:r-·0'.:--ed:ucre for~ th(!-o (';o:mpu-

tation of' the oo!,.jugate of' a 

f'(x) b& strictly <:o:,ve:x:, clcSf'd, a:_I dif':f,.,re~~:t~.able l:r, a:1, 

C\p<G::-1 <~OD.V€:./C set C" the d<(:tai::_, r f t:b.e C(.:C:~1jugate 

f'u<.::Ictim, cp is detel"rrdned as the i:~age .f 0 by the mapping 

(*). By solving (>:·)>the x1 arE> t as f'l.Z!.iJtio;:cs or the 

S 1 and substituted i1x 

to give Cf in terms of · S , 
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6. A GENERALIZED PROGRAMMING PROBLEM 

Let f ( x) ict C be a closed cor, vex fur.ction and 

g (x) in D a closed cmwave function. Consider the follow­

ing extremum problem: 

PROBLEM I: Tc find a pci:ct x0 

in C n D such that g(x) - f(x) as 

a f"!knction in C n D has a maxi.mum 

at 0 
X • 

If g(x) - f(x) ~ 0 i,.-, C n D this problem, stated 

geometricallJ71 is to find the rraxilll1L'll vertical chord of the con­

vex set [C,.f] n [D,g} in Ant:l. If f(x) :; 0 in C, Prob­

lem I reduces to a programming pr~>blem, viz. to maximize g(x) 

m1der the conditio::t x: E C. 
Denoti::-;.g by t::p ( ~) in f7 a:;.d '}i' ( f) in ..6. the 

conjugates of' c,:r(x) and D,g(x) respectively, consider tree 

similar problem: 

PROBLEM II: 

in r n .6 such 

as a fm:.~tion in 

at So. 

'I'o find a point E:, 0 

that f ( s ) ·- 1t' ( s ) 
r n Ll has a minimum 

geo:m.etrically is to find the n:.i:r.d:m:unt vertic:al segmer,t joi!."i!'g 

t;he sets [ r' f] 
These two 

and [,6., JP] 1:1 A't+l. 

pr;)blem.s are, eo::.J''£6". t:ed by 

47. Let the :fur•ctio:1 f(x) in C 

be cc::wex and (;lcsed, '! ( ~ ) ia r its 

conjugate. Let further g(x) i:1 D be 

co::wa\re and closed, ')P ( ~) i.:l Ll its 
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conjugate. If the sets C n D ar.d r () ,6. 
then g(x) - f(x) is are non-empty, 

bou._nde d above, 
ed below, and 

f ( n - it' ( S ) is bOU."!.d-

sup (g(x)-f(x)) = 
xe:C()D 

We shall give two proofs. The first and more formal 
proof is based on Proposition 41 applied to the functions f 
and -g (instead of f 1 and f 2 ). Let X ( ~) be the con­
jugate of f(x) + (-g(x)) in C ()D. From 41 and 39 it follows 
that X< 5) is defined in a set containing r + (-Ll). Since 
f' and Ll .have points in common, [' - !:;. contains the origin. 

Hen.ce, X (0) is defined and, again by 41 and 39
7 

i((O) = 

= inf cepe 'f)- JPC~)). 
S E {'()4 

On the other hand, the very definition of' the conjugate of 
f(x) - g (x), taken for ~ = 0, yields 

;.:t'(O) = sup . 
xEC n D 

This proves the statement. 

(g(x) 7 f(x)). , . 

A second proof, more geometrical and more elementary, 
is based on the interpretation given in Proposition 36 of the 
conjugate of a convex fu._nction. It does not give 47 in its f'ull 
generality but, on the other hand, it allows an intuitive dis­
cussion of the existence of the extremu._m values in question. 
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rr s E r(l,t:,., there exist supports z ~ :x:r~ ~r:pCF l 
and z ;;), x'' S - }L) (.r) of [C,f] and [D,g] respectively. 

Since - 9' ( s ) and - 'f/ ( !' ) are the z-intercepts of the 

supporting hyperplanes, rp ( s ) - }II ( J) is the vertical Width 

of the strip bounded by these hyperplanes, taken with a sign 

in the usual way. Now, for ~ G r () Ll , 

f(x) ~ xf ~- ,f(f ), 
g(x) ~ x 1 ~- }IC; ), 

X 6- C, 

XeD, 

which gives, 

g(x) - f(x) ~ cpc ~ ) - ~ ( 5), x G C ()D. 

(If g(x) - f(x) ~ 0 in C n D, this sLmply mea~$ that 

[C,f'] n [D,g] iS contained in the strip.) Hence, the lef't 

side is bounded above, the right side is bo~~ded below, and 

(1) sup (g(x)- f(x))s_ i!Lf Cf('f)- JP(~)). 
x c. a n D - s- e rflb. 

Denote by f<- the value of the left side cf i:nequality (1). 
Then 

g(x) ~ f(x) + ;<-, x G C () D. 

Thus, the only points (x,z) which are collJJ'!lon to the sets 

[D,g} and [C,f+f£-], if any, are those for which 

z = g(x) = f(x) + f'L. These points are obviously relative 

bou..ndary points of both sets. Therefore, the Separation 

Theorem 28, Cr...apter II, Section 6 may be applied, ac!.d corL­

sequently, there is in the smallest flat S containing both 

sets a hyperplane h which separates [D,g} and [C,f+~1 
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in the sense of that theorem. The normals to S through the 
n+ 1 poi!;ts of h form a hyperplane H of A-- ~ with the follow-

ing pruperties: H does not co:Gtain bt;:;th sets, [D,gJ is co;:;­

tained in one of the closed half~spaces bounded by H, and 

[C, f+ ~l is contained in the other closed half-space bound-

ed by H. 

Suppose first that there is a ncr~-vertical separatir>cg 

hyperplane h in S.. Then H too is non-vertical and its 

equation is or the :form z "' x r s 0 
- <::; 

0
• Now, the distance 

of the two sets beir~ zero, H is a supportLng hyperplane to 

both [D,g} and [C,f+~l, a.~d thus, by Propositions 36 
and 40, 

Together with (1) this shews that l!'li;-,(]7'(~)- jti(~ )) ex­

ists and that 

(2) sup (r(x)-g(x)) == ntin ('f(~)-JP(s )). 
x e c n n s- G rnJJ 

Suppose now that there is no rcorc-vert:ical hyperplane 

in S which separates [D,gJ and. [C,t+p.J. Let " be a 

vertical separating hyperpla:ne BLYJd deY:, te by h
0 

its inter­

section with z = 0. By projection parallel to the z-axis 

[D,g}, [C,f+~], and h are projected into D, c, and h
0 

respectively, and h
0 

separates C and D. T:b_:ts shows that 

the present case occurs only if' C a""ld D have no points L11 

c0ll!!!!on which are relative interior to both sets. Hence, we may 

corwlude that if' C n D contain.s poi!1ts relative interior to 

both. sets, the mini:m.u..>n: problem r-.as a solution and (2) is valid. 

The preceding, together with the dual argument, leads 

to the following theorem: 
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48 .. With the notations of 47 
suppose that C and D r~ve points 

in common which are relative interior 

to both sets and that r and ..6 
satisfy the same condition. Then 

g(x)-f(x) has a :maxi!UUll! i::l C n D, 

c(J (;; )- 'J'r( s) has a mi.nimu..m in f'Ml, 
and 

:max (g(x)-f(:x:)) = min (fC'i )-JP(~ )). 
x €: C n D S 6 f'(lA 

It may be mentioned without proof' that if the direc­

tional derivatives f'l (x;y) and g f (x;y) are uniformly 

bou..~ded for x E C n D and all y for which they are defined, 

there is a non-vertical. hyperplane separating [D,gl and 

[C,f+~J even if C and D h,ave no points in co:mmon wb.ich 

are relative interior to both sets, Hence, if this condition 

and the corresponding condition for 'f and y are satisfied, 

the conclusions of 48 are valid. 

