CONVEX CONES, SETS, AND FUNCTIONS

by

W, FENCHEL

Princeton University
Department of Mathematics

September 1953



CONVEX CONES, SETS, AND FUNCTIONS
by

W, FENCHEL

from notes by D. W. Blackett
of lectures at Princeton University,

Spring Term, 1951

Princeton University
Department of Mathematics
Logistice Research Project
sponsored by the
Office of Naval Research
(Contract N-6-ONR-27011)

September, 1953

 (tuclldes conedons )



+

I CANR 3 -~ G B AV S

*

.

o~ O3 o= Yo

TABLE OF CONTENTS

Preface
Chapter I. CONVEX CONES
Preliminaries
Convex (Cones
Supports
The Convex Hull and the Normal Cone

The Convex Hull snd Positive Linear Combinations

Extreme Rays and Supports
Systems of Linear Inequalities

Chapter 1I. CONVEX SETS

Linear Combinationg of Point Sets

Convex Sets and the Convex Hull of a Set
Metric and Topology

Projecting and Asymptoctic Cones, g-Convexity
Barriers and Normal Cones

Separation Theorems

Convex Hull and Extreme Points

Polarity in the Projective Space

Chapter III. CONVEX FUNCTIONS

Definitions and Elementary Properties

Continuity and Differentiablility of Convex
Functions of Ones Variable

Continuity Properties of Convex Functions
of Several Variabiles

Directional Derivatives and Differentiability
Properties

Conjugate Convex Functions

B Generalized Programming Problem

The Level Sets of a Convex Function

Smooth Convex Functions with Prescribed
Level Sets

Historical Notes

Bibvliography

Index of Definitions

Errata

‘Page

o Oy

12
19
23

29
b
37
41
45
4t
51
52

57
69
T4

79
88
105
115

127

138
144
150



ACKNOWLEDGEMENT

The author wishes to express his
gratitude %o Professor A. W. Tucker for gilving
him the cpportunity to write this report and
for calling his attention to the problems dealt
with in the final sections (pp. 105-137). The
author is also indebted to Professors J. W.
Green and H. W. ¥Xuhn for critical remarks, and
egpecially to Dr. D. W. Blackett for his valu-
able help in the preparation of this report.



PREFACE

The following notes contain & survey of those
properties of convex cones, convex gets, and convex functions
in finite dimenslional spaces which are most freguently used
in other fields. HEmphssis is given to results having appli-
cations in the theory of games and in programming problems.

Chapters I and II center about the interaction of
the two features of convexlty in linear spaces and affine
gpaces: 1. the original definition of a convex set as a set
contsining all segments whose endpoints are in the set and
2. the exlistence of s support through every boundary point.
The convex hull of a set 1s the set of all centroids of points
in the given set,while its closure is the intersection of all
half'spaces conteining the set. This fact may be considered as
the kernel of msny of the appiications of the concept of con-
vexity. It indicates slso the lmportant (though nctl quite
complete) self-duallty of the theory. The projective and -
it is belleved ~ most general formulstion of this duality is
given at the end of Chapter II.

The first part of Chepter IIT desls with the well-
known elementary properties of continuous convex functions.

No differentiabllity assumptions are wade, but the directional
derivative which always exists 1s investigated and used rather
extensively. The second part of the chapter containg recent
investigations. By means of a suitable polarity, an involiutory
correspondence between convex functions 1s established and
applied to a generalized convex programming problem. Finally
the level sets of a convex functlion are studied and the exist-
ence of a convex function with given level sets is discussed.

Since the end of the lest century numerous papers
have dealt mainly or partially with convex sets or functions.



Many results have been discovered several times in different
formulations - often adapted to particular aspplications in
other fields. No attempt has been made in these notes to
quote for each theorem the first paper in which it appears
in the formulatlion chosen here. 1In fact most of the basic
concepts and results can be traced back in cone form or
another to the very first papers on the subject. Short
hlstoricael notes and references are gathered at the end of
this repcort.



Chapter I

CONVEX CONES

§1. PRELIMINARIES

Tet 1™ be an n-dimensionsl Euclidean vector space
with origin 0, vectors x,y, ..., inner produect (x,y),
norm x| mf?%jg), and metric d{x,y) = Ix - vil . TIdentify
the vector x with the n-tuple [x of its coordinates with

1
regpect to a particular

orthonormal basig of . X,
n

Then (x,y) = X'y = > X7y -
i

A subset M of L" is called a cone 1f 0 18 in M and
x €M implies Ax¢M for every non-negative real scalar A . The
particular cones consisting of a non-zero vector x and all
its muitiples Ax (A2 0) are rays. A cone which contains at
least one non-zero vector is therefore just the union of the
rays it contasins.

Since all non-trivial cones may be thought of as
sets of rays, it 1ls desirable to introduce a topology on
these rays from the topology on P, This might be done by

p(x,y) = arc cos Ikxiﬁy - (0Lo<T)

as a metric on L™ - 0. This engle depends only on the rays
(x) and (y) to which x and y belong. It may be thought of
as the angle between the two rays. The proof that this

defining the angle

angle is indeed a metric for the rays, in particular that
it satisfies the triangle ineguality 1s not obvicous. An



equlvalent metric 1s

This new metric is the chord distance between the two points

. and on the unit sphere |lzfl = 1. That is
Il liyli .

- g |
oyl = AU T

Clearly [x,y] depends only on the fays (x) and (y). I[x,y]
also satisfies the defining conditions for a metric on the
space of rays. The geometric description shows that the
two metrics are topologically equlvalent.

A sequence of rays (x¥ ) is said to converge to a
ray (x) if [x* ,x] —» 0. A ray (x) is called a limit ray of
a cone M Iif there is a seqguence of rays of the cone which are
different from (x) and which converges to (x). A closed cone

or a closed set of rays is a cone which contains all its
limit rays. A cone is closed in this sense if and only if
it is closed in the usual topology of 1. A cone is open
if and only if the complementary set of rays is a closed
cone. This is equivalent to the definition?

DEFINITION. M is open if and only if
for every (x) in M there is an ¢ > 0 such
that 811 rays (y) with [x,y] <€ are in M.

The set of such rays (y) is called an € -neighborhood of.
(x). An open cone as a set in L' is an open set of i plus
the origin. A ray (x) is called an interior ray of a cone
M 1if M contains an &€ neighborhood of (x) for some € > O.

A ray (x) such that the compliementary cone to the cone M
contains a neighborhood of (x) is called an exterior ray

of M. A boundary ray of a cone M is a limlt ray of M which

1s not an interior ray of M.



With eny cone M there is associsted a smallest
linear subspace 3(M) of 1" which contains M. This gpece
may be defined ag the intersection of all subspasces con-
taining M. The dimension d{M) of the space S{M} is called
the linesr dimension of the cone M. In the theorems which
follow S(M) will often play a more important role than LD
1tself. Tor these resulbts cones, open or closed relative
to 3(M}, and interior, exterior, and boundary rays relative
to 3(M) will be considered rather than their counterparts
in the topology of the full space . They wlll be called
for simplicity relative interior, relative sxterior, and
relative boundary rays.

§2. CONVEX CONES

A cone C is convex if the ray {(x+yv) is in C whensver
(x) end (y) are rays of C. Thus a set C of vectors is a con-
vex cone 1f and only 1f 1t contains all vectors

Ax o+ py (X, p2 05 X,5 € 0).

The largest subspace s{C) contsined in a convex cone C is
called the lineality space of C and the dimension 1(C) of
s(C) 18 called the linsality of C.

IEMMA 1. If (x) is an interior ray of a
convex cone C relative to S(C) and (y) 18 =
boundary or interior ray of C relative to S(C),
every ray {)x +uy), where A andfz are posi-
tive real numbers, is an interior ray cf C
relative to S{C}).

PROCF:
Case 1: (y) = (-x), that is () x +y) = (x) or (3).
It will be shown that C = S(C). It way be zssumed that y¢ C.



Otherwlise there 1s a y*e C so ciloge to y¥ that (x*)-z (—y*) is
in a neighborhood of (x) contained in C. Thus, x and y*
gatisfy the assumptions of the lemma. Iet z + 0; + X be any
vector in 3(C). Consider the plane P spammed by x and z.

Now C.nP contains an angle arcund (x). In this angle there

18 & ray (X) such that z is in the 5848t sngle determined by
(X) and {y). Hence z is a linear cowbination of X and y

with positive coefficients. Therefore z is in C and C = S(C).
The lemme fcllows in this cese because every ray of S5(C) 1s
relative interior tc 3(C).

Case 2: (y) #% (-x) which implies (Ax +Hy) # (y).

2.1: ng,Umm%isann>Osmmimm;C
contains an qwneighbcrhood of (x) relstive to 8{(C). It has to
be shown that there 1s an ¢> 0 such that C contains an
€-neighborhood of (A x ﬁﬁy) relative to 3(C). Consider first
an erbitrary € > 0. Tet (z) be any ray in the & -neighborhood
of (AX +My). Pub 2z =Ax +My + v and suppose 2z is normalized
so that |lz{] = ![AX +fin, Then

Iy ) A 12 = v 2 €2,
e el

hence

VI <e® Ihx + f,y“a

Consider now the vector x + %v for which X(X + %v) +/ﬂy = Z.

The distance of (x + %v) from (x) satisfies

T 1 1
2 e_efo[ + V!X 2weixl — v
ik + Skl i+ 5

_}'_{'_.
LAl bl
'

fx + %v, x]

< KT



. Aki®

N +/gyﬁ5 Hence

This will be less than7 2 when £

X + %v andz are in C whené€ is this small.

2.2: y4C. There is & sequence of vectors
yﬁe C tending to y. Since the bound found forg¢ remains
grester than a positive constant when y varies in a bounded
region, there 1s a fixed ¢ » ¢ such that the £ -neighborhood
of ix +/4y” is in C for¥= 1,2,... . Since Ax +ﬁﬁy%myix + AT
every vector z for which [z, Jx +py) {& will be in this
nelghborhood for sufficiently large v . This completes the
proof .

The following list gives some of the more important
simple properties of convex cones.

1. The closure C of a convex cone C is convex.

' This follows directly from the definition of

convexity.

2. The interior of a convex cone C relative to
3(C) is & convex cone.

This is a corollary of Lemma 1.

2. A convex cone has intsrior rays relative tb

3(Cy.

This follows because the set of vectors ViA) =
)ﬁxj T oee. + Adxd{where ., x9 are fixed vectors of G
which form & basis of S{C}) and AT, an,,),d are positive

variables) form a set of rays in C which is open in S{C).

L. In every neighborhood of a relative boundary
ray (z) of a convex cone C there is & ray exterior to C.
let (x) # i-z} be sny relative interior ray of C.
If N is 2 given neighborhocod of {z) select soms ray (w)
in N such that w = “V)x + z,V]} 0. {(w} is therefore a ray



near (z) in the plane of (x} and (z) such that (z) is in the
smaller angle between (x) and (w). If (w) were not an exter-
lor ray of C, Lemma 1 would state that all rays (Ax +xw)
(A {/A> 0) would be relative interior rays. In particular (z)
= (7 X + w) would be a relative interiocr rey. Hence (w) is
an exterior ray of C.

This property does not hold for cones 1n general as
13 shown by the example of the cone which is-the whole space
with exception of one ray.

5. A convex cone C and its @emplemeﬁt have the same
-@dw‘:n

boundary rays. ‘ . .
v y. o Ve d el (o uance
This is meye%y;a—%es%a%emégg of Property 4.
6. A convex cone which i1s everywhere dense in the
1s 17,

This follows from Property L.

§3. SUPPORTS
A closed half-gpace defined by & relstion x'u { 0

for a fixed u + 0 is called a support for a cone M if M 1s
contained in this hslf-space.

THEOREM 1. If C 1s s convex cone and (z)
a ray exterior to C, there is & support of C
which does not contain (z).

To prove this theorem a vector u must be found such
thet x'u { 0 for a1l x in C and z'u » 0. It will certainly be
sufficient to show this for any closed convex cone, since a
ray exterior to a cone is also exterlor to the closure of the
cone. Since the rays of & closed cone form a compact set,
there 1s some ray (x°) such that {z,xo} = min {z,x]. It can
be assumed without loss of generality that |zl = I = 1.



Case 1. [é,xo} : min [z,x] = 2. Then
(x3eC ,
x° = -z and any vector u such thet x'u { 0 defines a support

for C for which z'u > 0.

Case 2. [x,x°1 < 2. Since [z,x] is a mono-
tone decressing function of z'x if z and x are unlit vectors,

oy . . U | {0 .
%] X%éﬂ-[Z,Xl implies =z FEW'é z'x~ for all xc C.

Because x°£ C and ¢ C implies that (1- 0)x” + ex¢ C (og o < 1),
it follows that

: o
(1-g1 :
(L-0'x” + O { z'x° for eny ¢ < 8 { 1 and any x¢ C.

| (lme)xo . oexl e

ZE

Therefore

R

. 1 .--'- 1' .
O) 7 Z?XO \i ("'tmﬁj;ge 2 eggz\w 9(1”‘8>8XO -1
: s

{z!'x - 2'%

If 8 tends to zero, the limlting relation

! )

z'x - 2'x° <, 2x%(x% x - v
1s derived. (The right side is the derivative of the square
root with respect to 6 at © == 0.} Hence

b
z'x { (2'x%1(x° x) or
' s s VY a1 i
x'(z {z'x")x" ) £ 0 for all x in C.

Since = snd x° are linearly independent
z - {z‘XO}XO + 0

Theref'ore the vector u = z - (ZEXO)XO def'ines & halfgpsce of



- 0 .2 . .
gsupport for C. Now z'(z - \z*xo}x y=1 - (z‘xo; which is
greeter then zero since z and x° are not opposite unit

vectors. This complstes the proof of Theorem 1.