A conti~mous f'mwtiotl whose do:ma.in is closed and can 

be divided into f'Lnitely many subsets in each of which the func­

tion is linear, will be called a piecewise li..'l.ear function. 

Observe that if sto.ch a function is bou.11.ded above (below), it 

r~s a maximum (mir~um) since it c~~ot approach its least 

upper (greatest lower) bound asymptotically. Consequently, 

if the functions f ,g ar;.d, thus 1 f , y are piecewise linear, 

and if the assumptiorLs of Proposition 47 are made, the con­

clusions of 48 hold. 

From the definitions of the conjugate functiorw it 

is clear that Proposition. 47 i$ equ:Lvalent t.o either of the 

two followi!lg statemer:ts: 

49. Under the assumptions of 47 
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and 

inf' 
:; e rnlJ. 

sup (x~S:-r(::;;)-$6('5)) 
X € C 

"" sup i?::f' (x 1 ~ -f (x)- JP(;; ) ) , 
X E C n D $Gil 

= inf sup ( f ( $ )+g(x)-x' $). · 
xe:D $ E r'(lLl 

Il' Problems I and II have solutic>:r;s, as is the case 

under the amiruqp't:ice'i!Dl of 48 or if the rurrctio!:ls involved are 

piecewise lineart the ou.ter L'lf a'nd sup ll:. the i:!nmediately 

preceding equ.ations 1r1ay be replaced by min. ar.d max respectively. 

The pair of Problems I a:n.d r::: is e.quivalettt to each 

of the two f'ollc;.ri:r.cg saddle value problems: 

PROBLEJI'l III: Let f(x) be c.(:.!we::<: anj 

closed i:~ C and l6t }V ( 5 ) be co:twave 

and closed i!l 6 . Put 

To fL':ld an 

that 

0 x EC anda 

for all x e C and all ~ G Li. 

such 

PROBLEM III' : Let g ( x) be c un.ea ve 

a!Id clcsed in D a:r_d let r:p (; ) be co:cwe:x 
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and closE;>d L1'1 f1 . Put 

To find ax' x0 E- D and a ;; 0 6 f1 
such that 

for all ~ e r and all X c D. 

Consi.der Problem III. Denote the conjugates of C,f 

and L'.l ,'Jb by f1, r:p and D,g respectively. From the defi-

nitions of the conjugate functions we have 

(3) F(x, $) ~ 'f('f)- jt;(f) 

for X 6 c? ~ E r n A ' and 

(4) F(x, ~ ) ,?;; g(x) -f(x) 

f'or X E c n D. s e A . 
Suppose Problem I has a solution x 0 E C (\ D and 

Problem II has a solution ~ 0 6 r () L'.l . Put 

Then (3) a!ld (4) give 

F(x, ~ 0 ) 'f=ft, x E C, 

F(x0
,:;) '?;f<-, S 6: A. 
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for x E C, ~ €: 4 . 
Suppose now Problem III t,.as a solution x0 e:: C, 

~ 0 E4 . From F(x, ; 0
) ~ F(x0

, ~ 0 ) fur x 6 C it folloW$ 

that xr ~ 0 - f(x) attains a :maxi:ruum.at x 0
• This implies 

that ~ 0 6 (7 and that the maximu.111 value is 9' ( S 0 ). He:n.ee , 

Ar.alogou.sly, F(x0
, ~) ,{; F(x0 , s0

) fc:r ~ E!::, yields 

x 0 G D and 

Now, by (3) ~nd (4) 

~ n ~0 6v.·.·.d ~ 0 for X E c n D, ';, E I /) .:::1 • which sh::OO's that ... a.L ? 

aJ;>e solutions of I and II respectively. 

By inte:r'cha.:r~ging the roles of f ar~d. ~ a.~!.d. of y 
~"ld g it is illimediately seen that Prc;blem: III' also is equiva­

lent with the pair o:f PI'oblems I a::1d :::::;:. 

The :main theorem of the theory of the zero-sum two­

person game is a particular case of 49. 
Let A be a given m by ;1 :matrix. Let C de­

.u 
note the set of all points x ror ·w·:~ich x ,{; 0, Z x. "'· 1 

J=l J 
Let Ll be t::n..e set of all points 

. and defh-:e Jb ( s ) = 0 in b. . 
and define f(x) ~ 0 in c. 
s m 

- A'u, u f; o, Z u1 =. 1, 
i"'l 

Then 
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n m r for X f". 0, 2:. xj "' l, u > 0 z u. = 1, and both and 
j=l = ' i==l l 

D are the whole n-space since c and .6 are bounded. Hence, 

49 yields 

min max u'Ax "' max min u 1 Ax. 
se.C. x e c X E C fe.C. 

The existence of' the extreme values is obvious in this case. 

Let A be an m by n matrix, b an m-dimension­

al vector, and c an n-dimensional vector. A pair of' basic, 

mutually dual, linear programming problems is: 

1) to find the maximum of c 1x subject 

to the conditions x ~ 0, Ax ~ b; 

2) to find the minimum of' b'u subject 

to the conditions u ~ 0, A'u _?:; c. 

If Ax ~ b for some x ~ 0 and Aiu ~ c for some u _?:; o, 
both problems have solutions and max c'x =min blu. 

To show that this is a particular case of' the pre­

ceding results suppose first that m = n and that A is 

non-singular. Define C to be the set of' all x satisfy­

ing Ax ~ b and put f(x) = 0 in C. Define D to be the 

positive orthant x > 0 and put g(x) = c'x in D. Then 
= 

Problem I reduces to the linear programming Problem 1. To 

determine the conjugate functions r, f ( ~) and L1 '}? ('f) 
introduce a parameter vector u by u = Al-ls • Then 

o/ ( n "" sup 
Ax ~ b 

sup 
Ax ~ b 

u 1Ax. 

Since Ax assumes any value less than or equal to b as x 

varies in C, u'Ax is bounded above if' and only if u ~ o. 
Thus, r is the set of' all S = A1 u, u f:; 0 and <f(~) = u'b. 
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Flll'ther 

where the right side is :finite (then l:1avtr:.g tt~e value zero) i:f 

and only i:f :; ~ c o Thus.,. Ll is the set or:' all ~ = A 1u 4; c 

and ~ ( ~ ) = 0 in ..6. o This shows that Problem II reduces 
to the linear Proble~ 2. 

The general ca.se where A is arbitrary rectangular 

may be :!;'educed to the case just considered in the :following 

way. Denote by Ei the i by i identity matrix.. Instead 

of A consider the non-sin.gular m + :::o. by m + :n mtri:x: 

( -~:n ~m) Gonrplete the vectora b, c, x, ; , u to 

(:nH-n)-d.illlensional vectors (g), (g), (~) ~ (~), (~) • 
Then the two li:r.ear problems take the :fo~: 1) to :m:ax.illlize 

c'x subject to the conditions 

(: :~ (;J ~ {:) p (;) ~ o, 
n 

w~·~"l be written Ax + y.;;;: b, X "' o, 
'"' miz~ b 1u subject to the cGnditions 

u ~ o, v ;;; o. or Alu -v ~ c, 
depend on y and v 

Sir:ce 

respeccti vely, these 

lent with the original Preble= 1 and 2. 

y~ 0; 2) to min.i-

c'x S.."ld b 1 u do not 

problems are equiva-

F • .p . 0 0 "'~d or11 .,.1. • .1. X 11 Y ·(';;l...!..\'. 

0 0 u , v are solutions of the new pr;;blems, i.0 aTcd. u0 solve 
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l and 2; and 
0 0 lems, x ,y 

y
0 and v 0 

it' x 0 and 
0 0 and u,v 

satisfying 

u 0 are solutions of the latter prot­

solve the new ones for arbitrary 

0 ~ y 0 
;;, b-Ax0

, 0 ~ v 0 ~ A1u0 -c. 

Since the :functions occurring here are piecewise 

linear, the assUI!l]:it'ions of 47 guarantee the existence of the 

two extreme values. These assll.l!:ptions take here the follow­

ing form: there exist x ~ 0, y ~ 0 satisfying Ax + y ~ b 

and there exist u ~ 0, v ~ 0 satisfying A 'u - v ~ c. 

Obviously, it is sui'ficient to require the existence of at 

least one x :f; 0 such that Ax ~ b and o:f at least one 

u :f; 0 such that A''~ G; c, for t:t:.is x an.d this u to­

gether with y = 0 and v = 0 satisfy the stated con­

ditions. Herewith the statement concerning the li'near 

programming Problems 1 and 2 is completely proved. 

7. THE lEVEL SETS OF A CON\lEX FUNC'riON 

Consider an arbitrary real function cp (x) defined 

over a set D in An. For a given real number rc the sub­

set L'l: of D consisting of' those points x of D :for 

which <jJ(x) ~ 1:: will be called the level set of <f(x) 

:for the level ·1:: • Clearly, L -r is empty for '7: < inf' f, 
and L'l: = D f'or rc; > sup f . Therefore 'l:' will be re­

stricted to the s:wallest interval .J1. containing the whole 

range o:f f . Tk',J.s interval ::nay be f'inite or in:finite, open, 

half' open, or closed. To exclude the trivial case when 

f(x) is a c:lnstant, it will be assumed that .D.- has in­

terior points. In the following all nmnbers ~, ~, ... 

are supposed tc. bel.'Jng to fl . On ::rbserving that 

rp (x:) ~ 1:
0 

is equivalent to f(x) ~ rr:; for all 

it is il'!IDlediately seen that the family of level sets 

has the following pr:Jper'ties: 

115 



I. 

II. 

III. and is 

empty 1i' .11. is open to the left. 

Conversely, given a set D in An and a family of 

su.bsets L'L:' indexed by the real num:bers of' some interval and 

satisfying Conditions I-III, there is a :t'u.nction )O(x) de­

:t'ined over D for which the sets 

To eXhibit such a ±'unction de:t'ine 

L~ are the level sets. 

1'19 (x) = inf 7:. Then, 
T L :::>x 

'C 
~(x) is finite for all xED because for every xED 

I ensures that some L'!" contains x ·..rhile III ensures that 

if .[)_ is u.nbounded below, there is some L '1:: 1 which does not 

contain x. The level set corresponding to ~0 of this 

function consists of' all x such that ini' '"C < 'C
0

• Thus, 
L-c :::> x, = 

x is in this level set if and only if, to every E > 0, there 

is a 't: < 7:0 + £ such that x e L't". Because of II this 

means x G- L7: f'or all 7: > rc: 
0 

and hence, by III, x 6 L 1:' • 
0 

A further consequence of III is that 'f(x) ~ min rz:. This 
L-t; :::> x, 

equation establishes a one-to-one correspondence between the 

functions ~ (x) de:t'ined over D and the indexed families of 

subsets of D satisfying I - III. 

It is well known that a function ~(x) with level 

sets L "C is lower semicontinuous if and only if f'or all 

TEfl: 

L'7:" is closed relative to D. 

The condition for upper semicontinuity: 
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statement holds: 

50. The level sets of a function pCx), 

x E D, are convex if and only if cpCx) is 

quasi-convex. 

To prove the necessity let x and y be arbitrary 

points of D and define '7: = max ( cp(x), <f(y)). Then 

x E L-r, y e L't' and, since L't' is convex, (1-G)x + ey E Lr. 
Hence f( (l-G)x + Gy) ~ '7::. To prove the suf'ficiency let L'!:' 

beanarbitraryleveleetof f(x). If xeL'Z:', YEL'Z"' 

it follows that $Z'(x) ;:; 7:, f(Y) ~ 7:. Because of the quasi­

convexity of 'f(x), cp ( 41-e)x + ey) ~ '7:, that is (1-e )x + ey € L-z;-. 

A family of subsets L'Z:' of D satisf'Ying I - V, 

that i.s the family of level sets of' a lower semicontinuous, quasi­

convex function f(x) def'ined over D with range .£2, is 

briefly called a quasi-convex family. Suppose now Ltz:' is 

transformable into the family of level sets Kt, t E W , of 

a convex function f(x) = F(J'(x))~ briefly called a cor..vex 

famUy. Then both f(x) and '/) (x) are continuous. The in­

terval W, the image of .fl by t = F ( 7:), is open to the 

right since a convex function in an open domain has no maxi-

mum. Hence .Jl must have the same property. This implies in 

particular that all sets Lrc = Rt are proper subsets of D. 

If W is closed to the left, ..!2.. is closed to the left, and 

conversely, and we have a= F(o(). Thus, with the notations 

o( = inf cjJ(x), f3 =sup cp(x), a= inf f(x), and 

b = sup f(x) where - oo ~ o< < (3 ;;, 00 and - oo ~ a < b :;;, 00, 

W is a (~l t < b, and _o_ is o( (~) 7: < (3 , where the 
equalities can only occur simultaneously (and, of course, only 

if a and o( are finite) . The open intervals a < t < b and 

o< < T< (B are denoted by W
0 

and .f2
0 

respectively. 

A rather obvious necessary condition which a quasi-
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u is open relative to D, . "]. 

will no:t;.'be'.used explicitly. 
Let t = F ( 'l"') be a strictly increasing continuous 

function defined for 7:: c fl . Denote by W the range of 
F(7:), 7:€12, and let .'!: ""_j"(t), t G- w, be the inverse 
of F. Then the family of sets Kt = Lj(t)' t e W, is 
the family of level sets of the function f(x) ~ F(~(x)) 
and sat i.sfies Condi tion.s I - IV if L7: , -r !f. f2, does. 
For the sake of brevity two families like L 'I: and Kt 
obtained from each other by a strictly increasing and con­
tinuous index transformation t ~ f(7:) will be said to be 
tranJOformable into each other. 

The problem to be discu.ssed in the :following may now 
be :formulated: 

Under what conditions is a family 
of sets L'l:' . satis!'yir.tg I - IV trans­
formable into tl'le family of level sets 
or a convex function. To avoid in­
essential difficulties the domain D 
will l'lenceforth be ass;nned to be con­
vex and open. 