COROLIARY 1. A convex cone which 1s
not the whole of LY has a support, i.e. it
i in some half-space.

There must be at least one ray (z) not in C if C + 1™,
If this is not an exterior ray then by Property & there is some
other ray {ZE) which is an exterior ray. Theorem 1 s&ys that
C is ccnteined In & halfspace not containing this exterior ray.

COROLIARY 2. 1If {(z) 1s a boundary
ray of C there is a supporting half-spsce,
x'a 0, to C such thet z'u = 0 that is
Z 18 on the boundary of this support.

Let zﬁ, Cees zt be a sequence of vectors exterior
to C and converging to z. PFor each t there 1s o support
such that xﬂutg 0 for x€C, zt'utg 0. The u% may he
agsumed to be unlt vectors and hence contaln & subsequence

which converges to some vector u. Now x'u € O for all x&C

and z'u > 0. Since z€C, z'u = 0.

§4. THE CONVEX HULL AND THE NORMAL CONE

If M is & cone, the cone (M} which is the inter-
gection of all convex cones contalning M is called the convex
hull of M. The cconvex hull of M is the smellest convex cone



containing M.

For any cone M, (M| D /M| because M| is a closed
convex cone containing M snd hence M and {M}. The more
interesting question is when (M| < [M} thet is when M} = [M}.
Bxamination of the possible two dimenslonal cones shows that
M} = [f] if (M) -2. It will be proved later that if M
consists of & finlte number of rays or if M is closed and
1({M}{} = 0 the equelity alsc holds. That the equality does
not hold in general is shown by the following example in 7.

4

M = (vectors {x1,xg,x5} E (%, - ]x3|)2 + X§< X?),

¥

Here M -« M end [M! is the open half-spece defined by X4 O

plus the line x, = x, = 0.. On the other hand Ml 1s the

closged helf-space defined by Xy > 0.

JS—

THEOREM 2. The closure (M| of the
convex hull of a cone M is the intersection
of ell the supports of M.

The intersection I of all supports of M is a c¢losed
convex cone containing M. Therefors Ii)iﬁﬁa

If ¢z were & ray of I which was not in the closed
CONVeX Ccone §ﬁﬁ, it would be an exterior ray to §Nﬂ and hence
by Theorem 1 there would be & homogeneous hyperplane separa-
ting {z) from ] and hence from M. The helfspace defined by
thig hyperplene which contained M would be g support of M
which did not contain {z). Therefore MiDT.

The cone M* formed by all vectors u such thst

Xxf'u < 0 for every vector X in a cone M is called the normsl

cone of M; for, it consists of all outer normals of supports
to M. Clearly M* is convex and closed and hence M= M,

9



If M is & subspace, M is its orthogonal complement.

x* %

THEOREM 3. M = (M}

If ye M, then y'u { ¢ for all u such that x'u £ 0

for all x in M. Therefore y is in the half spece of support
of M which is defined by z'u 0 for a particular u in M.

Now as u ranges over M*, this half spece ranges over all
gupports of M. Therefore y i1s in the intersectlion of the

g

supports of M and hence in {M] by Theorsm 2. Since MY is a

——rar—

convex c¢losed cone, it follows that M 7D M. Hence M~ = [M].

COROLIARY: If C is a closed conveX cone
* %
C = (.

Because of this rgletion, the normsl cone C* ls &also0
called the polar cons of C when C 1is clesed end convex.

THEOREM L: For any two ccocnes M and N

(MUN) =MNN

and
ANy D vty N

If u'x { 0 for all xe MUN then u'x { 0 for all xcM

end for a1l x in N, and conversely. Hence

(MuN)™ = MNN
Substitution of M for M snd N for N in this equation gives

(M*u N*)* = M**fiN**. If the normal cone is now considered

* A

ViRV PV VIS Vi S S | VTV R ST R Ml 0 VIR

i0



COROLIARY: If C and D are convex Cones,

(c + D) =¢"n D
and
)*

(CnD) =0Cx « D* .

For general cones M and N, MUN|DOM + NODMUN.

&m%fHMUNH* m(MUNﬁ,(M+Iﬁ*m{MUNf. Hence for
convex cdomes (C + D) = ¢°N D . Also (¢ + D) =¢""n D™=

* R

GND. Therefore Gr + Dx = (C° + D) " = (CnD) .
THEOREM 5. For any cone M,

A(M) + 1M ) = n

and
LOME) + aM) 1M}y + aMT) = n

From the definition of the normal cone, it follows
that S{M*)(fM* implies S(M*)*:>M*fj M. Now S{M*)* ig a sub-
space of dimension‘nA—l(M*). Therefore nf—l(M*) 2 d(M). On
the other hand S(M)DM. Hence S(M)C M'. Since S(M)* is s
subspace of dimension n - d{(M), 1t follows that n - d(M) gl(M*).

Hence 1(M ) + d(M) = n. Substitution of M° for M in this
reletion gives

TMT) & d ) = 1TIMI) + d(M7) = n.

-

Since 1(iM{) { 1UIMT) the theorem is proved.

F The sum M + N of two cones M and N is defined as the cone
of 81l vectors x+y, XeM,yeN.

11



COROLIARY: ’For a closed convex cone C

1(C) + d(c™)

]
i3

and
1(C%Y + d(e)

i
B

§5. THE CONVEX HULL AND POSITIVE LINEAR COMBINATIONS.

THEOREM 6. Any vector x of M| is of
the form x = )ix’ + o +A?xr for x¥¢ M and

/\5)2 0.

This follows immediately because the set of all such
non-negative finite linear combinations is in [M] and on the
other hand these linear combinations do form a convex cone.

THECREM 7. Any vector x % 0 in [M} is
a positive linear combinstion of linearly
independent vectors in M. (This shows that
any vector of {M! can be expressed as & non-
negetive linear combination of some d(M)
vectors of M wheré d{M) 18 the linear dimen-
sion of M.)

By Theorem 6, x = k?xq b .. + APXT for some vectors

x¥ of M and some constants 'sz 0. If the vectors x', ..., x¥

are linearly dependent then there are some real numbersla1,
.a,/ur not all zero such that /ﬁx’ F e vﬂfxr = 0. It may

be assumed that at least 03@//? is positive. Let T be an index
such that

12



A Ao
~ . Min L > o,
M gsuch that f7 =
Ho> 0
Now \
' - 1 S S T 1 ‘ ry _
X—/\TX e +/TX /“T /011}{ e e +/{;rx)_.

;- ¥f%fﬁ)xz + .. + (Xf y

Since ( Ag- ~Aﬁ¥id > 0 for all~f and = O forif =T, the
expression above represents x ags 8 non-negative linesr com-

binetion of fewer than r vectors. Thersefore if r is chosen
minimal, X1, ooy x¥ must be linearly independent. This

proves the theorem.

LEMMA 2. If H is a supporting hyper-
plane to a cone M

M N E] = M NH.

Now M N H} < Ml and M N H] < H. Therefore
M NH C M N H. Consider the union D of {M N1 B} and the
open half space determlned by H which is a support for M. D
is convex and 1t containg M hence [M{. Onthe other hand
DNH= MN H{. Therefore M/ HI D M| N H.

TEMMA 3. If s = g(iMl) is the largest sub-
space contained in the convex hull M} of a
cone M, then .

M N st = s

The proof is by induction on d -1 where d is the

13



linear dimension of M, and 1 is the lineality of M| that
19 the dimension of 3.

Ifd=1, 8§8=3M)soMNs =M. Therefore M" s}
= [M|{. Since s M{C S(M) snd 5 = (M}, M N s} = s.

If d >1 , let H be a supporting hyperplane of M in
the space S{(M). By the preceding lemma M N H} = M| N H.
Now {M N H} is of dimension at most @ - 1 and s 1s the
largest subspace contained in (M N H{. The assumption s =
f{(MN HYN s} therefore immediately yields s = M N {(Hn s)l
= M7 s|{. This proves the lemma by induction.

THEOREM 8. Tet M be s cone such that
fM] = 8(M). Glven sny finite set V of
vectors in M which contains at least one
non-zero vector, there is a8 set W of at
mest d = d(M) vectors in M such that the
vectors of VU W are linearly dependent
with positive coefficients. Conversely,
ifAthere is a finite set of vectors in M
which span 3(M) snd which sre linearly de-
pendent with positive coefficients, then
the convex hull of the rays determined by
these vectors and, hence, M} is S(M).

Let yi, o ooy y?'be the vectors of V. Then by Theorem
7 the vector ~y? - ... - y¥ i3 a non-nepative linear combi-

nation of et most d vectors in M.
Suppose that x', ..., x¥ are vectors of a cone M

which span S(M) and there exist constants /@,> 0 such that

1 r _
/M]X e -t-/L(rX = (.

1L



1et N denote the cone congsisting of the rays (X1), e ooy

(x¥y. If [N] is not S/M}, by Corollary i to Theorem 1, thers
is some half-space of support relative tc the space 3S(M} for
¥. Let such a hall space be defined by the relation x'u g 0

for a fixzed vector ud0. Then x° u {oforp =1, ..., r.
Therefore SMTX‘ + e +/ﬁrxr}‘u = 0 implies yX?i u = 0 and
hence x7 u = 0 for all’p . Since the x?' span the whole

spasce 3{(M}, this is lmpossible. Thls proves the last state-
ment of the theorem.

COROLIARY: 1If for a cone M,

M} = S(M), d = d(M) > 0, then there is
8 set of at most é + 1 non-zZero vectors
Qf'M which are linearly cependent with
positive coefficients. There is also in
M a set of at most 2d vectors spanning
8{M} which are linearly dependent with
positive coefficients.

This follows from Theorem 8 when V consists of one
vector or d linearly independent vectors.

The following example shows that d + 1 is the best
1 d

poésible number in the first statement. Iet x', ..., X~ form
a basls of a subspace of L™. The cone M consisting of the
rays {x?), e ooy (xd), and (‘X? - . - Xd) hag d{M)} = d and

contalns no set of & vectors which are linearly dependent
with positive coefficients. The cone consisting of the rays
(x?), caas (Xd}, évxi}, co ey (—xd} ig an example showing that
2d ig the best possible result for the second statement.

 THEOREM 9. Iet M be a cone and let
1 > 0 be the lineality of [M|. There is

15



a set of at most 1 + 1 non-zero vec-
tors of M which are linesrly dependent
with positive coefficlents. There is
also a set of at most 21 vectors of M
which span s(fMi} and which are linearly
dependent with positive coefficients.

If there is a set of vectors of M among
which r are linearly independent end
such that the set of vectoré as a whole
is linegrly dependent with positive co-
efficlents then r { 1 and the convex hull

of the rays determined by these vectors
is an r-dimensional subspace of s{ {M}).

By TLemms 3 this reduces to Theorem 8 and its corol-

lary applied to the cone MNs.
By means of the preceding results the former state-
ments concerning the velidity of M| = (M} will now be proved.

THEOREM 10. If M consists of a finite
nurber of rays M| = [M].

f o o TrRl ) W th's r-
If x is in M} there are vectors x ﬁhvz e +erx f
P=1, 2, ..., in M! such that Xﬂ;*~*X ags ¥—-——wos . Here the
vectors x¥®e M snd the vectors x 7, ..., x*%can be assumed

linearly independent because of Thecorem 7. It can be assumed
without loss of generality that sll the vectors x, Xv, and Xf?'GL
are unlt vectors. By replacing the seguence of xPyg by a
subseguence of them, r can be made to be constant with

regpect te¥ . A still finer subsequence can be chosen

such that the unit vectors x?ﬂ'can be mede to converge

to some unit vectors X°. Since there are only a finite num-
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ber of rays in M this means that this subsequence can be
agsumed to have x¥° = Xf for allw and § . Suppose there-
fore that the original sequence x” had been chosen so that r
> 7! 2T
does not depend upen v and x¥ = '\41}}[ + o+ )\rwx .
. . _ =1 -2
Conslder the fungtion £{ 17 .,,,/gr) = ]i/u‘ix o +/(AI,X i
On the sphere Z/M; = 1 this function has a positive wmini-

mum m since the x’are linearly independent. Therefore
PA D« e NETIP 2m(N% + oo« A Z). Since A '+

= 1, the )Sm,ar.e bounded by \l L . Therefore

m
there is a subsequence of the x¥ such that for each 5,
Xgﬂr‘*’ﬂ‘)\g 88 Y o fOr some non-negative number )\5) . There-

fore x = }\1}—(3 b e +}\rir, Hence x is in [M}.

. +.}\M5&Pn

THEOREM 11. If M is closed and
1 (M}) = o, then [M] = {M].

et x be a vector in ﬁ\ﬂ and let x¥ be a sequence
of vectors in [M{ which approach x. Then

¥ o AT - ¥ -
x7 = )\mx Foeae 4 &l}x | for some Xgﬁz 0 and

some 5% ¢ M.

Here the vamay be assumed to be unlt vectors and r may be

assumed less than or sgual to d the dimension of B(M). As.
in the proof of Theorem 10 the sequence xV can be selected
so thet r does not depend on ¥ and x5’ — %% 85 ¥ —> oo

Since M is a closed cone and the x5° are unit vectors, the

x5 are also unit vectors in M. If y', ..., ¥° are unit
vectors in S(M) which are linearly independent with non-
negative coefficients, the function ﬂ/tl.1 y" e +/uryr1] =
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| r
f(/u},z..,,/ur) for/ﬂgg 0 and 5?%‘1/19 2 =1 is positive and

continuous. Hence it has a positive minimum m(y', ..., ¥°).
Consider the function m(z?, e zr) over sets of r unit
vectors in M. Any relation)jﬁz1 + .. +/Mrzr = 0 with

T .
/uz Q, Z%/Mga = 1 would contradict the hypothesls that

fM| contains no lihear subspace {(Theorem 9). Hence any r unit
vectors of M are linearly independent with non-negative co-
efficients. BSets of r unit vectors of M range over a closed
get in the product of r unit sphéres because M is closed.
Therefore m(zw, cons zr) has 2 positive minimum m. Hence

x¥ = HXTBX1U+ cee + )rw;?ﬁ] > mlyzikfi: Yince

W 5 Ty 2
X —+X, [&KY] and, hence, = Af& are bounded. Therefors
=1

a subseguence of the xﬂ'can be chosen so that Xygﬁf&for
V-3 o0 . With such a selesction
=), & A
X =AqX + ... + A\ X 50 that X € M},

THECOREM 12. Iet C be & cloged convex
cone which 18 not the whole space T end
let H be the hyperplene which bounds a
support to C defined by x'u 0. Then
CnH = g(C) 1f and only if (u) iz a rela-
tive interior ray of C .