An obvious necessary condition is: 

V. L '7:' is convex for X G i1. . 

However, this condition is not sufficient. Call a 
function r:f(x) de:fined over D quasi-convex if 

for 0 ~ G ~ 1 and all x and y in D. The following 
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convex family L'l:' must satisfy in order that it be trans­
formable into a convex family is 

u L = 
7:: < 1: '7:' 

0 

L"Z:' 
0 

for 

This expresses the fact that a convex function cannot assume 
a constant value except possibly its minimum on a relatively 
open subset of its domain. This condition will not, however, 
be used explicitly. The further discussion of the problem 

stated above will be based on the following characterization 
of a convex family: 

51. A quasi-convex family Kt' 
t E W, is a convex family if and only 
if 

(*) (1-G)Kt + 8Kt C Kt 
o 1 e 

where 0 ;;?, e ~ 1, t 
0 

€ W, t 1 E W, 

t 8 = (l-G)t
0 

+ et1 • 

To prove this, suppose Kt are the level sets of 

the convex function f(x), x s D. Let x8 = (l-8)x0 + ex1 , 
0 1 where x E Kt , x E- Kt , be an arbitrary point of 

0 ' 1 
(1-G)Kt + bKt . Then 

0 1 

Hence x8 € Kt Conversely, let ( J<·) be satisfied and define 
e 

f(x) =mint. As mentioned above, this function has the level 
Kt ':) X 
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sets Kt. Let xo and xl be arbitrary points of D and put 

f(x0
) = t , f(x 1 ) = tl, and G (l-G)x0 + Gx1 . Then X = 

xo E. 
0 1 

and XG E Kt because of (*). Hence Kt , X E- Kt , 
0 1 G 

mint ~ t 8 = (l-G)f(x0
) + Gf(x 1 ). 

Kt ::> XG 

This proves the statement. 
Let M be a point set. As in Chapter II, Section 5, 

the cone with vertex at the origin consisting of all directions 

in which M is bounded will be denoted by B(M). The follow­
ing rather obvious properties of c:ones B will be used: For 
any two point sets M, N 

B(M) ::J B(N) if M C N, 

B( AM) "" B(M) for 
B(M+N) = B(M) n B(N). 

.A > 0' 

For a quasi-convex family L'l:" , 7: E .f2. , trans­
formable into a convex family: 

VI. All sets L't" , '7: e: ..f20 , are 
bounded in the same directions, that is 

B = B(L'r), 7: E ...(1
0

, is independent of 

'C. If LC<::. exists, B C. B(Lo() C B. 

Since this statement is invariant under index trans-

formation~ it suffices to prove it for a 
· ing (*). Let t 6- W

0
, t 1 E W

0
, t 1 > t, 

t 0 < t in W. With G = (t-t
0
)/(t1-t 0 ) 

yields 
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Hence, because Kt C Kt C Kt , 
0 1 

Thus B(Kt) = B(Kt ) which proves the statement. 
1 

If' Leo< 
"'C €' _()_ 

0
• It only 

Lo< exists. Let 

exists, 

remains 
B C B(L<><) because Lo< C L't, 

to prove that B(L<>< ) C B when 

be in B(L<>< ) and let H be the 

supporting hyperplane of L~ with normal direction ; • 

In Lo( there is some point p whose distance from H is 

less that a given E.> 0. Denote by HE that hyperplane 

parallel to H at distance E which is separated from p 

by H. In He consider the (n-1)-dimensional closed (solid) 

unit sphere 1f whose center is the orthogonal projection of 

p on H8 • The compact set U having a positive distance 

from Lo< , there is by III some t > a such that Kt and 

U are disjoint. By the Separation Theorem 28, Section 6, 
Chapter II, there is a hyperplane H1 separating Kt and 

U • The normal vector ~ 1 of H1 which is directed to­

wards U belongs to B because Kr is bounded in this 
u 

direction. The tangent of the angle formed by s and ~ 1 

is less than 2 c since Hi separates p from U • Hence 

the ray ( ~ ) is a limit ray of rays ( '; ') E B. This 

proves B(Lo( ) C B. 

Since the asymptotic cone A(M) of a convex set 
* * . M is the polar cone, (B(M)) = B~M) of B(M) (Propo-

sition 26, Section 5, Chapter II), the preceding result 

yields: 

52. All level sets of a convex 

function have the same asymptotic cone. 
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Now let L'l:", rz: E ..Il , be a family of subsets of 

D satisfying conditions I - VI. Denote by 

the support function of L.-z; . From VI it follows that for fix­

ed rz:e Sl
0

, h('Z:' ,;; ) is defined over the cone B and no­

where else. If o< is finite and a< 6 n ' h ( o{' .f) is de­

fined not only over B, but possibly on certain boundary rays 

of B which do not belong to B. However, in the sequel it 

Will be sufficient to consider h( o(, '; ) for ~ e B. Further­

more,. it suffices to consider unit vectors S . By II, h(-z;' ,'s) 
for fixed ; is an increasing function of 1: G ..fl which may 

be interpreted as follows. Let '7: = ~ (x) be the function 

with the level sets L'l;'. In the (n+l)-dimensional space 

x,7: consider the set [D,~]. Its orthogonal projection upon 

the 2-flat A2 spanned by the 1:: -axis and the vector (.; ,O), 

~ G B, laid off from the origin is called the s -profile of 

rp . If - s is also in B, the (- s) -profile is identical 

with the ; -profile. In A 2 introduce the 7: , y-coordina te 

system consisting of the '7: -axis and the oriented line de­

termined by (; , 0) as y-axis. Every line "C = "C 
0 

.• 'Z'
0 

6 ..{l, 
in A2 parallel with the y-axis intersects the 5 -profile in 

a segment or a ray (in the direction -~)whose end-point in 

the direction ~ has the y-coordinate h( -z:::, ~ ) . This follows 

because for 11 s-11 = 1, h( -r:: 
0

, s l is the distance from the 

origin to the supporting (n-1)-flat with normal direction S 
of Lrz:-. Thus y = h(rz:, ~) or, in case -5G-B, y = 

0 

h('r"' r) and y = -h( '1: ,-;) are the equations of the boundary 

of the 5 -profile. 

Suppose now there is a strictly increasing continuous 

function t=F('(;") suchthat f(x)=F(f(x)) isconvexin 
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D. Then the sets Kt = L 1} ( t), 'C = p ( t) the inverse of 
t = F(~ ), satisfy (*) and, hence, by the properties of 
support functions stated at the end of Section 1 

where t 8 = (l-8)t
0 

+ et1 . This means that h( 4? (t), ~) is 
a concave function of t for fixed f; € B \M.&Ct<.-~illA.Ct w\:fk the 

fact that the :;-profiles of F(sz?(x)) are convex sets. 
Conversely, suppose there exists a strictly increasing 

continuous function t = F("':' ), 7: ED' 7: = p(t), t e w, 
such that for a family L'l:" ·' 1: e _(l, the function 
h(p(t).~) is a concave function of t for every fixed 
~ E- B, that is the :!; -profiles of F( Cf(x)) are all convex. 
It follows from this hypothesis that F(s0(x)) is a convex 
function in D. To prove this it is sufficient to prove (*). 
Now (**) is valid and for two point sets M and N, 

hM( ~) ~ hN( ~) implies [MJ C fNl • Hence 

-
(l-8)K._ ~ (l-8)Kt Kt ::;, + 8Kt + 8Kt . 

e "o 1 0 1 

Condition IV implies Kt (\ D = Kt. Consequently 

Kt :;l D n ( (l-8)Kt + 8Kt ) = (l-8)Kt + 8K 
e o 1 0 tl 

The latter equality follows from the inclusions Kt C: D, 
0 

Kt C: D, and the convexity of D. This completes the proof 
1 

of the following theorem; 

53. Let L-r, 'I: E fl, be the 
family of level sets of a lower semicon­

tinuous, quasi-convex function q'(x) 
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such that the cone B(L'!:') = B 
ent o:f '?: for '7:' 1:: ..{l . Let . 0 

is independ-
h('"C,~), 

e; E B, be the support function of L'!:' • 
Further let t = F(~) be a strictly in-
creasing continuous function and 

~=~(t), t E- w, its inverse. Then 

F(cp(x)) is convex :for XED if and only 

if h(p(t),~) for every fixed ~ E B 

is a concave function of t e w, that is 

h(7:"2' C:) - h( 'Z:'l' ;l 
F( 'Z:'2)-F( '1:'"1) 

h(T3' ~)- h(T2,;) 

f; F(rz:-3)-F( -z:-2) 

for any three numbers rz::: 1 < 'Z:' 2 < r 3 in ..(l . 

This condition may be given a different form. If 

h("C 2,;) =h(Tp~), the inequality implies h(7:3'~) = 
h(rz:2 , ~) since h('"C", ~) increases with 7:. The inequality 
being trivially satisfied in this particular case, it is equiva­
lent to 

the right-hand side being interpreted as 0 whenever the de­

nominator vanisheso The quantity 

h( '(;"1, ~) 

which only depends on the :family L'C , is used the state the 
necessary condition; 

VII. There is a strictly increasing 
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(***) 

continuous function F ( '7:'), T 6 fl , 
such that 

for any three numbers T 1 < 7:' 2 < T 3 
in fl. 

From the preceding it is clear that I ~ VII are nec­

essary and sufficient conditions in order that a family of sub­
sets of an open convex set D suitably indexed by real numbers 

forms the family of level sets of a convex function defined 
over D. While I - VI are simple and intuitive, VII is rather 

complicated. There is no simple test to decide whether the 

function ?e ( '?::'p 1:2 , 7:3) is such as to admit a strictly in­

creasing continuous solution of the functional inequality 

above. Both local and global properties of X.( "Z:""l' 7:"2 , rr:3 ) 
enter decisively. Compared with the original problem there 

seems to be no progress. However, VII has the advantag~e of .. 

leading to a kind of construction of the required function 

F( 't). To indicate the procedure the following remarks may 

be added. 

Let 1:'
0 

< 'r1 < '"C be fixed in .D.. . Select numbers 

T i' i = 1,- ... ,p. + l ·such that 

Then (***) yields 

for i = l, ••. ,p. Multiplication of these inequalities for 

i = l, ••• ,j ~ p, gives 
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j 

F( 'Z:"j+l)-F( '!:") f; (F(-z;"l)-F( '?:o)) ~X.( 'Li-1' Ti, 'Z""i+l). 

Summation over j gives 

With the notation 

p 

X 
j=l 

where the sup is taken over all subdivisions '7:: 1 < T 2 < ••• < T p .C '7: 
of the interval '["1 , 7:', 

Thus k( 7:
0

, 'Z:'1 , 'L:') has to be finite for all 

in~. This involves a mixture of local and 

on ?-e . If k is finite, a function F( ?:) 

To<"Cl<"t" 
global conditions 

which has the de-

sired properties for '?::"' > '7: 1 may be obtained as follows. 

It is easily seen that the values of F("") at two points, 

~ 0 and ~l say, may be prescribed arbitrarily. Then any 

strictly increasing continuous function F( ""), --r:: > '1:"1 r 

satisfying 

can be shown to have the required properties. Such functions 

exist since k( '?::"'
0

, -r1 , r) is increasing in 7:'. In similar 

ways the function can be constructed for '7: between 1::
0 

and 7: 1 and for 7: less that 7:
0

• 

In the next section the construction is carried 

through in the case of smooth functions. 
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8. SMOOTH CONVEX FUNCTIONS WITH PRESCRIBED LEVEL SETS 

Let D be an open convex set in An. The problem 

discussed in the preceding section will now be solved under 
the assumption that the prescribed subsets L 7::' of D are 

the level sets of a twice differentiable function '7:. = cp (x). 
As in Section 7 we set o< == inf f(x), ~ = sup 'j'J(x). We 
ask for a twice differentiable strictly increasing function 

F('!'), o< l~l '7:: < ~, such that f(x) = F(c:f(x)) is convex 
in D. We start by deriving necessary conditions~ which will 

turn out to be sufficient. The results of Section 7 will not 
be used. 

We introduce the notations 

i,j=l, ••• ,n. 

The derivatives of f(x) = F('f (x)) may then be written 

(l) 

(2) 

Suppose now f(x) = F( f(x)) is convex. Then f(x) has no 
critical points except possibly those at which it attains its 

absolute minimum. Obviously, fJ(x) must have the same 
property .. We formulate this as the first necessary condition: 

A. fCx) has no critical points 
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except those where it attains its absolute 

minimum, if such a minimum exists. 

From ( 1 ) and F ' ( T ) f, 0 

fore follows that F•(~) > 0 for 

vex if and only if for every fixed 

for o( (~l ?: < (:3 it there­

'7: > o< • Now f(x) is con­

x E D the quadratic form 

Z f .. (x)y.yJ. 
. . lJ l l,J 

in the variables yi' i = l, .•• ,n, is positive semidefinite. 

If 'f(x)' and hence f(x), has a minimum, this con­

dition is obviously satisfied at all points where the minimum 

is assumed, that is at all x E L~ • This is because 7Pi = 0 

and Z 'f· .y.y. is positive semidefinite at these points. . . lJ l J l,J 
Hence it is sufficient to consider those x for which 

f (x) > o( . For such x, F! > 0 so that the notations 

CT "' CT (x) = F"fSZ'tx)' 
F' f x) ' 

(3) Q,(y,y) "" .z. 'fi,;?'iyj + O"(Z f\Yi)2' 
l, J i 

may be used to replace the previous condition by: Q(y,y) is 

positive semidefinite for every x in D but not in L"' • 

Let such an x be fixed. The characteristic deter­

minant of Q(y,y) is 

fij - A bij + 0" 1-'i fj 
0 
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Subtraction of suitable multiples of the added column from 

the other columns leads to 

'l'ij - >- Jij fi 
CQ( A) = • 

- r:r fj 1 

This determinant equals the minor of its lower right hand 
corner, plus the value of the determinant when 1 

by zero. Thus the characteristic determinant of 
the form 

(4) 

If it is written as a polynomial in A , 

is replaced 
Q(y_, y) takes 

0 

we have T0 = 1, and Tf , f = 1, •.• ,n, is the j'th 
elementary symmetric function of the characteristic roots. 