Suppose that (u) is @ relative interior ray of cr.

Put d(¢") = @* and let v', ..., v8"! be vectors such that
U, v', ..., v3™' form & basis for S(C¥). Consider the vectors
L L PRS- b B T R R B
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These &lso form & basis for S(C*).
Suppese that the selected vectors v%, cosy V
are go short that uT, caay ud are in C°. This is possible

. . . . #*
because {(u} is relative interior to C . Now

d-1

u == {—-ij--(u'1 4+ oaee * ud)°
Suppose that x€C 0 H. Then xty’ 0, ouey X’ud { 0 and

x'u = 0. Hence x'uf = O, osoy X‘ud = 0., Since the uj7

span the subspace S(C*), X ig in its orthogonal complement
which contains s(C) and has dimension n“d(C*). By the
corollary to Theorem 5, 1 = n-d(C*)u Therefore the two
gpaces colncide. This proves the sufflciency part of Theo-
rem 12.

Suppose on the other hand that (u) 1s a relative
boundary ray of C*. A segquence VT, vg, .., V¥, ... can
then be selected so that X*V“'g 0 does not define & support

of C but v’ +tends to u. This mesns that for every v® an

x%C can be found such that x* v¥ > 0. Bince w'x = 0 for
any w ¢ S(C*),and x € 5(C), x° 1s not in s(C). Write x¥

as yﬁ + 27 where z ¥ 1is in s(C} end yﬁ' is in C but in the
orthogonal complement of s{C). Then v v* = g v > o,
It may be assumed without loss of generality that I y¥{i= 1.
If only a suitable subsequsnce of the y? is considered,
these y19 wlll converge to some unit vector y. For this

¥, y'u 2 0, and hence y'u = 0, However, y is mot in s(C).

This completes the proof of the thecrem.

§6. EXTREME RAYS AND SUPPORTS

THEOREM 13. If C is & closed convex
cone of dimension greater than one and C

19



is not S{C) or a half-space of S(C),
C is the convex hull of itz relative
boundary rays.

The assumption that C is not & subspesce or a half
subspace mesns that 1 = dim s(CY £ &(C) -2. Since s(C) is

containsd in every supporting hyperplsne of C in the space
3{C) and since there ig at least one such hyperplane because
C.#+ 8(C}, every ray in s(C) is a relative boundary ray of C.
Iet z be any vector in C which is not in s{(C). Since 1 g n-2,

there is a plane P in S{C) which contains the vector z and
intersects s{c} only in the origin. The at most two dimen-
sional cone P N C contains z but no two opposite rays becauss
P i1 s{C) = 0. Therefore it is & sector of less than 180° in
the plane P. Hence z 1s & non-negative linear combination of
boundary vectors of P 1 C. A boundary ray of P/ C 18 however
8 relative boundary ray of C. Therefore (z}) 1s in the convex
hull of thegboundary rays of C. This proves Theorem 13.

DEFINITION: A ray (x) of & convex cone
C is an extreme ray of C if x is not a posi-
tive linear combination of two linearly
independent vectors of C.

Clearly this definition does not depend upon the
choice of the representative vector x.

THECREM t4. A closed convex cone C
with 1{C} = 0 is the convex hull of its
extreme rays.
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This 1s true for & one dimensional cone with 1(C) = 0
because the one ray of the cone 1s necessarily an extreme ray.

Suppose the theorem has been proved for cones of
dimension less than d. Let (x) be a relative boundary ray of
the d dimensicnsl cliosed convex cone C. Belect a supporting
hyperplane H containing (x). C N H is a c¢losed convex cone of
dimension at most 4 - 1. By the inductlion hypothesis C /1 H
1s the convex hull of its extreme rays. Slnce C ig all on ons
side of H, an extreme ray of C N H 1s also an extreme ray of C.
Therefore every relative boundary ray of C is in the convex
hull of the extreme rays of C. Theorem 13 therefore glves
thaet C is in the convex hull of 1lts extreme rays. This finishes
the induction proof.

- For the determination of the extreme rays of a parti-
cular cone 1t 1is helpful to note that any ray which is the only
ray in the intersection of a supporting hyperplane snd a convex
closed cone is necessarily an extreme ray. It is not true,
however, thet for a general convex closed cone every extreme
ray 1s the intersection of a supporting hyperplane snd the cone.
For example if in LB, C is the convex hull of a circulasr cone
D and a ray (x) such that both (x) and (-x) are outside D, the
extrene rays which sre at the juncture of the curved surface of
the cone and the flat surface of the cone 2re nct the inter-
section of the cone with sny supporting plane. Any supporting
plane which contsins one of these two rays contains the whole
two dimensional cone spanned by this ray and (x).

DEFINITION: A support x'u 0 of a con-
vex cone C 1s en extrems support if u is not
a positive linear combination of twe linearly
independent outer normel vectors of supports
of C, in other words if (u) is an extreme ray
of C”.
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THEOREM 15. A closed cone C
with d(C) = n is the intersection of.
its extreme supporits.

This follows from Theorem 1% applied to ¢* and
Theorem 6.

DEFINITION: A cone 1s called poly-

hedral if it is the convex hull of a finite

number of rays. |

A subspace 1s a polyhedral cone.

It is obvious that a sum of polyhedral cones is
polynedral.

The polar of a polyhedral cone is the intersection
of a finite number of halfspaces. For, let C be the convex
hull of the rays (), 9= 1, ..., r; then ¢* consists of all
vectors u for which u'a’® 0,§=1, ..., r. Hence ¢ is the
intersecticn of these halfspaces.

THEOREM 16. The polar of a poly-
hedral cone is polyhedral. In other words,
a convex cone is ﬁolyhedral if end only 1if
it is the intersection of a finite number
of halfspaces.

ILet C be the convex hull of the rays (ay),57= 1,

.., r. ™eén & isthe intersection of the halfspaces ata’® < o.
If (u°) is an extreme ray of C*, the vector u must satisfy
n-1" linearly independent equations w'af = 0. For, other-
wige there would be an at least two-dimensionsl neighborhood
of {u®) all of whose rays satisfy all the inequalities u'afg 0
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and {uO) could not be extreme. Since there are only a finite
number of systems of n-1 linearly independent equations ul ¥ = 0,
c* has only a finite number of sxtreme rays.

If 1(C*) = 0 thet is d(C) = n it follows from Theorem
14 that C* is polyhedrel. If d(C) { n this, applied to C in
3(C), yields that C*N S(C) is polyhedral. Now C" is the sum
of C*N S(C) and the subspace S(C*) = S(C)*, hence polyhedral.

§7. BSYSTEMS OF LINEAR HOMOGENEOU3 INEQUALITIES.

_ Various theorems on the solvebility of systems cf
linear homogeneous inequalities are obtained by specializing
some of the preceding results to polyhedral cones.

In this section the inequalities x > 0 or x > O

for a vector x mean that the corresponding inequaliities hold
for each component. x > 0 means X » 0 but x + 0.

Let A be an m by n matrix. Denote tw'g and X
vectors in 1™ and L° respectively (both considered as column
metrices). ILet A be fixed,{ and x variable. Then the follow-
ing statements are velid: |

I. One and only one of the two
systems
Ax > 0
and

A'Y = 0,85 0

of linear inequalities has & solution.

IT. One and only one of the two
gystems
‘ Ax 2 0O

and
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At =0,8>0

has a golution.

These statements may be interpreted geometrically
either in 1™ or I®. 1In each of these spaces there are two
mutuelly polar interpretations depending on whether=§ and X
represent vectors or hyperplanes. The two most convenient
interpretations are described in the following.

Firgt interpretation:

Consider x as a normsl vector of a hyperplane and
the rows of A as vectors in L". The existence of a solution
of Ax > 0 means thst the cone M consisting of the rays deter-
mined by the row vectcors of A has a supporting hyperplane
whose intersection with M is the orlgin only. This is the
~cege 1if and only if the lineality of [M! 1s 0. On the other
‘hand, this is eguivelent with the non-existence of g non-
trivial linear relation with non-negative coefficients
between the rows of A, that is A'E = 0 and §2 0 imply§ = 0
{Theorem 9). This yields I.

et d = d(M) be the linear dimension of M. Then
d is just the rank of A. Suppose AX > 0 has no solution,
that ig 1 = 1(IM|) > 0. From Theorem 9 it then follows thst
there are 1 + 1 or less among the rows of A which are linsarly
dependent with positive coefficients. This together with I
implies that the system AXx > 0 of m inequalities has s sub-
system consisting of at most 1 + 1 inequalities which has no
solution. Now 1  d; hence: Ax » 0 has a solution if and

only if every subsystem consisting of 4 + 1 of the inequalities
has a solution. .
Consider now the system Ax » 0. The existence of a

solution means that M has a supporting hyperplane which does
not contain the whole of M. This is the case if and only if
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M} is not a subspace (Theorem 12). Now {M} is a subspace,
if and only if there is & linear relation with positive co-
efficients between all the rows of A (Theorem 8). This yleids
IT.

From Theorem 8 and its corollary it follows further
that 1if {M} ils a subspace there are 24 or less rays in M
such that their convex hull is the same subspace; hence:
Ax > O has a solution if and only if every sybsystem with rank
d c¢onsisting of 2d inequalities has a solution.

Second interpretationl

Denote the closed positive orthant of Lm, that is
the gset of all E z 0, by D. Congider E' and the columns of
A as ﬁéctors in 1P and let 8 be the subspace spanned by
the column vectors of A, The corthogonal complement S¥ of 8
consists of the solutions & of A' & = 0. The statements I
and II then follow by substituting C = 5% and C =38 in
the followling theorem:

A closed convex cone C contalns
no peint of D except the origin if and
only if 1its polar ccne C¥* contains an
interior point of D.

This 1s the case k =m of

THEOREM i7. Iet C be a c¢loged con-
vex cone, D the closed pesitive orthant,
and. Ek, 0 £k £ m, the subspace of all
Yectors whose first k components vanish.

Then C A DC E,_ if and only if, for every

€ > 0, the polar cone (¥ contains a

vector whose k first components are great-

er than a fixed positive constant ¥ and whose

m - k last components are greater than - &.
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If C 1is polyhedral the condition may be
simplified to: ¢ D contains a vector
whose k first components are positive.

Tc prove the sufficlency consider an arbitrary vector
& € C{\D. The polar Cone ¢ is contained in the half-space
E"Q g 0, i variable. For an 7 & C* auch that 71 > r,
ey M > Vs Myyq 2 = Eseees My > - € 1t follows that

(E'l t oeee Ek)?f‘ - (Ek-ﬂ b oeee + Em)é'go.

0, thls can be valid for all £ > 0 only if &, =
0; that is, if ¥ € E_.

The necessity may be seen in the following way. From
CNDCE, it follows that (CN D> E;: Obviocusly, E.
contains the vector & = (1,...,1,0,...,0). Since (C/AD

k m-X
¢+ D (Corollary to Theorem 4} there are vectors 7% e C*,
rten®, 1=1,2,..., suhthat %t +Zt—> . Now
ci € 0, since _Cl en . Hence, given 0< &€ < 1/2, 1t
follows that 7% > & - £ for sufficiently large i. This
is the statement of the thecrem with ¢~ = 1/2. If C 1is
poiyvhedral, C* + '.D* ig closed (Theorem 10}. Hence there are
vectors 7 & C and & € D such that 7 + & =¥, and
the vector % =& - & > & satisfles the requirement for
every & ) O.

Conslider again ean m by n matrix A. Let m=1k + 1
with fixed non-negative integers k and 1.  Write

WARNG

where the matrices B, [, 7 Z are k by n, 1 by n, k
by 1, andl by 1 respectively. Then the following state-
ments hold: |

Since £ 2
.= Ek =

)*

ITI. One and only one of the two
systems

Bx > 0, FXZO
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and
B1q+ Il G o,y]z 0, g 20
has a solution.
IV. One and only one of the two
gystems _
Bx > 0, Mx 2 6]
and
B'VI-{- f"ﬂg = 0, Y]> 0,3‘2 0
has a solution.
V. One and only one of the two
gystems
Bx > O,Iﬂx 20, x20
and
Biq + "5 £ 0,12 0, §2 0
has a solution.
VI. One and only one of the two
systems

Bx z_o,lﬁx 20, x20

and
B"q+i_"'-§' < o, \(]70’3; 0

has a solution.

To prove these statements'apply Theorem 17 to the
following polyhedrsl cones C: the subspace of all vectors

(?) satlsfying B'q +jﬂ'g = 0 (IIIL), the subspace of all
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Bx

vectors ( ) {x unrestricted) (IV), the cone of all vectors

"x

(g>setisfying B'q + ™% £ 0 (V), and the cone of all vectors

) 0 (VI).
- x 2 0 (VI)

Theorems on systems of infinitely many inequalities
may also be obtained. Iet & denote a vector in LM depending
on the index « which msy run through any set. Iet M be the
cone conslsting of all rays (a®). (For instance, « may be a
real variable. Then the point a™ might describe a curve in
L" for which M would be the cone projecting this curve from
the origin.) As an example take the following generalization
of statement I which 1s derived in the same way as I using the
first interpretation above:

The system of inequelities x'a® > 0
has no solution if and only if there are
finitely many smong the vectors a® which
are linearly dependent with positive co-
efficients.

let b be a vector with the property that x'b { 0 for

every x which satisfies all the inequalities x'a* < o.