The first term on the right side of (4) is the char­
acteristic determinant 

of the quadratic form 
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Here S
0 

"' 1~ and Sf , f =- l,, ••• ,n, is the pth elementary 
symmetric function of' the characteristic roots o.f P (y, y). We 
are going to show that the second term of' (4) is essentially 

* t~e chara'cteristic determinant cp ()...) of' the quadratic :form 
P (y,y) in n-1 variables derived by specializing P(y,y) 

to the hyperplane ~ fiYi = 0. The characteristic roots of' 
* l P (y,y) are the stationary values of' P(y,y) subject to the 

2 -constraints ~ ~iyi = 0 and ~ yi - 1. Hence, by the multi-
l l 

plier rule,. they are the stationary values of' the function 

with yi unrestricted, 2z and .A denoting the multipliers •. 
For the critical points yi this gives the condition 

(5) z cpijy j + z cpi - ),. y. - 0 
l 

j 

(6) z fjYj = o, 
j 

(7) 2 1. ~ yi "" 
l 

The existence of' a solution y1 , z of this system implies 

(8) 

Suppose that A satisf'ies 

the system (5), (6), (7). 

d Oo 

0 

this equation and that 

Multiplying (5) by Yi 
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over i, we see that ~ Cf . . y.yJ = A . . l.J J. 
J.,J 

so that A is the 

stationary value in." question., Hence- ( 8) is· the characteristic 
* equation of P (y,y). Formally the left side of (8) is a 

polynomial of degree n in A • However, the coefficient 

of An vanishes. The coefficient of A n-l, which is 

needed for normalization, is obtained by dividing the deter­

minant (8) by An-l andlett'ing A-> DO. I.f this is done 

by dividing each of the first n rows by A and multiply­

ing thereafter the last column by A, the coefficient is 

easily found to be 

-1 0 0 fl 

0 -1 0 cp2 

== (-l)n ~ cpi2 . 
i 

0 0 -1 r:pn 

'1\ ~2 ... ~n 0 

With the notation 

k2 =~ '7\2 
i 

I 
we therefore have 

c;( A) 1 
)Z?ij - >.. &"ij r:pi 

= 
k2 rj 0 

If this is written as a polynomial 

* * * J-. Cp( A) = sn-1 - sn-2 + ".,. + ( )n-1 * -1 s 
0 

). n-1, 
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then 

tion 

* * so = 1 .and sf is the .P th 

of the characteristic roots of 

be written 

Therefore 

(9) 

elementary 
* p (y,y). 

symmetric func­

Hence, (4) may 

.f = 1, •.. ,n. 

Now Q(y,y) is positive semidefinite if and only if 

all characteristic values are non-negative, that is 

(10) .f=l, ... ,n. 

As is well known, this implies that if one T.f = 0, all the 

following Tf vanish too. 

Looking for necessary conditions that there may ex­

ist an F(1:) such that F('f(x)) is convex, we assume (10) 
* to be valid. The expression (3) shows that P (y,y) agrees 

with Q(y.y) for y. satisfying ~ ~ y = 0 Hence, - ~ ilii . 

* P (y,y) is positive semidefinite and thus 

* s.f'-l f: o, f= l, ... ,n. 

Let 

> fln 

and 

be the characteristic values of P(y,y) * and P (y, y) 
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respectively. By the maximum-minimum properties of the char­

acteristic values of a quadratic form, 

If r - 1 denotes the rank of 
may depend on x), then 

* P (y,y) (which, of course, 

* * * fL 1 > 0 ' • • · ' jA- r-1 > 0 ' ft r = 

Hence 

JA-1 > O, ···'/'r-1 > O, 

and if r < n, 

/lr f, O, /'r+l = • • • = jA'n-1 = O, jtn_ ~ 0 · 

This shows that the rank of P(y,y) is at most r + 1, and 

that 

if r < 
for .F 
fA-r = 0 
at most 

fA-r /A-n ~ 0 

* (9) n. On the other hand, because sr = o, 
= r + 1 yield sr+l f, 0. Hence 8r+l = o, 
or f'-n = 0. Thus the rank of P(y,y) is 

r. 

B. In order that there may exist 
a twice differentiable strictly increasing 

function F('l:') such that F('f(x)) is 
convex, it is necessary that for each 
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for 

true. 

fixed xED the quadratic form Z 9lj(x)yiyj 
i,j 

restricted to the hyperplane Z f:.(x)y. = 0 
i l l 

be positive semidefinite, and if r - l de­
notes its rank, the rank of the same form 

without the restriction be at most r • 

This has only been proved for x not in 

x E Lo<' we have f'i (x) = 0 and the statement 

The first part of the condition, 

Lo( • However, 
is obviously 

semidefinite, expresses the convexity of the 
P*(y,y) positive 

level sets of <f(x). 
P*(y,y) has the The second part is trivially satisfied when 

maximal rank n - 1. At points x where r < n it restricts 

the local behaviour of ~(x) in a way indicated by the follow-
ing example: 

Let n = 2 and assume that for each 7:
0 

of a cer­

tain subinterval of o((~J 7:< (3 the ~urve f(x) = ?:'
0 

( 1:'
0 

a 
constant) contains a segment depending smoothly on '2::"

0
• Then 

the rank of P*(y,y) is zero at the points of the segments. 

The surfaces T =f(x) and, hence, t = f(x) then contain 
pieces of ruled surfaces whose generators are parallel to the 

x 1x2-plane. Such a ruled surface can only be convex if it is 
a cylinder, that is if the generators and, thus, the segments 
are mutually parallel. This is just what the condition, rank 

of P(y,y) at most one, requires in this case. 

Even if Cf(x) is an analytic funetion, the 
rank condition may restriet its local behavi.our. Take 

again n = 2 and assume that the curvature of a curve where 

<fJ(x) is a constant vanishes at some point. 'J'hen the rank 
condition requires that the Gaussian curvature of the sur­

face T = <f (x) also vanish at that point. 
Consider 

( 9) and because of 
again a fixed x 

* sf = sf'-l = o 
not in Lo( • In view of 

for f > r the condition 
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. ;-

(10) reduces to a- ;;, C7" where 

cr=rr(x) max (- s.f ) = 
k2 * 

. 
l ~f~ r sf-1 

Let this maximum be attained for 
of the characteristic equation of 
by r:r we then have 

f = .[>
0 

• For the coefficients 
Q(y,y) with cr replaced 

f= l, ... ,r, 

the equality sign ·being valid for f = .fo. As mentioned a­

bove, this implies T i = 0 for f > f
0

; hence, in par­

ticular, for f = r ~ fo· This gives 

( ll) 

For each fixed 

cr=-k2 * 
3r-l 

X not in L<X and T = cp(x) 
we therefore have 

(12) ~= o-(y) ;;, su) o-(x) = sup 

(- k2:;_l) 
7: f(x =7: '{J( X) =7: 

where the sup has to be taken over all x E D for which 

<f (x) = '[. Thus, we have the further necessary condition: 

C. If for a twice differentiable, 
strictly increasing function F(~), 

o< I~\ 'C< f3 , the function F( f(x)) 
is convex, then 
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Conversely, let there be given a twice dirrerentiable 
runction 1::' = ?'(x), x E-D, and a twice differentiable, strict-

ly increasing function F ( '7:), o( I~) 7::' < (3 , where o< = inf' cp 
and ~ = sup ~ , such that conditions A, B, and C are satis­
fied. Then f(x) = F( q'(x)) is convex in D. We have to 
show that the quadratic form ~ f'ijyiyj is positive semi-

i,j 
definite for each x E D. For the points x E L~ , if any, 
this is obviously the case as mentioned at the beginning of 

this section. For x not in L~ we have to show that 
Q(y,y) is positive semidefinite. Because of C, 

Q(y,y) 2'. 'fijyiyj 
F" (~ 'fiyi)

2 
= + -y, 

i,j l 

~ ~ cpijyiyj 
sr 

(~ fiYi)
2

' - 2 -l<· 
i,j k sr-1 l 

It therefore suffices to prove that the latter form, call it 
Q'(y,y), is positive semidefinite. From (3) and (9) it is seen 

that the coefficients of its characteristic equation are 

Now, 

Hence 
for 

* s.f-P f = 1, ... ,n. 

f' = r + l, ••• ,n,. because of B. 

f = r,r+l, ••• ,n, 

which shows .. that the rank of Q' (y,y) is at most r- L On 
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the other hand, Q'(y,y) 

:£ CfiYi = 0 agrees with 
i 

* 

restricted to the hyperplane 
* P (y,y). Because o~ B, 

p (y,y) 

Hence 
has 

Q' (y,y) 

r - 1 positive characteristic rootso 
must have the same property. This 

proves the statement. 
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HISTORICAL NOTES 

CHAPTER I 

CONVEX CONES 

Sections l - 6, Important contributions to the theory of 
convex cones are contained (more or less explicitly) in Minkowski's 
posthumous paper [48], The basic paper on the subject is, how­

ever, Part II of Steinitz' s paper [57L Pract:\:;allY all the con­
cepts and results of Sections l - 6 are to be found in this 
paper, Also many of the proofs given here are based on ideas 
due to Steinitz, Polyhedral convex cones have been the subject 

of several more recent expositions, namely Weyl [66] (with 
purely algebraic methods), Gale [21], Gerstenhaber [24]. 