Geometricelly this means that b ls contained in all supports
of M, hence b€ [M}. If in particulsr {M] = [M! which is the
cage 1f o runs through a finite set (Theorem 10} or ifﬁﬁﬁhkﬁhﬁ
has 1in@ality 0 (Thecrem 11), then b ig in {M} and, hence, b
1s & positive linesr combinstion of at most n of the vectors

a {Theorem 7). In the general case b is a limit of such
linear combinstions (generalization of a theorem of Farkas).
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Chapter II

CONVEX SETS

§1. LINEAR COMBINATIONS COF POINT SET3

The cones of Chapter I were always considered to be
in en n-dimension Ruclidean vector space 12, In 2 vector
space the origin or zero vecltor 13 necesserily distinguished
and its coordinete representation is invarient under a change
of the coordinate basis of the space.

Convex sets, however, are more naturally thought of
in an n-dimensional affine space A%, If a particular coordi-
nate system hes been chosen a point 1s described by the

o1 ’ '
n-tuple x =i§ ] of its coordinetes. Denote the point with
n

coordinates x by X. If t is s fixed n-tuple and'T i8 & non-
singular n x n matrix,

X—+X = T(x - t)

is a transformstion of the representstion of AY in terms of
the coordinates X3 into a representation in terms of coordi-

nates ii, For A™ 511 allowable coordinste transformations

are of this type.
In terms of particular cocrdinates the expression

I“ A
x=_2 A % ( Agreal) represents a point x which is & "linear

=
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~
combination" of the points x* . If }fz 0 (f =1, ..., I),

~
A .
x is called a non-negative linear combination of the x¥
FAN
If X > 0 j =1, +.., ), X i85 a pogitive linear combination.

These deflnltlons sre not independent of the choice of coordi-
nates, for if X = T(x-t)

I’
,\ x5 =J9_ /\fT(XS) -t) = T(‘PZ:_} )\g =§) - Z,\th

(1 - ZA)Tt
f'i

+

~1( Z )\g -t)

r r |
= 5. )\xg + (1 - = )\ )T
§=1 5 =.1 g

This shows that if the cooyglnates ﬁyinstead of ¥ are used

the llnear comblnatlon of x with coefflclents

)1, . A may be & point whlch is different from Xo It

should be noted that this difference depends on ;Z:A and
- f=!

t but not on the points x? . In the particular case that

t = 0, that is the change of coordinates does not shift the

r. r
origin, Z&,xf =E Aj, x¥ . This 1s also the case whenever
= =1

j;f ) = 1. These linear comblnations with 2§;Af = 1, for
which the resulting p01nt is independent ofsthe ch01ce of
coordinates, are particularly lmportant a&s the following ex-
ample shows.

A line through the points with coordinates x° and x!
is just the set of all points repreéented by
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O s Ax' = (1-ex® w ex! () *’)H =1, 8=,.).

Those peints on thig line w;th 0 { 8< 1 form the segment

between the points XO and %!,

N
The points XO, co ey xP are defined to be linearly
dependent if

/ﬁbxo + .. +/A5Xp = 0

for some real numbers/ﬁ%—with

’ﬁ% o f/MP = 0 and|p§ +oees +/y§ > 0.

Iﬁ/io is one of the non—zero/mq

e /% nd éi:x

Therefore the polint XO 18 expressed as a linesar combination

XO = A1x1 + oeee Apxp where A

of the other points in a fashion which is independent of the
choice of coordinates.

N _
Equivalently the points x7, ..., x° are linsarly
dependent if end only if ‘
1 e e e e e 1
0 S
X, s e e e e X3
rank ; : <p .
0 B
xn x5
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That two points are linearly dependent means they
are the same point. Three polints are linearly dependent pre-
cisely when they are collinear. Simlilarly four points are
coplansr if and only if they are linearly dependent. :

A p-flat is defined to be all points with coordinstes

~ gV

X = Xogo + ... 4 xpxp where AO + oo kp = 1 and XO, oo, XP
are linearly independent points. Note that a& p-flat is a
p-dimensional affine space. Similarly a p-gimplex is the set
of points with coordinates

X = >\OXO + ... +>\po where )\0 + ....+ Xp= 1,)\52 0 (g= 0, ..., D),

% A
and XO, cee s %P are lineerly independent.

Although all the proofs that follow are affine proofs,
1t is deslirable for conceptual clarification occasionally to
introduce a projective interpretation. Identify the point

3§1 no.. . ,\?c ] . . n
[%n} of A™ with the point -1 of the projective space P .
)\}C‘n
With this ideﬂtification.An'may be thought of as the "finite"
portion of P, (The "hyperplane at infinity"™ consists of the
projective poimté\with first coordinate 0.) It is now seen

FAY
that the points XO, chey %P of AT are linearly dependent 1f and
0 s
only if the projective pointsg with coordinates ;! s eeny :4
- x° P
n -

are linearly dependent that 1g

X? - x?

rank . . { p.
0 D
*n *n
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If M and N are sets of points inf'A;, M+N is
defined to be the set of all peints ﬁi§ for ¥ in M and
¥ in N. Since ﬁ:} may be different from x+y, M+N must
be expected te vary with the cholce of coordinates. However
‘x+y always differs from x+y by (1 - (1+1)Tt. Therefore
M+l is determined up to a translation.

The set of points with coordinates A X where X
is some point in M is denoted by A M.

Relative to & fixed coordinate system the following
ruies of calculation are valid:

1) (M+N) + 0 = M + (N+0)
2) M+N = T+M ¢ v
3) )\(/{M) = (ApuIM
) A (M+N) = AM+AN
) (>\+/u)M C AM+uM.

It is not true in general that (A ﬁ/A)M = A M+uM, for if
M= -AN+0, (A ﬁﬁL)M consists of only the origin while
A M ﬁ;LM contains more points if M has at least two polnts.
It is true, however, that (A +/4}M = AM+puM if M is a
flat and A +u + 0 or if A20, 420, and M isa con-
vex (see below) set.

The previous calculation with linear combinations
of points shows that a sum‘ééé Af,Mfa is independent of the

cholce of coordinates 1f :§: A? = 1, otherwise it is deter-
=1

mined up to & translatlion.

The distinction between the points of AM  and their
ceordinate n-tuples 18 not important for the properties which
follow. Therefore the point % will be identified with its
coordinate n-tuple =x from now on.
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§2. CONVEX SETS AND THE CONVEX HULL OF A SET

A set M 1g called convex 1f M contains every seg-
ment Jjolning a palr of points from. M. Expregsed in terms of
coordinates thils means that (1-8)x + 6y (0 £ @ ¢ 1) repre-
sents a point in M whenever x and ¥y are in M.

An example of a convex set 1s the “ellipsoig" of all

points x such that Q(x,x) < 1, where Q(x,x) = = 2y yXy%y
- 1,3=1 b
is a positlive semidefinite guadratic form.

0
With the notation Q(z,y) = 2

a, .X.y
i 2
1,3=1 4 ivJ

1
QA Huy, Axtpy) =

(1)
APQ(x,x) + 2AmQx,y) + ,u.EQ(y,:sr)-; 0

for all real A spee For A= - =1 this ylelds

2Q(x,y) < Qx,x) + Qly,y).

1, gives

i~

Use of this in (V) when A =1-6, =06, 0¢<86
Q((1-8)x + ey, (1-8)x + oy) < (1-0) Q(x,x) + ¢ Q(y,vy)-

This shows that  Q((i-@)x + 6y, (1-6)x + @y) <1  whenever
'Q(X,X) <1, Qly,v) < 1. Hence the ellipscid is convex.
Certain properties of convex sets will now be listed.
1., If the sets M& are convex CD'Mo( is
also convex.
This follows immediately from the definition of

convexity.
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2. If the sets Mf(gﬂ, .., ') are
convex, then £ )‘3 Myis convex.

P=1
r r %
If x and y are in S \M.; x = = Jox* and
— 85 —§
§=1 §=1
r
y = Z)\gyg for some Xg and yg in M. XNow
_Q=—-1
r
{1-8)x + By = ij,((?-e)xg + eyg).
=t
; §
Therefors Z}S,Mg ig convex if the sets Mp are.

§=1
3, If M is convex and Nq, cees NT

are any sets such that e M, then

by r
Widem, 1f 2 0, =1 enal> 0 (@=1, ..., ).
félf " g=1% o >Y2 8 r

If r= 2, )\1}(% +>&2X2CM ()\1, )\2 2 0, )\; +)\2 = 1)
for all x in N1CM and x° in NEC M because M 1s convex.

Hence >\1N1 + >‘2N2C M. Agsume the property has been proved

forrms—iza Now

AN, + ... % AN
. 1771 =1 =1
ATN‘l + 2N2 + M) + >\SNS = )\1 R +AS-S’1 = {1“&) B XSNS

8
if Z/\gm 1 and )\s + 1. This last condition may be assumed
F=1

without loss in generality. By the induction assumption

1 , -1 .
N r o s e X A, Neq CMAL pCM

55



From the case of r = 2 it followg that R1N1 Foeea XSNS<:M if
-8

N, CM, > ho=

sMs s

The convex hull (M} of a set M is defined to be the
intersection of all convex sets containing M. By Property 1,
it is the smallest convex set contalining M.

y, If N e v ey N are sets such that
Np<M (M eny set), then ZX Ns,,cnvu if
=
o2 | ) ik
0 (0= 1, ..., r; and =

This is an 1mmed1ate conseduence of Property 3 and
the definition of [M}.

. .
Apﬁﬁtx==§:}x9(kzo, §§x§=1)iscaUﬁda

?:
centroid of the polnts X?n

5. The convex hull Mt of & set M
consist of all centroids of all finite gets
of points from M.

That all such centroids are in [M{ follows from
Property 4. To prove the reverse inclusion, it 1s sufficlent
to show that the set of centrolds is convex. Suppose

5 s . :
= EE:XgX? end v = EEQ%yS for some X and y% in M. Then
=1 o=

r s '
(1-8)x + &y = (1-8) éﬁ:{fxg + B ;E%/mfygand hence {(1-8)x + oy
r 1 S|

1s & centroid of X1, cess X5 Y 5 esas ¥
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6. If zelMl, z is a centroid of
linearly independent points of M. (A
gset of linearly independent points in
M contains at most n+i points. )

Suppose z = XGXO + e + X ( 3‘" 3:>y2 0)

where xO, vy x% are linesarly dependent, that is there are

r T r
real numbers /(/(g such that =Z/ugx§m 0, _?{;ofmgm 0 and %J‘fa L 0.

}\ _
Let ~F = M . Th - = £z ana
in en z i { X? /@kx an

\
/%\ 0 f@ I

X /@_2 0. Repetition of this procedure proves Property
6 for any particular =z.

i Irl

7. If M end N are convex geis

M JUN| = g -8 M+ eN
M U K] OSLéJgT ((1-6 )Mol

This follows because every polnt of My Ni is a
centroid of a point from M and a peint from N.

If My is any set and = -
/U ((1-8)M; + eM.l) (i —:3;1, 2, ),
0505

0; = M "W
integer such that 2

141

I/r'\

here k 1z the smallest
k

then M

is greater than or
equal to n+1.

This is & corollary of Property 6.

§3. METRIC AND TOPOLOGY

Iff a perticular coordinste gystem hasg been chosen,

37



the definition

alx,y) =(x, =y )% + oo+ (xymyy)F

gives a Euclidean metric on.Aﬂ(x1, ey Xn)’ This metric

is not an invariant of A" for d(x,y) 18 invariant only under
orthogonal transformations of coordinates. In general

a(x,y) = \l.Q(X;, R X;y y;, y;l)
where xi and yi are new coordinates and Q is a positive definite
guadratic form. Whils this metric is not an invariant of An,
the uniform topology it defines is. From here on it will be
assumed that A™ has this topology. It is convenlent to con-
sider A metrized with a particular Buclidean metric. This
is no actual restriction of generality, but it allows simple
geometric interpretation of the theorems.

9. If M1 18 a non-empty open set of
An'and X1'is 2 non-zerc real number,

X1M1 + ee. H Aer ig an open set for any
sets N%,( Q=2, ..., r) and for Xf
(§=2, ..., r) any real numbers.
CIf ME 18 cpen and k? + 0, X1M1 is also open. Now
)HM1 + N = k} (A?Mz + X). 8ince A1M1 + X is open when M is

¥elN
open, A1M1 + N is open. let N = AEME Foae. * ker‘
10. If M1, e ey Mr are closed sets
and My, ..., M, are bounded, %1M1 Foaa *ATMr
is clessd.



Suppose z is a limit point4A1M1 e 4 XPMP.

1%
+

Then there is a sequence k& = \.x co + erro'(x?vé,M

1 f)
such that iw converges to 2 ag Yoo, Since Mz’ e Mr are
v
¢closed and bounded, it may be assumed that x% converges to

v
some x' inMp for § =2, ..., r. %0 - (kgxa ..+ Arxrlﬁ

¢ .
must also converge, SO %EXT converges to some point X1XT of
1
Nm. ﬂmmﬁmez==%x +==-+Xﬁ$°

If M 1s any set and U is the open unit sphere with
center at the origin of the coordinates,M + ¢U is the €-neigh-
borhocd of M. If M 1s convex, this neighborhood 1s also convex.
If M is closed and U is the closed unit sphere M + €T i3 a
closed e-neighborhood of M.

11. If C is e convex set C is
also convex.

This is true because if x*—»x snd y%—y, the points
of' the line segment joining x and y sre limit polints of the
points on the segments joining x* to yV.

Iet S{(M) denote the imtgrsection of all the flats
containing & set M. This is just the flat with sny maximal
set of linearly independent polnts of M as o basis. The
dimension d(M) of S(M) is called the linear dimension of M.

A point is called a relative interior point of M if
it is intericr to M relative to the topology cf S(M). (Note
that if M is a point, that is d(M) = 0, this pocint 1s 2 rela-
tive interior point of M.) A boundary point of M is called
& relgtive boundsry point if 1t 1ls a boundary polnt relative
to 3(M). Since points of 3{M) are exterior to M relative to
S(M) if and only If they are exterior to M relative to AT,
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ne distinction need be mede between exterior polints and rels-
tlve exterior points.

12. If C is & convex set with
d(C) > 0, then every point of C is a limit
point of C.

If 4(C) 2> 0 end x is any point in C, there must be
'some other point v in C. x is a limit point of peints on the
segment joining x and y. Since this segment must be in C, x
is a limit point of C.

13, A convex set C has relative
interior points.

Let d = d(C) snd suppose XO, o Xd are linearly
independent points of C which span S(C). The d-simplex spanned
by XO, o e oy Xd has interior pointg relstive to 3(C) and hence

C does slso because C contains this simplex.

14, Tf x is & relative interior
point of a convex set C and z is in C,
all points of the segment joining x to
z with the possible exception of z sre
relative interior points of C. If z
is & relative boundary point of C, the
peints on the line through x and z which
are gseparated from X by 2z are exterior
points of C.

Suppose ¥y = (1-8)x + 6z for 0 (. 8 { 1. Let U, (e)

be the open sphere of radius € with center x. If x is rela-
tive interior to C, there is some £> 0 such that Ux(é)fls(C)C(J.

Lo



let z¥ be & gequence of polnts of C converging to z. The set
((Ewe)UX(g) + 8z%) 1s an open sphere of radius (1-6)€ and

center (1-8)x + 6z°. From the convexity of C
W

((1-8)U{e) + 8z”) N S(C) is contained in C. Since z— 3z,
(1-0)x + ezﬁw-—yn Therefore for ¢ sufficiently large y 1s
interior to (1-8)U_(€) + 8z” . Hence y is relative interior
to C. This proves the first statement of Property 14.

| Suppose z is a relative boundary point of € and

y={(1-8)Xx + 62 (8 > 1}, Now z = %y + (v - %)X go that, if y

were not an exterior point of C, z would be in the relative
interior of C by the first part of Property 14. This contra-
diction proves the second ststement.

15. If C is convex, the relatlve
interior of C 1g conwex.

This is a corcllary of Property 14.

16, If C is convex and everywhsre
dense in 3(C), C = S(C).

. This is because a convex set C with no exterior
points in S(C) can have no relative boundary points and hence
is 3(C) itself.

§4. PROJECTING AND ASYMPTOTIC CONES, s-CONVEXITY

A ray Dpx(x + p)} consists of all points (1-8)p + ex
for 8 > 0. - The projecting cong P (M) of a set M from a point

p is defined to be L}fﬁ. (If M = p, set PP(M) = p.) Note
xXeM

that Pp(M) need not be closed when M is closed. For example if

1



M is an (n-13}-flat and p 19 & point outside M, Pp(M) is an

open half-spece through p plus the point-p.

(C) 18

17. If C is convex, Pp

convex (for any p).

This 1s a direct consequence of the definiticn of

DEFINTTION: A set C 1s called
g-convex 1if for every point p not in
C, S(Pp(C))f\C is empty.

18, An g-convex get C has the
property that if xe€ C and ye€ C,
p=(1-8)x + 6y 1s in C for ode{1.

S(Pp(C)) contains the line xy and hence s(Pp(C))(\C

ig non-empty. This shows that p is in C.

Property 18 shows that a s-convex set 1s convex.
Clearly closed and relatively open convex sets are s-convex.
On the other hand en open triangle with one point of the
bounﬂary ad joined 1s convex but not s-convex.

DEFINITION: If M is any set and
p any fixed point, the set of rays px
which are the limit of a sequence of

bt v ¥ .
reys px¥ where x'€ M and X — o0 18

called the agymptotic cone Ap(M) of

M with vertex p.

19. Ap(M) is closed for any M 2nd p.

ko



An ordinary diagonal process shows that a limit ray
of Ap(M) is a limit ray of reys P%, xeM, X-—»c0,

20, TFor any set M and any points
P and g

AgM) = A (M) + {g-D).

J———

This follows because the convergence of px° to §§
88 X%—+o lmplies that d%“ converges to i§'= DX + (g-p),
and conversely.

21. If M 1is any set and p is
any point

Apt) = [ 170 + (o)1

By definitioa.Aq(M} CLPQ(M), Therefore by Property 20
Ap(M)C:Pq(M) + {p-g9) for every polnt q. 3Suppose ﬁ§ ?’AP(M),

There is then a nelghborhood Ne(ﬁi) of rays emansting from p
such that N_(pX) (ss a point set) has a bounded intersection
with M. A point q in N (px} cen therefore be selected so that
(N, (]_:E?}J«é{ﬂ}}ﬂi\f[ is empty. For this g, X@{.W + {(p-a).
This completes the proof of Property 21.

22. PFor s convex set C and
any point p, Ap(C) is convex.

This may be regarded as a corollary of Properties
i7T and 27%. '

. 23. If C is an s-convex set
and p 1s any point of C, A (C) 1is

the set of all rays contained in C.
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Dencte by Aé the cone consisting of all rays emans-
ting from p and contained in C. Obviocusly A;c:Ap(C). let

(ﬁ%) be a rey of AP(C)° Then there ig & sedquence of points

x%¢ C such that x#—~»<w and (pxﬁ)-H»(5§}. Since the segments

px? are in C, (PX)CC. From the Property 18 it follows that
¢
(pX)C C if pEC. Hence Ay = Ay(C).

]

COROLLARY: If C 1s an arbitrary
convex set and p 18 & relative interior
point of C, A (C) ig the set of all rays

\/fﬁontalnedVMg,CﬂfLﬂDAMP e

Apply 23 to the relative interior of C.

Consider the cone Ap(C) (C convex) as & cone of the
linear space of the vectors with initial point p. Ap(C)
then contelins a largest subspace S(Ap(C))with dimension
I(Agp)} (the lineality of Ap(C))“ This subspace considered in

A™ 1s the largest flat in.Ap(C)'containing D.

2k, If C is an g-convex set, C is
the union of 1-flats parallel tc S(Ap(C»,

that is
C = s(A(C)) + [CN s(Ap(C))*}.

By Property 23, Aq(C) for ¢ any point of C simply

consists of &ll rays @% contained in C. Therefore C contains
s{(A_(C)) = S(AP(C)) + {(gq-p). Hence C is just

g
qyc(su-\p(cn + (a-p)).

L



If C is a convex set in three space and 1(ﬁp(C)) = 1,
Property 24 says that € is a cylinder.
§5. DBARRTERS AND NORMAL CONES

Any oriented (n-1) flat F may be described as the
set of all points x such that x'u = Uy where u is a vector

in the positive normal direction tc the flat. If sup x'u < ug
xeM

F 1s called a pound of M and the set M is ssld to be bounded
in the direction v and to be in the "negative"™ half-space of P,

If sup x'u = u ¥ is called & supporting flst for M and the

XeEM
negative half-space of F (the points with x'u uo) is called

OJ

a support of M. Note that 1f u and Uy define a supporting
flat for M, u and uo-+€{ €2 0) define a bound of M in the

direction u. 2 flat which 1is elther & bound or a supporting
flst of M 1s called & bgrrier of M.

25, I1f M-is any set and p 13 a
fixed point, all vectors from p which
are positive normal vectors of barriers of
M through p form a closed convex cone
Np(M), the normal cone of M at p. This

cone is . in the linear space of vectors
with origin p. If the projecting cone
Pp(M) is interpreted as being in the

*
g = M) .
same space Np(M) Pp( )

This equation just states that all the barriers of M
containing p are suppcrting hyperplanes of Pp(M),
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Property 25 id of particular interest when M 1is

~convex and p is a relative boundary point of M. (M) 1s

Pp
R e
not the whole space because the ray p(p-x) contains no points
of Mif p + x is in M (Property 14). This cone has a support-

ing hyperplane, and hence M has a supporting flat through p.

26. If M is eany set, the vectors
from the coordinate origin which are posi-
tive normals to barriers of M form a convex
cone By (MjC (Ag(M))”
BoM) = Ag(M)™.

I#f M is convex

If x'u < u, and x'v < v, for all x in M,.

X*(%u +/uv) g.kuo +/AVO ()2 O’fAQ 0) for all x in M. There-
fore 1f u and v are in Bg(M), hu + ]V (A2 Q,fiz 0) is also.

This shows that By(M) is a convex cone. If the flat defined

by x'u = u_ is a barrier for M, the flat of points x such

o)
that x'u = Max (uO, p'u) is a barrier for M u Ap(M). Hence

the hyperplane of vectors y with y'u = 0 in the linear space
with origin p is a supporting hyperplilene of the cone AP(M)°

»*

Therefore if u € Bg(M), tze(AojM))

Suppose now that M is convex. Iet s = S(A (M) ) |
and 1 = 1(A(M}}. To prove B_(M) = (Ag(M))", it is sufficient
to show that 1f & ray 1is not in B@(M), it 18 not a relative
interior ray of (AQ(M})*. By Property 24, the relative ‘
interior of M is the union of 1-flats parallel to s. If the
n-1-flat defined by x'u = Ug i8 not & barrier for M, the

structure of M shows that there 18 a point y in MNg" (5% 1a
the orthogonal complement of g) such that y'u Ug For a u
not in Bg(M}, such & y may be selected for each Ug * From

)



these y's & sequence which tends to infinity may be chosen so
that the rays é§ {or (y)) converege to a ray 6z (or (2}) in
AG(M)q Since (y) is in s* for each v, (z) is also in s*. In
Chapter T it was shown that the supporting hyperplane to a
convex cone C corresponding to a relative interior rasy of the
polar cone ¢* intersects C only in s{C). Therefore {u) is not
a relative interior ray of A (M) and B (M) = (AB(M))*U

That this equation cannot be strengthened to .
B&(C) =.A®(C)* for C convex is shown by the following example.

In the X, Xg plane let C consist of all points such that

X, 2 1. Then By(C) is the half-open quadrant defined by
X, 2 0, %, < 0. Agﬁo) ig the closed quadrant given by
x, £ 0, X, 2 0. Therefore (Ag(M)) 1s not B(M) but its

closure.
Note that i coordinstes with a different origin ¢

had been used for A", the set Bg,(M} would be a translate of

BL.(M). More precilsely

ot
B (M) = Bg(M) + (@ ~ ).

Property 26 shows that B@(M) determines Aﬁ(M),
but the example above demonstrates that Ag{M)} does not
determine BGﬁM} uniguely.

§6. SEPARATICN THEOREMS

27. If C and D are closed convex
sets with an empty intersection and C
is bounded, there is a support H of C
such that D M H 18 empty. There is also
a support H' of D such that ¢ O H' is
empty.
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Since D is closed there is a point p(x) in D such
that the minimum of the distance from points of D to a fixed
point X 18 atteined at p(x). Because C is compact, there isg
g point g of C such that the distance from g to p(gq) = p is
less than or egual to the distance from any point x of C to
any point y of D. lLet H be the half-space of points with

x'(p-q) £ a'(p-q).

The oriented flat which bounds this halfspace pasgsses through

g end has p-q ss normal vector. If x 1s some point in C
different from q the segment from x to q 1s in C. The short- -
est distance from this segment to p is either llx - pll, the
length of the altitude from p of the trisngle (p,q,x), or

[lg - pll. By assumption the last of these three possibilities
must be the case. For this to happen, however, the vector

X ~ ¢ rnust make sn obtuse or right angle with p - g. There-
fore C ig in H. If H' is the helfspace deflned by

x'(a-p) < p'(a-p) or x'(p-q) 2 p'(p-q)

an analogous argument shows that D is in H'. Since HN H' = §;
HND=H'NC=f and H and H' are the desired supports.

28, If C and D are convex sets
- such that no common point is relative
interior to both C and D, there is in
S{(CuD) a {d(CuD)~1)~dimensional hyper-
plane separating C and D. (i.e. there is

8 vector u and s number Uy guch that
x'u g U, for all x in C and x'u 2 u, for

2]l x in D.)
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The theorem for the cleosures of C and D implies
the thecrem for C and D. Therefore assume C and D are closed.
Suppose X 1s a point in CND relative interior to € and y is
& point in CND relative intericr to D. By Property 14,
(1-8)x + 8y (0<8<1) is a point which is relative interior to
both C and D. By the hypothesis of the theorem this is
impossible. Hence it can be assumed that Cn D contains cmdy MO
reletive boundary points of cne of the sets (say €). If in
particular £ consists of a single point p, CND 1s empty
since p is relative interior to C. This case when C is &
pecint disjoint from D is covered by the lest theorem. Assume
therefore that d(C)} > 0. Define

‘I -
Cp =1 - 0 + )N T Y (w=1,2, ..., )
where p is a2 fixed pecint and Up(wj is the closed sphere of

radius ¥ and center p. Cyg is just a linear contraction with
center p of the pert of C near p. Choose p e3 a relstive
interior point of C. Then Cy 18 in the relative interior

of C by Property 14. Therefors CpNnD 1s empty. Theorem 27

asserts that there is & hyperplane defined by I’ = ug

gsuch that X’uwg ug for xeCp and xru? > ug for x€D.
o
o}
Suppose the vectors W’ had all been normalized to length one.
Then s subsequence of the ¥ could be selected so that the
corresponding u¥ converge to a vector u and the corresponding
xtu 2 U, for a1l x

In particular p'uﬂug u. < q?uﬁ (g any point of D).

ug' converge to a number a, - For u and u

inDand x'u g uo for all x in the relative interiocr of C.