Section 7" As mentioned in the text, the theory of (poly­
hedral) convex cones is closely related to the theory of 

(finite) systems of linear inequalities" For the latter theory 
and its various geometrical interpretations the reader is re­

ferred to Dines and McCoy [16] and especially to the disserta­
tion of Motzkin [49]. Included in the latter is a very com­

plete bibliography up to 1934. Of more recent papers Dines 
[ 14], Blumenthal [5], [6], Levi [ 42], La Menza [ 40], Nagy [50] 

may be mentioned. Further references may be found in Contri­

butions to the Theory of Games (Annals of Mathematics Study 

24, Princeton, 1950). 
For the second interpretation used in Section 7 see also 

Gale [21]" Theorem 17 for polyhedral cones has been announced 
by Tucker [63]; the corollaries III - VI are likewise due to 

Tucker. 

CHAPTER II 

CONVEX SETS 

For the literature up to 1934 concerning basic properties 
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of convex sets the reader is referred to the report [8] by 

Bonnesen and the author. Attention is called to the disser­
tation of Straszewicz [60] which gives a comprehensive 
account for compact sets and to Part I of Steinitz [57] which 
deals with arbitrary convex sets. For convex polyhedra see 

also Kirchberger [36] and especially Weyl [66]. More recent, 
mainly expository articles are Dines [14], Botts [9], Bate­

man [3], Macbeath [45]. For a generalization of the concept 
of convex sets see Green and Gustin [25]. 

Section 2. In Proposition 6 (stating that every point 
of the convex hull of a point set M is a centro:td of at most 
n + 1 points of M) the maximal number n + 1 can be re­
placed by n if the set M has certain. properties of 
connectedness. See [8] p. 9 for references to the first papers 

on this subject. Further references are Bunt [11], Hanner 
[28], and especially Hanner and Ridstrom [29]. The following 

question is likewise connected with Proposition 6: What is 

the smallest positive integer p with the property that every 

point z relative i::1terior to the cor:vex r;ull of a set M of 
linear dimension d > 0 is relative interior to the convex 

hull of a subset of M with linear dimension d consisting 
of at most p points? The answer is p = 2d as is easily 
seen by applying the Corollary to Theorem 8 (Chapter I) to 
the cone with vertex 

with the points of 
z consistir.g of the rays which join 

M. This result (essen,tially due to 

Steinitz) occurs impli·oitly in the dis,:ussion of systems of 
linear inequalities of the form Ax~ 0. (Cf. Chapter I, 

Section 7 and e.g. Dines and McCoy [16], Dir.es [14].) A 
direct proof t,as recently been given by GuBtin [26]. 

Section 4. Projecting cones and normal cones were in­

troduced by Minkowski [ 48], the cones of directions of bound­

edness and as;ymptotic cones by Steinitz [57]. For the theory 
of asymptotic cones and various applications see Stoker [58]. 
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The concept or s-convexity (under the name of even convexity) 
is introduced in the author!s paper [19]. 

Section 6. The Separation Theorem 27 is due to Minkowski 
[48]. The useful statement 28 is slightly more general. Theorem 
I of Klee's paper [37] may be considered as a generalization of 
Proposition 27 to an arbitrary finite number of compact convex 

sets. 
Section 7. For literature concerning extreme points and 

supports see [8], p. 16, further, for polyhedra, Weyl [66]. 
Straszewicz [61] has shown that in Proposition 33 it is suffi­
cient to consider "exponed points" instead of extreme points. 
An exponed point of a closed convex set is by definition a 
point of the set through which there is a (supporting) hyper­
plane having no other points· in common with the set. 

Section 8. Convex sets in projective spaces have been 

considered by Steinitz [57], Part III. (For a problem in 
connection with the definition see also Kneser [38].) The polarity 

with respect to the unit sphere has been introduced by Minkowski 

[48], p. 146-7; cf. also Haar [27], Helly [31], von Neumann [65], 
Young [67], Bateman [3]. For generalizations to certain un­

bounded sets see Radstrom [54], Lorch [44]. Arbitrary polari-

ties have been considered by Steinitz [57], Part III, and, as 
in Section 8, for sets which are not necessarily closed or 

open, by the author [19]. 

CF.APTER III 

CON\7EX FUNCTIONS 

For the history of the theory of convex functions, various 

applications, and generalizations as well as extensive bibli­

ographies the reader is referred to Popoviciu [51] and Becken­
bach [4]. Apart from some references to basic papers, only 

more recent papers dealing or connected with the topics of this 

report are quoted in the sequel. A modern, detailed exposition 
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of many basic properties of convex functions is given in Haupt, 

Aumann, Pauc [30], I, Section 4.8, Section 5.4.2.1, Section 

5.5, II, Section 2.2.5; 
Section L .Proposition 4 which comprises many of the 

classical inequalities of analysis seems to have been the 
start of the theory (Holder [32], Brunn [10], and the basic 
paper Jensen [34].) .Convex functions defined over arbitrary 

point sets have been considered by Galvani [23], Tortorici [62], 
and especially Popoviciu [51]. Homogeneous convex functions 
(gauge functions, supports functions) were introduced by 
Minkowski [47}, [48]. For further references see [8] Section 

4. A recent paper is Redei [55]. See also the exposition by 

Bateman [3]" 
It should be pointed out that Propositions 5, 10, 11, 14, 

which for systematic r.easons are deduced directly from the 
definition of convex functions, are immediate consequences of 

the existence of a support through every point x,f(x) (proved 
in Section 4). 

Sections 2 - 4.' .For references concerning the well-kaovm 
continuity properties of convex fUnctions see Popoviciu [51]. 
The question whether a convex function is necessarily absolute­

ly contintwus ha::; been discussed by Friedman [20], the answer 
being affirmative for n = 1 only. For the behaviour of a 
convex function at the boundary of its domain (Propositions 
24-26) see the au thor 1 s paper [ 18]. 

The first proofs of the existence of the one-sided de­

rivatives of a convex function of one variable and of the 
directional derivative of a convex function of several 

variables seem to have been given by Stolz [59], p. 35-36 

and Galvani [23]. The latter concept has been applied to 
the study of homogeneous convex functions by Bonnesen and 

the author [8], Section 4. The discussion of the direc­
tional derivatives of arbitrary convex functions as given in 

the present Section 4 probably has not been published 
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elsewhere. 

properties 
Klee [2]. 

A new approach to the study of certain smoothness 

of convex functions has been made by Anderson and 
Busemann and Feller [12] and Alexandroff [1] have 

proved the almost everywhere existence of aosecond differential 

of a convex function of several variables. A new definition 
of smooth homogeneous convex functions based on the definite­
ness of the quadratic form occurring in Proposition 35 has been 
proposed by Lorch [44]. 