03
It immediately follows that x'u u, for every x in C.
If D is just a single relstive boundary point of C,

Theorem 28 states that there 1s a supporting hyperplane of C

LG .



through this point.

e

29. For any set M, [M{ = Ig = Tyg =Ty

where 1 1s the intersection of all the
supports of M, Ibd is the intersection of

the half-gpaces on the same side of a bound
as M, and I__ is the intersection of all

half-spaces on the same side of a harrier
as M.

Py ——

Clearly | ic:Ibr§ZISCZIbdn If p is not in Mi, by

Theorem 27 there is a support of M (defined by x'u uo) which

does nct contain p. For € sufficiently small, the hyperplane

defined by x'u = u_ + € is a bound of M which separates M from

@]

p. Therefore p ¢ Tq end M} = T =T =Ty,.

30. [M]D> (M| for any set M and
iM] = |M] if M is bounded.

—ert

That iM]> M} is obvious. If x 18 in M},

X

Lim é Ao (A2 0 Z M= 1, x5 € M) for a rixed

§ M) because of Property 6 3ince M is bounded a sub-

"
sequence may be selested so that xy-—~*-x s _@p AY Therefore
r
= 2 )\exg
§=0

——

Stnce xfe M, x € M| and M} = {[M].
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§7. CONVEX HULL AND EXTREME POINTS

51, If M is any set and H is any
supporting hyperplane IMNH| = MINH.

Clearly IMNHI CMINnE. If I is the interior of
the support of M bounded by H, the convex set I viMNnH]DM.
Therefore I vi{MNH} D M} and

MNHl = {((TviMoH|] )AHI = (Iy MnH})AHDIMINH,

32, I1f C is & closed convex set
which is neither a flat nor a half-
flat, then C is the convex hull of
1ts relative boundary points.

Let p be any relative interior point of C. It ig
sufficient to show that there is in 3(C) & line L through p

which has no other point in common with Ap(C}n For, then

CnL is bounded and L contalns twc relative boundary points
such that p is on the segment determined by these polnts.
if d(ﬁp(C} { d{C), there is clearly & line through p which

has no other point in common with Ap(C}u If d(Ap(C)) = d(C),

Ap(C) is neithef a flat (beceuse C would equal A_(C) and be

b
a flat) nor a half-flat (because C would be a half flst).

This means 1(Ap(C)) < d(Ap(C))-men Since in S(Ap(C)) = S(C).
there is a support to Ap(C) which has only S(Ap(C}) in
common with AP(C)3 there ig & line L in 3(C) with the

required property.
' A point of a convex set is called an extreme point
if it is not interior to any segment in the convex set, that
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1s, it 1s mot the centroid of other points of the convex set.

33, A closed bounded convex set
1s the convex hull of 1ts extreme points.

This is cbvious in one dimensicn. If C 1s n dimen-
gional and p is & boundary point of C, there 1s a supporting
hyperplane H of C passing through p. Now the extreme points
of the n-1 dimensional closed bounded convex set CNH are ex-
treme points of C. This is because any segment not in H
containing a point of H as an interior point would have to
plerce H, i.e. have points on both sides of H. From the
theorem in n-1 dimensions, ;t follows that p 1s & centroid
of extreme points in CnH. Therefore the relative boundary
of C ig in the convex hull of the extreme polnts of C. By
Theorem 31, C itself must be in the convex hull of its ex-
treme points. This completes the inductive proof of
Theorem 33.

§8. POLARITY IN THE PROJECTIVE SPACE

DEFINITICON: A point set C in the pro-
jective space is called p-convex 1f it has
the following properties:

1) C is not the entire projecti&e

~ Spece but not empty.

2) C 1s connected.

3} Through every polnt not in C there
is a hyperplane which hass no points in common
with C. ‘

A hyperpiene set |© in the projective space
is called p-convex if it has the following
properties:

52



1} "does not contain all hyperplanes
of the projective space but is not empty.

2} {7 is connected.

3) In every hyperplane not inl" there
is a point which is in no hyperplane of [ .

Iet C be p?convex and choose any hyperplene cutside
C as the plane at infinity. Then C is an s-convex point set
in the affine space. PFor let x and y be any two points in C,
and suppose there were a point z on the finite segment xy
which 1g not in C. Then there would be & hyperplane through
z which does not meet C. This hyperplane (together with the
plane at infinity)} would separste x and vy in contradiction
to the gssumption that C is comnected. Hence, C 1s convex.
Let p be any point not in C. There 18 a hyperplane through
p not intersecting C. Now this hyperplene bounds & support
to F;T@T} hence it contains S(F;T§?3° This proves the

s-convexity of C.

Conversely, every s-convex point set in the affine
space 1s p-convex in the ﬁrojactive gspace obtained by ad-
joining the plane at Infinity. For, the points at infinity
do not belong to C and they are in a hyperplane which does
not intersect C. € 1s obviocusly connected. Through every
exterior point of C there is a bound to C. Through every
point y€C but not in € there is a supporting hyperplane
which has no points in commeon with C. This is true because
'§§Tﬁﬁ'has a supporting hyperplane which intersects ?;TﬁT

only in s(Py(C)), and s(Py(C))f1C ig empty.
34, If C is a p-convex set, the

get | of all hyperplanes which have no
point in common with C is p-convex.
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35. If {7 is a p-convex hypsrplane
get, the set C of all polnts which are
in no hyperplane of I i3 p-convex.

PROOF: The two statements are duals of each other;
hence it is sufficient to prove one. Let C be given and
denote by [ the set of a1l hyperplanes not intersecting C.
Since C is not empty [ does not contain 21l hyperplanes.
Choose one of the hyperplanes of [7, as the plane at
infinity. Every other hyperplane of | then is s barrier to
C. Since the barriers form a convex set and since there are
berriers which are arbitrarily far away,‘“'is connected.
Every hyperplane which is not in (" contains & point of C and
no hyperplane through this point is in | .

Obviocusly the set of 211 those points which are in
no hyperplane of | is exactly the original point set £. Hence
the sets C and [’ determine each other in this simple way.

Consider any such pair of sets ¢, I and apply any
correlation { = Ax. Then ™ = AC and C* = A' '™ form
another pair of the same kind. If the correlation is in-
volutory, that is if A = + A', we have

In the cese A = A', C* is called the polar body of C with
respect to the quadric x'Ax = 0. By means of the bilinear
equation X'AX = O the polar body C* of C is determined as
followg: For each fixed polnt x é C this is the equation of
8 hyperplane in [“*, and C° consists of all points x" which
are on no such hyperplane.

Let



and choose X, = 0 as the plane at infinity. Then the bi-

linear equation is

The origin corresponds to the plane at infinity. In the
*

euclidean space, putting X, =X, = 1, we have the polarity

with respect to the unit sphere. To a bounded convex set C
with the origin as an interior point corresponds a ¢* with
the same properties. If C is open c* 1s closed and conversely.
The closures of C and Cf obviously determine esach cther, and
this gives Minkowski'ts polarity for convex bodies.

Iet C be a closed convex cone whose vertex ig the
origin. Then ¢* is the polar cone of G in the forwmer sense,

if it is defined by means of | = AC. Otherwise the origin
has to be added.

Replace now . 1n by n+t, denote the homogeneous
coordinstes hy Xos wess Xy By and consider
00 ... 0 =1
01 ... 0 O
A = - o
00 ... 1 0O
-1 0 ... O @
The corresponding bilinear edquation is
Z*-* ¥* * = (.
Xq Xy 2+ KX o+ oo+ XX

This is the polerity with respect to the paraboloid of

revolution 2z = X? 4+ oes + Xi. if the inhomogeneous co-

ordinates are interpreted as rectangular cocordinates. The
infinite point of the z—axis, that 1s, the point with gll
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= 0 and z = 1, corresponds to the plane at infinity,

x, = 0. To all other points at infinity correspond hyper-

planes parallel to the z axis. The origin corresponds to
the hyperplane 7 = 0. If a convex set C has an asymptotic
cone which containg the positive z—axisf'the polar set C*
has the same propsrty. For a closed convex cone C whose
vertex 1s the origin and which contains the positive z-axis.
the polar set ¢* is a half-cylinder generated by open half-
lines whose end points make up a closed convex set in z = 0.
This polarity is especially useful in treating convex
functions. |

¢ ol bubach B tggahot 2 -6
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CHAPTER TIII

CONVEX FUNCTIONS
i. DEFINITIONS AND ELEMENTARY PROPERTIES

DEFINITION: Let D be a convex setbt
of An(xl,ﬂ..,xn). A real-valued function
f(x) defined for x in D is =aid to be
convex in D Aif '

£((1-8)x + 6y) ¢ (1-8)f(x) + of(y)

for 091 and x and y in D. If
< 1is always valid for 0 <6< 1 and X
and y distinet points in D, f(x) is

said to be strietly convex in D. A func~-

tion f£({x) 4is called concave (strictly
concave) if -f£(x) 1is convex (strictly
convex).

If f£(x) is a function defined in the set D of

n 1’l+l(x

A7, the set of all points in A
x =(%y,...,%,) is in D and z » f(x) will be denoted by
iD,f1.

l,,,.,xn,z) such that

For each of the properties listed below the domains
of the functiong are always assumed to be convex unlesgs a
contrary assumption ig explicitly made.

1. The function f£(x) is convex

in the set D 1if and only if the set
[D,£] 1is convex.
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If f£(x) 1is convex in D and (X,Zo) and (Yszl)
are points of [D,f],

(1—9)z0 + 0z, > (1-e)f(x) + of(y) 2 £{(1-6)x + Oy).

This means the point ((1-8)x + ey, (1-8)z  + ezl) is 1n
[D,£f]. The proof of the reverse implication is even more
obvious.

2, If f(x) 4is convex in D and
X=My+ b where M dis an n by m matrix
and b is a vector of A", then f(My+b) is
convex in the inverse image of D, that is in
the set of all vy = (yl,...,ym) for which
My + b € D.

&
This is true because

O

FM((1-0)y° + 6y) + b) = £((1-8) (My°+b) + o(Mylp)).

3. If fg (x), p=01,...,r, are convex
functiong in D and Ar > 0, the function

T
S Aofe (x) 1s also convex in D.
20 5T

This follows from the rules for adding inequalities.

k, 1r f(x) 4is convex in D,

XP & D, )\f > 0, and f%o )\f= 1,
f(ré Ao =) éin Ap £(xF).

The definition of convexity says that thisg i1s true
if r = 1. IT AO = 1 the statement is Trivial. Suppose
r .
Ao < 1, Because of 1 - Ao = % A,, Property 4 for r -1
=1
and 1 vyields f

58



il
Hy
>

@]
e
(@]

.+-
-

3
D

O
M
)
po
b
I.-B

r
M x§
£ EO X )

f fv%i o
< AfE) + (- Ag) 203 )
p= o
¢ AFGC) 4 (1- Ay B 2 e(xT)
o) o p=1 l—,Aa
= g %rf(xf’),
£=0

Property 4 follows by induction.

5, A function f{x) is both con-
vex and concave in D if and only if
it iz Zdinear in D.

The sufficiency of the condition is obvious. If
f(x) 4is both convex and concave in D, Property 4 applied to
f and ~f yields

r r e
(*) f( = %fxe)m p /\593‘.‘(}: )
P=0 5’3=O
r
for /\f’ 2 0, A ’\f”” 1. If r equals the linear dimengion
of D and the points =xf are linearly independent, (*) shows
that f dis linear in the simplex with vertices x7 .
r 53 r
Suppose now that x = Z,/@fx s b /MT== 1, is any point
p=0 p=0
of D. Application of (*) to the point =x and the centroid
r
?%T = X? of the simplex gives
=0
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Ir
- (1-8 £
£( § (;;j + 9/%f)x )
=0
- (7 1 £
= (1-8) f(r+1 2 } o+ ef( z /cf
f#—O
for 0 < © < 1. Since the point Z (r+1 + Q/gf) o is in

£ =0

the simplex with vertices xf for some © suffilciently small,

it follows from (¥) that

r r
1-8 £y 1-8 i
fS’Z ,(rﬂ + e/af)x ) _fi (r+l 4 Q/uf) £(x7 ).
Thersfore
s (29,5 ) £(xF ) = A28 5 f(xf)+ef(z
P =0 r+1 /A% r+l.f -0 Ap *
and

P02 4xf) = 2 4 £(xF
oo/t oo

6. If fp(x), Y= 1,2,..., are con-

vex functions in D and fy(x) converges

pointwise to f(x), £(x] is also convex
In D.

This 1s because the inequality defining convexity in

D for f(x) 4is the limit of the corresponding inegualities
for fp(x),

7. If f, (x), where & runs through
any set, are convex funections in D, the
set of all points x of D at which
sup fu (x) 4is finite is convex and
sup ﬂx'(x) igs a convex function in this
set.
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Define %(x) = Bup £ (x) where this supremum is

finite., Let x and y be any two pointy for which %?p ﬂx
is finite - Then

£ ((1-8)x + 8y) < (1~@)ﬁx (x) +6f, (v)

< (1-8)g(x) + ea(y).

This shows that sup £{(1-6)x + 6y) is finite and
g((1-8)x + @y) £ (1-8)g(x) + ea(y).

8. If f£(x) is convex in D
and gD(t) is a monotone increasing
convex function over an interval which

contains the values of £(x), QD(f(x))
18 cenvex in D.

From the convexity of f and the monotone charac-
ter of @, and from the convexity of @

@(f((1-8)x + 6y)) £ P((1-0)f(x) + o (y))

A

(1-8) p(£(x)) + 6 @(£(y))-

9, If f(x) is convex in D
and D' 1is a compact Bet in the rela-
tive interior of D, f{(x) is bound-
ed above in D'.

Cover Dt with g finite number of clcosed simplexes
contained in D. - Every point x of D' is a centroid of

the vertices of any simplex which contalns it.

By Property
4, r(=)

iz lessy than or egual to the maximum of f(xi)
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as x* ranges over the vertices of a simplex combtalzning x.
Since the nuwber of simplices is Findte, £{x) is bounded above
in DY,

10, If f(x) is convex in D, it is
bounded below in every bounded subset of D,

Let x° be a fixed point relative interiocr to D.

Select a positive ramber & so small thabt, in the flat spanned
by D, the closed sphere K about =x° with radius & is in
the relative intericr of D, For arn arbltrary pceint x  in
D, dencfe by y that point ¢f the line Joinlng x and x
which does not separate x and x° srd which 1s a distance &
from x°. This definition insures that vy € KC D, From the
convexity of £ 1t fullows that

tx).< ﬁ'g“f(?@} + “S‘;‘%f(y)

a

where p derotes the dlstance \\memn . Herce
Sf{x) x (p+8)flx) - p£ly)s

Since K iz compact and relative intericr o D, £{y) isg
bounded above (Property 9). Femece £(x} is bounded below
for JD bowded.

1l. If fix) iz a convex function
in D which attalins a waxinum value at a
relative interdicr phint of D, then
f(x) is zowmstant in D,

Suppese f£{x) has a maximum at a relative interior
point x°. If x is ary point of D, for some sufficiently

small pogitive n the point = (1+~Q}xc ~pE iz algo in D,
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Because f(x) g £(x°) and fl(y) g £(x°),

£(x°) = £lgper x + T'J?’z" ¥) < ﬁ% £(x) + 5 1) < £(x°).

Hence f(x} = £(x°).

Thizg argument also ghows that a convex function canmot
have a local maximum in a relatively open nelghborhood unlese
f{x) is constant in that neighborhcod. If this does happen,
the next property shows that this congtant value must be an
absolute minimum of f{x).

12. If f(x) 4s convex in D,
f(x) has at most one local minimum.
If there 1s such a minimum it is an
abgolute minimum and is attained on a
convex set.

Suppose there 1z a local minipum at x°. For any
point x of D,

£(x°) < £((1-8)x° + ox) g (1-8)F(x°) + of(x)

if e 1s a sufficlently small positive mumber. Hence

£(x) > £(x°) ana £(x°) 1is the absolute minimm of f.

Tr x° and x* are two points at which £(x) attains its
minimum Valuel/z,

1)

< £{(1-8)x% + ext) < (1-)£(x°) + er(xt) = L.
Ms hS /<

Hence £ also attains 1ts minimum at (lmﬁ}xo + @xl,

13, Let f(x) be a vonvex Func-
tion defined in & gset D whic¢h con-~
tains a flat F. Iﬁithere exists a
(non~homogeneous) linear function
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F(x) in A" such that f£(x) ¢ £(x) 1in
F, then f{x) -« f(x) 1s constant in F
and in every flat whlceh ls a translate of

F and is in the relative imterior of D.

The function gl(x) = £(x) - £ {x) 1is convex in D

~and non-positive throughout F. If x° 15 a fixed point in

F and x ds any other point inm F, the points xd =

(1-A)x0 + Ax arein ¥ forall A . If A > 1 the con-
vexity of g(x) implies that

g{x) ¢ {1 - %)gixo) + wifg(xA )< (1 - %)g(xo)o

Letting ) —¥ co gives the relaticn

gl{x) g g(z°).

If A< 0, it follows from the convexity of g(x) that

A
g(:%) ¢ TEret ) + xoge() g 2.

Letting A —> - co shows that
g(x) » 2(x").

Henece g(x) 4is ccnstant over F. Suppose that for the vector

v the translate, F!' =F 4+ v, of F 1ig relative interior to
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A

D. Select )\ > 1 so large that the point x° +

A -1
is in D. With x and x A as before, the definition of
convexity applied to the points x° +-_§T » z° + v, and
xA gives

g (x+v) < (1 —nxdg(x + Aklyﬁ +-Xg( ‘K) < (1~ )g(xo%-jgfiv).

By Property 9 g 1s bounded above in a neighborhood of X0 + V.

Hence, (1 - %Jg(xo+ )fllv) is unifermly bounded above for

all sufficlently large A . Thus g{x+v) is bounded above
for x € F, that is to say g 18 bounded above iIn Ft.
That g 1is constant on Fl fellows from the first part of
the theorem applied to the fungtion g in the flat Fr.
Property 13 is also a consequence cof Chapter i1,

Property 24 applied to the set [D,f].

14, Iet f(x) be conmvex in D and
let p be & relative intericor point of D.
Agsume that f(x) is linear on each of
finitely many (finite or infinite) seg-
ments In D which have linearly inde-
pendent directions and which have p as
a common irterlor point. Then f{x) is
linear over the convex hull of these

gegments.
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There is a (rnon-hcmogeneous) limear function . (x)
in A" which is identical with f(x) along the segments. Hence,
the convex function gf{x) = f(x) - £{x) vanishes cn the seg-
ments. Now every point x of the convex hull of the segmernts

may be writben

P . r .
x = 5 A xF, Ae20, = A.=1,
p=0"Ff f £

with polnts xf belonging to the segments. Hence, by Property

r
glx) < = A e(xf) =o0.

But p is a relative interior point of the convex hull and

glp} = 0. Therefore {Property 11} g(x) is identically zero

irn the convex hull ¢f the gegrents.

DEFIKITION. A function f{x) defined
In a cone D with the origin as vertex 1is
said to be pogitively homogernecus {(of degree
1) in D if f£{Ax) = A £(x) for every
x €D aad all A > 0.

15. A positively horogernecus function

f{zx) in a convex cone D is comvex inm D
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if and only if

f(x+y) & £(x) + £(y)
for every x and 'y in D.

Convexity of f(x) implies

1 1 1 i 1
-é-f(x:+:yf) = f(—E*X + gy) < 'é"f(x) + ~§I‘(y).

On the other hand thils inequality implies for 0 £ © 1
that

£((1-0)x + 8y) £ £((1-6)x) + r(6y) = (1~-6)f(x) + of(y).

Important examples of posgitively homogenecus con-—

vex functiong are the support functions ¢f point sets in AR,

DEFINITION, ILet M be an arbi@fary
point set in A", Dencte by B(M) the
convex cone with the origin as vertex
consisting of all vectors & such that
M 1is bounded in the direction &

(Chapter II, Section 5). The function

lﬁw(§ ) = stpm_x*g
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defined in B{M) is called the support

function of M.

That hM(E) ig positively homogeneous in B(M)
clear. That it is convex follows from Property 7.

Obviously, by(&) g__hm(g) in B(N) if MC N.

I |g|l =2 hyl(¥) 1s the distance from the
crigin te the supporting flat of M with positive normal
vector E . Thus, hm(s) determines all the supports of
M. The converse holds because hM(g‘) is positively homo-
geneous. Therefore M and fﬁ? s the clogure of the con-
vex hull of M, have the game support function. Also two
sets” M and N have the same support function if and only
ir M} = [NY.

Let M be a point set with the support function
k@ﬁ ¥) and A a real number. Then the set A M has the
support function )\h,M(E) defined in B(M) 1if A > O,
and the support fumction -Aly(- E) defined ih -B(M) if
A < 0.

If M and N be point sets wilth the support
functlons hy(¥) and (%), the set M + N has the

support function
hM—é—N(E) = M(E) + hN(E)
defined in BM) N B(N}. This follows because
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sup  (x+y)' €& =sup (x'E+4y*E) =sup x'§ + sup y'§.
X+y € M+N XEM xe M - . YEN
vyEN

2. CONTINUITY AND DIFFERENTIABILITY OF CONVEX
FUNCTIONS OF ONE VARIABLE

The case of a convex functilon 9D(t) over a convex set
D of At (~o0<t<0o) will now be considered. Here D must
be an interval (open, closed, or half-open, possibly un-
bounded). If x #y and € #0 or 1, the inequality used
In Section I fo define convex functiong ls equivalent to

t,-t ta-t
Plta) S g Ploa) + gy P o)

for any three points t; < t, < t3 of D. If x =y or

2
© =0 or 1 the inequality of Section 1 is valid for all
functions. Hence the present inequaiity is no weaker than

the previous one.

6. Ir §9(t) is convex in D

tE“tl = .t3~t1 = t3—t2

for tl< ty < t3. Conversely, if one
of these inequalities is satisfled for

all tl < £, < t3 in D, the function

2
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cp(t) is convex in D.

The first iredquality of Property 16 follows from the
defining inequality above by subtraction of 99(’51) from both
sides and divisicn by t2 ~ tl‘ Reversal of the steps proves
the oppeosite Iimplication. Similarly the second inequality of
Property 16 is alsc eguivalent to tﬁe defining inequality.

Property 16 shows that 9ﬁ(t+h);90(t) 1s monotone

deoredsing as h —> 4 0. Hence, the right hand derivative

1) = . Ptth)- (L)
Patedm, B

exists and 1s elther finite or -o00. Similarly the left hand

derivative

Ple) = m PR

—% + 0
exists and is either finite or +o00. From Property 16 it

glsc follows for an interior point t o¢f D and a

sufficiently smail & > O that

L i § 1
P le-E) <P (8) L PLlE) <P (B+E).
Since q?j_ < 00 and @l » -00 , beth derivatives are findte

at sny interdcr polnt of D. This Implies the continulty of @

in the interlor of D. Furthermore, at arny peint where one of
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the derivatives ig continuous the two derivatives agree, l.e.
go(t) has an ordinary derivative. Since both derivatives
are monotone increasing functlons, they have af most a de-

numerable number of Jump. discontiruities. For & sufficient-

1y small fixed h # O, 99(t+h3£5”(t) 15 contiruous in an
arbifrary cloged interval Intericr to D. Therefore

9Oi(t) is the 1imit of a decreasing sequerce of contlnuous
functions and congequently is upper semlcontiruous. Similar-
iy goi(t) isg lower semicontinucus. The combinatlion of
semicontinuity and monotonelty shows that qD;(t) 15 conbinu-
cus from the right and qﬂi(t) 1s continucus from the left.

These facts may be suwmmarized as follows:

17. If 9o(t) is & convex function
in an interval D, at every lnterior polnt
ef D 1% is continuous and has finifte one-
sided derivatives 9Di{t) and 90;(t).
Theme derivatives are monctone increasing
funetions which have identical valueé
everywhere except for-an at nost denumerable
number cof polnts where they bobth have
Jumps. The value of ?Di(t) at & jump
is the left hand limit, while the value
of ?Qi(t) 1s the right hand Iimit.

18. If qﬂ(t) is a donvex function

in D, qgﬂ(t) exists everywhere in D
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except on a set of lebesgue meagure Zerc.

Where it exigts 1t 1s rnon-negative.,

Thig follows from the Lebesgue theorem that a monotone

furction has a derivative almost everywhere,

19. A function gﬁ(t), which is
continucus in an interval D ard iy twlce
differentiable in the intericr of DI, is
convex in D if @"(t) » 0 for all t

in the interior of D,

Ascording to 16 it only has to be shown that

to~t -

37tz to~ty

HA
o

for any tl < tE < t3° Thisg 18 true, because repealbed applica-
tion of the Theorem of the Mean shows that the left hand side,

apart from & pogltive factor, eguals some value of 9D"=

20. Uuder the same assumptiorg #s in Property
19 P(t) is strickly convex if and only
if ?9“(t) 2 0 for all % in the interlor
ef D, but is not ddentically =zero in ény

(non-trivial) subinterval of D.



Property 20 is equivalent to the fact that cp(i:-)
is convex but not strictly convex if and only il 1t 1s con~
vex in D and linear on some sublinterval of D. Here the
latter condition is obvicusly sufficient. 7That it is nec-
eggary is seen in the following way. If go(t) is convex
but not strictly convex there are values tc_ and tl such
that

Y(e) = p((1-8)5, + 8ty) - (1-8) @(t,) - e p(ty) £ 0

for 0<© <1 and }b(@o) =0 for some 8, 0 <8 < I.
This means that the convex function }/4(@) has a maximam
at @, and is, therefore, comstant (Proeperty 11).

The behavlor of a convex function @@(t) at the
endpolnts of its domalir D may be descrdbed in the follow~-
ing way: @(t) is monotore either ir the whole of D or
in each of two complementary subintervals of D separated
by a point at which gzﬁ(t) is a mivimum (Property 12).
Hence, as t approaches an endpoint e of T, gﬁ(t) has

a Finite or infinite 1limit. If e 1ig finite, lin @t)>~og .

T — e
becauge of Property 10. If e Dbdeleongs to D, the convexity
of 5;0(?:) implies 1im  @(t) £ @(e). On the other hand,

t—> e ‘ _
it is e#isy to see that rp(e} sway be given an arbitrary
value satisfylng thls ireguality without viclating the con~
vexity of @(t). It is ofter converlent to redefine D
and 5}9(’5) in the following warmer: If e 1is an endpolnt
of D belonging to D, change the value of P at e, i

necessary, go that sD(e) = 1im {t}. If e 4is a finite
L o> e
endpoint of D not belonging tu D, and if  lim @ (%)
t —> e
1g finite, adjein e to D and defin (P(e) = lim 90(1:).
t —> e

By these inespential changes a convex function ?D(t) Cisg

obtained which ig cormtinuous in the whole interval D of
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definition and g;a(t) —> oo as t approaches a finite end-

point of
properties
convex set

D which ig not in D. For a function with these
the set [D, #] is closed. Conversely if the

D, #] 1is closed, ¢ is such a function.

3. CONTINUITY PROPERTIES OF CONVEX FUNCTIONS

OF SEVERAL VARTIABLES

21. Suppose f£(x) 1is a convex func-
tion over a convex set D of A" and DI
is a compact convex set in the relative
interior of D. Iet & > 0 be such
that the closed relative § -neighborhood
D" = D! + & T of D' is also in the
relative interior of D. Here U denotes
the closed unit sphere of that subspace
through the origin which is a translate
of the minimal flat containing D. Iet
M and m be numbers such that
mg f(x) <M in D" (Properties 9 and
10), Under these conditions

'f(x+y) - f(X)i < “Egéfjg“ ilyi{

for any x € DY and any vector y Ifor
which x 4+ y € D".