Section 5. The conjugate of a convex function of one 

variable has been defined by Mandelbrojt [46]. For the general 
concept and some of its properties see the authorls paper [18]. 

The inequality stated in Proposition 38 has .a well-known 
analogue for homogeneous functions: Let F (x) and H( ~) 
be the gauge function and the support function, (respectively), 
of a convex body C containing the origin in its interior. 

Then 

for all X 

[67], Lorch 

and :; 
[ 44]. ) 

x 1 ~ ~F(x)H(s) 

(Cf. Helly [31], von Neumann [65], Young 

This may be considered ~s a special case 
of Proposition 

f')r F(x) ~ 1. 

38. For, put f(x) = 0 for x 6 C, that is 

Then f( 5) = H(~) and hence 

X I; ~ H( S) for F(x) ~ 1. 

Because of the homogeneity of F this is equivalent to the 
above inequality. 

The rest of Section 5 is unpublished. The corollary, 
Proposition 43, is a slight generalization of a theorem due 

to.Bohnenblust, Karlin_.Shapley [7]. Helly's Theorem, which 
appears here as a corollary (Proposit~on 45) and various 

generalizations have been the subject of many recent papers: 
Vincensini [64], Robinson [56], Lann6r [41], Dukor [17], Rado 
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[53], Horn [33], Rademacher and Schoenberg [521, Karlin and 
Shapley [35], Levi [43], Klee [37]. For references to the 
older papers see [8] p. 3. Proposition 46 generalizes Mir~ows­
ki's well-known characterization of the support functions of 
(compact) convex bodies. See [8], p. 28 for the older litera­
ture. Further references are R~dei [55], Bateman [3]. The 
determination of t~e support function of the intersection 
of convex sets following Proposition 46 seems to be noted 
for the first time by F. Riesz (who communicated it to Lanner, 

see [41 L) 
Section 6. Unpublished. The results generalize the 

duality property of linear programming problems proved by Gale, 

Kuhn, Tucker [22] to non-linear problems of the type consider­
ed by Kuhn and Tucker [39]. The consideration of completely 
arbitrary closed convex functions is essential for the formu­

lation and the validity of a simple duality theorem. For the 

theory of programming problems in general the reader is re­
ferred to Actiy_;Lty Analysi{;l of Production and Allocation 

(Cowles Commission Monograph 13, New York 1951). 
Section 7. The problem of the existence and the deter­

mination of a convex function with prescribed level sets was 

raised and studied by de Finetti [13] under the assumption that 
the domain D and, thus, all level sets are compact and con­
vex. In this case the Conditions I - VI are trivially satisfied. 

The part of Section 7 dealing with these conditions in the 
general case is not published. Condition VII is a generali­
zation to the case considered here of a result of de Finetti. 

For details of the construction of' a convex function the read -

er is referred to de Finetti's paper. 
Section 8. Unpublished. In a footnote de Finetti [13] 

states that in his case of a compact D the smoothness of' 

the function cp (x) implies the existence of an F( 7::) such 
that F(cp (x)) is convex. Tr,is contradicts the results of 

Section 8 of' the present report. Apparently de Finetti had 



overlooked the fact that the smoothness of 1 does not imply 
the smoothness of the support function h( ~ , '7:). This is only 
the case if the rank r - 1 introduced in Section 8 has its 

maximal value n - 1 everywhere in D. Then the quantity cr 
(see equation (11)) is easily found to be 

IT - C1
2

h I d h - ;y t2 a 1: · 

At points where r < n, the second derivative may not exist 
even if f is analytic • 
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INDEX OF DEFINITIONS 

Asymptotic cone, 42 

Barrier, 45 

Be(M), 46 
Boundary ray, 2 

Boundary ray, relative, 3 
Bound of a set, 45 

Centroid, 36 
Closed cone, 2 
Closed convex function, 78 

Concave function, 57 

Concave function, 
strictly, 57 

Cone, 1 

asymptotic, 42 

closed, 2 
convex, 3 
convex hull of, 
dimension space 
extreme ray of, 

extreme suppo:rt 
lineality_of, 3 
lineality space 

linear dimension 

normal, 9 
of directions of 

8 
S(M) 
20 

of, 

of, 

of, 

boundedness, 46 
open, 2 

polar, 10 
polyhedral, 22 

projecting, 41 

support of, 6 

of, 

21 

3 
3 

Conjugate function, 90 
Convergence of a sequence 

of rays, 2 
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3 

Convex Cone, 3 
Convex family, 118 

Convex function, 57 
closed, 78 

strictly, 57 
Convex hull of a cone, 8 

of a set, 36 
Convex set, 36 

extreme point of, 51 
p-Convexity of a hyperplane 

set, 52 
of a point set, 52 

s-Convexity, 42 

[D,f], 57 
Dimension, linear, of a 

cone, 3 
of a set, 39 

Dimension space S(M) of a 
cone, 3 ' 

Directional derivative, 79 

E. -neighborhood of a ray, 2 

Exterior ray, 2 
Extreme point of a convex 

set, 51 
Extreme ray of a cone, 20 
Extreme support of a cone, 21 

Flat, 32 
oriented, 45 
supporting, 45 
non-vertical, 88 

vertical, 88 
Function, closed convex, 78 

concave, 57 
conjugate, 90 



Function (continued) 

convex, 57 
piecewise linear, 109 
positively homogeneous, 

quasi-convex, 117 
strictly concave, 57 
strictly convex, 57 

66 

Hyperplane set, p-convexity of, 52 

Interior ray, 2 

Level set, 115 
Limit ray, 2 
Lineality of a cone, 3 
Lineality space of a cone, 3 
Linear combination of points, 29 
Linearly dependent points, 31 

Linear dimension of a cone, 3 

of a set, 39 

Metric on rays, 1 

Neighborhood of a ray, 2 

Non-vertical flat, 88 

Normal cone, 9 

Open cone, 2 

Oriented flat, 45 

p-Convexity of a hyperplane 
set, 52 
of a point set, 52 

p-Flat, 32 
p-Simplex, 32 
Piecewise linear function, 109 

Point set, p-convexity of, 52 

Point, relative boundary, 39 
relative interior, 39 

Polar cone, 10 

d 1 e r_~2 Polyhe ra con ·' 
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Positively homogeneous 
function, 66 

1; -profile, 122 
Projecting cone, 41 

Quasi-convex family, 118 
Quasi-convex function, 117 

Ray, 1 
boundary, 2 
E -neighborhood of, 2 
exterior, 2 
extreme, 20 
interior, 2 
limit, 2 
metric, 1 
relative boundary, 3 

relative interior, 3 
topology, 1 

Rays, convergence of a 
sequence, 2 

Relative interior point,39 

Relative interior ray, 3 
Relative boundary point, 39 
Relative boundary ray, 3 

s-Convexity, 42 
Set, barrier of, 45 

bound of, 45 

·convex, 34 
convex hull of,36 

linear ·Umension of, 39 
support of, 45 
support function of, 67 

supporting flat of, 45 

Simplex, 32 
Strictly cotocave 

function, 57 
Strictly convex function, 57 



Support, extreme, of a cone, 21 
function of a set, 67 
of a cone, 6 
of a set, 45 

Supporting flat of a set, 45 
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Topology on rays, 1 

Transformable families, 117 

Vertical flat, 88 
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