If y = 0, the statement is trivial. If y # O,

consider the function f(x+ty) of the real variable

fixed x e D', y& 8(b) - xg
least in the interval -~
east in the intervy ~7T§ﬂm

e

16 it follows that for C < t < 5T

T4

t for

Thig is agponvex funection at
£t < uﬂm“w-u From Property
+ LR 3{‘
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b

F(x)-2(x = —=7)
N

Flxsty)-0(x)  2(x + 7 Ory)-£(x)
t 2 5
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Hence

’f(x%ty) ; f(x)’ < M g mﬁ”y” .

If ”y” < &, the value ane may be substitubed for +t. The
irequality obtained is cbviously alsc valid when ']y}l > &
provided x + y € D%,

The inequality in 21 ghows that £ gatigfies & uni-
form Lipschitz conditlon in DY, Hence a uniformly bounded
family of convex functions over the domain D" is egquicontinu~
oug in DY, From thls follows

22. 1If a set of convex fumetions
over d relatively open comvex get D 1s
uniformly bounded in every compact sub-
set of D, a seguence of funstiocus may
be selected from this met so that the
gequence converges in D tc a couyex
functlion. Moreover, thig convergence
1s uniform in any compact subset of Do

An immediate congequence of 21 is
23. If f£(x} is comvex iz D,
it i1s centirucus In the relative iu-

terior of D.

The behavior of a convex functlion at the boundary of
its domaixn is essentlially described by

o

siju
5

2. If f£(x) is couvex
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and v is a relative boundary peoint of D

1im  £{x) > - ce
X —2> ¥

If y&D

lim  £(x) < £(y).
K > ¥ -

The first statement follows from Property 10 and the
gecond 1z true because

1im  f£(x) € 1lim £{(1-8)x° + oy)

K e——p Y 0 ——> 1
< um o ((2-9)r(x°) + ef(y))
o —> 1
= £{y)

ig valid for any fixed x° € D.

Letg
‘XE + X2
1272 .2x2

for x, > 0 and define £(0,0) to be an arbitrary non-negative
number. Then f 1s convex over the half-plane X5 > O plus

the origin. Now 1im f(x) = 0 while Iim f(x) = +o00.
x —» 0O x —>» 0

This example showg that "1im" 4in 24 cannot be replaced by
"1im" and that the inequality cannot be strengthened.

25. Let f(x) be convex in a rela-
tively open convex sat %ﬁ Denote by D
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A function obtained in the way described in 25 has
the properties given in the

DEFINITION: A convex function f(x)
defined in a convex set D is called

closed if l1im f(x) = 00 for every
X —> ¥
relative boundary point y of D which

is not in D,. and lim f{x) = £(y)

for every relative boundary point y of
D which ig in D.

A closed convex function may be obtained from any con-
vex function by removing the relative boundary point§of its
domain and then extending the function in the way described in
25.

26, If f(x) in D 1is & closed

convex function 1im f£(x) = f£{y) where
X r— Y
¥y 1s any point in D anéd x approaches

y along a segment belonging to D.

ILetting x approach vy along the segment from x°
to y 1s the same as allowing © to approach one from below
in the expression (1-0)x° + ©6y. Since

£((1-0)x° + oy) < (1-0)£(x°) + ef(y),

Tim  £{(1-9)x° + 8y) < £(7)-
0 —> 1

On the other hand, f(y) = 1im f(z). This proves the
statement.

27. A convex function f(x) in D
is closed if and only if the set [D,f]

of An+1 is closed.

78



the get obtained by adding to Ef
all relative boundary poinks vy

for which lim f£(x) < o@ .
K ey Y
Define

f(y) = Lim £(x)
X iy
'avl
for y in D bub not in D
and X in '52 With these defi-
nitiong D is convex and f{x)
iz a convex function in D.

Ir yo and yl are any two points of D, there

o] 13 . .
are sequences X + and X 1, 1= 1,8,6.0, ©Of points from

such that x%t —> yo, Xll s yl and

1im f(XOi) = lim £(x),
i 00 x>y
. 11 .
lim  f£(x77) =  1im 1 f{x}.
i —>o0 X =3 ¥

Now for O é ] g 1

£((1-0)x°F & ext) ¢ (1-0)r(x°1) 3 er(z*t).

e

Hence

1im £f(x) g lim f((l—Q)XOi + exll)

oemhmmptel

x —> (1-6)y° + oy! T e

< (1-6)£(5°) + of(y}) < oo.

This shows that (1-8)y° + @yle; D and that
1
)

£((1-6)7° + oyt) < (1-0)£(y°) + e£(yt) .

Ie4
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Suppose the set [D,f] in AT 4 closed. Iet

¥y be a relative boundary point of D and xé‘é D a sequence

of points converging to ¥y such that 1lim f(xi) e
i ——F oo
lim F£{x). If this lim is finite, the sequence of points
X —> ¥
1 i _ .
(x7,f(x")) 4in [B,f] converges to the point (y, 1im £(x))

X —— ¥
in [B,£]. 'This means that y €D and £(y) < Lim £(x).
x>y
From 24 it now follows that f£(y)} = lim f(x). Conversely,

X —> ¥
suppose the function 1s closed. ~Conslder any sequence of

points (xi,zi) in [D,f] which converges to a point

(y,2)s, Since zs 2 £(x*), =z » 1im f£(x)., This implies
- T X —>y

yeb and z» £(y), that is (y,z) € [B,f].

4, DIRECTIONAI: DERIVATIVES AND
DIFFERENTIABILITY PROPERTIES

28. If f(x) 4is convex in D,
the "directional derivative®

fi{x;y) = lim
t > 4+ 0

fxt+ty) ~ £{x)
t

exlstsg and 1s elther finite or -~ oo

for any x 1in D and any vector ¥y

such that X + y 1s in the projecting

cone P_(D). For a fixed x,

fi(xyy) 4is either finite for all vy

in the translate P_{D) - ® of the

projecting cone, or it ig ~co for all

relative interior vectors y of

P.(D) - x. When f£f(x;y) 1s finite

in PX(D) ~ %, £'(x3y) is a positive-

1y homogeneous, convex function in
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PX(D) -~ ¥%x. IF x 1s relative interior o
D, the con Px(D) ~ x i a subspace and
£i{x3;y) is finite fer all vy in this sub-
space.

The above 1imit 1s the right hand derivative at t = 0
of the functlon f£{x¥ty) of t which is defired and convex
at least in some interval O < ¢ < b. Thus the 1imit exlsts
and iz <oco (Property 17). If x is relative interdior to
D, f£{x+ty) 4is defined and convex in some interval containing
t =0 in its intericr and, hence, F£'(x;y) is finite.

It A> O,

£l{x+ Aty) - F(x) _ A Flxt+Aty) - £(x)
: i - At ‘

Herwce
(¥*) Fi(xs Ay} = ATV {x:y)

for X > 0. This eqguation is clearly alsoe valid for A = 0.
If £7{x;y) = -oc0 for a partiszular y, %t must be infinite
on the ray generated by v in FX(D} - x. If y° and yl
are in P_(D) - x,

£latt (%)) - £(x) | rGieets®) + S(eetyl)) - £(x)
2 .

T

£(zrety®) - £(x) +_f(x+2tyl) = £(x)
2t 2%

(17N

If Fi(x3y) 1z - 00 on any ray (y°), it wow follows that
it must be =00 on every ray whick is strictly between (yo)
and ary other ray (yl) of P_(D) -~ x. In particular
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f'{x3y) = =00 in the whole relative interior of PX(D) - X,
If ff'(x;y) for the x consldered is =-oo for no y, the
above in@quaiﬂ}' gives f*(x;yo+y1) < £ (x3y°) + f*(x;yl),
This combined with equakiown (¥) shows that £Y(x:;y) is a
positively homogeneo&s, convex function of ¥y in the cone
Pﬁ(D) - £ (Property 15).

That £'(x3y) need not be - oo on all relative
boundary rays of PX(D) -X When it is -~0o on the relative
interior rays ls shown by the following example: Iet D be
a closed . strip of a plane and let f£(z) be a convex function
over D with its graph half of a circular cylinder. If X
is a boundary point of D, ZL£¥(x;y) = -00 in any direction
from x into the interior of D but ig finite in the two
directions along the edge of D.

29. If f£(x) is convex in D
r(x) » £{z%) + £ {(x";x-x%)
for all x snd x° in D. If f£ix)

1s pogitively homogeneous and convex
in & convex cone D

f(y) z £7(x;7)
for all x and y in I,
- i o o 4 _
If x° &and x are in D, f{x +t(x-x")) 1is a con-

vex functicn of £ in an interval including 0 { t < 1.
Herice for t© > 0

00 () = £00) 5 g1 (30,550

because the left hand slde decreases a5 t decreases (Property
16). Substitution of one for t glves
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£(x%+(x-x)) - £(x°) » £ (x%;x-x°),

that is the first statement of 29. If f(x) is positively
homogeneous

£(x°) + £(x-x°) » £(z° + (z-x°)).

This and substitution of y for x - x° gives the second
statement from the first. \
30. If f(x) is convex in D, the
supporting hyperplanes of the set [D,f(x)]
which contain a fixed point (x°,F(x°)) are
ldentical with the gupporting hyperplanes
of the corregponding set
[r (D), £(z°) + £1(x°;x-x°)] for the
X

function f£(x°) + £r(x%;x-x°) of =x.

The set [P‘O(D), £(x°) + £t (x%;x-x°)] is a convex
X

cone in APl with vertex (z°,f(3°)). This follows easily

from the facts that P (D) is & convex cone and that
£7(x°;y) is positivel¥ homogeneous in y. Hence every
supporting hyperplane of thim set goes through (x°,f(x%)).
Furthermore

[0,£(x)1 C [P (D), £(x®) + £1(@35x-x9)]

becauge of Property 29, and the inclusion D C P O(D). Every
. N o X

supporting hyperplane of the set LP b(D), r(x°) + 1 (x%;%-x°) ]
X

ig thus a gupporting hyperplane of [D,f(x)] through
(x°, #(x°)).
To prove the converse consider a supporting hyperplane
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of [D,f(x)] which is not parallel to the z-azxis and which
contains (x°,£(x°)). Its equation may be wribtten

7z = £(x°) + (z-x°)'u
with some vector u # 0 in A", Now
r(z) z £(x%) + (x=x®°)ru  for all x € D.

Hence, replacement of x by x° + t(x-x°)e& D for 0 < t <1
glves

£(x%4t (x-x°)) ¥ £(x°) + t(x-2°)ru,

f(xc-z-t(x--xo%) - f(xo) ; (X'—-’XO) Ty

and
£(x°%) + £r(x%x-x®) » £(x°) + (x-x°)ru.

Since f'(xogy) ig positively homogeneous In vy, the last
inequality holds for all x € P o(D). This means that &

supporting hyperplane of [D, f( )] through (x°,7(%¥°)) and
not parallel to the z-axls 1s also a supporting hyperplanes

of [P (D), £(x°) + £7(x"5x-x") 1.
X
A supporting hyperplane of I[D,f(x)] through

(x°,£(x°)) which is parallel to the z-axis has an equation
of the form (XwXG)*u = 0. For this u

(2-x°Ytu < © for all x €D

Clearly this inequality also holds for all x € P O(D)
x
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because every x € P (D) may be written x = x° + 4\(xlnzo)
x
with x@'é D, A2 0. This means that the gilven hyperplane

parallel to the z-axis is a gupporting hyperplane of
[z o, £(x°%) + £7(x"5=-x") L.
31. let f{(z) be convex in D, and
let x° be an arpitrary point of D. Then
there is & supporting hyperplane to [D,f(x)]
which contalng the point (x°,£(x°)) and
which 1is not parallel to the z-axis 1f and
only if f£r(x%;y) is Finite for all y in
8}
PXO(D) - %,
Suppose f‘(xogxluxo) is finite for some xl rela~

tive interior to P (D). The ray in A™" with initial

b
point (x°,7(x°)) and direction determined by the vector
(x=-x°, £1(x%x"-x%)) 1s a relative boundary ray of the con-
vex cone C = [F (D), £(x°) + £v(x%;x-x°)]. Hence, in the

minimal fiat S(é) containing thix cone there is a suppori-

ing hyperplane H of € whick containg this ray. I H

were parallel to the z-a@xis, its intersmection with the hyper-

plane % = O would be a supporiing flat of P O(D), On the

obther hand it would contain the relative interior point xl

of P _(D), but this 1s impossible. Now H can be extended
pd

to a supporfing hyperplane in An+1 of € not parallel to

the z-axls. From 30 it follows that H also supports
[D,f(x)].  The converse follows from the inequality
ff(xogxwxp) z (vao)¥&> - 0o

cbtained in the proof of 30 for any supporting hyperplane

7z = £{zx°) + (x-x%)tu
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of [D,f(x)] which is not parallel to the z~-axis.

Now let #£(x) be convex in an n-dimenmional convex set
D, and let x° be a fixed interior point of D. Conpider
the function on the Iine x = x° + ty where y 1s an ar-
bltrary fixed vector in AR,  In some imterval f(x°+ty) is
a convex Tunction of € whose right ha@dderi?atiVe at t =0
15 £#(x°,¥) and whose left hand derivative at & = 0 ig
-1 (x%;-y). Hence r(x°+ty) 1s differentiable at t = 0
if and only if =¥ (x°;-y) = £1{x%:;y) that 1= if

(x5 Ay) = Ari(s%y)

for arbitrary real A . Therefore the partial derivatives
of f(x) exist if and only if for all real A

f'(xp;,Xui) = A (x5

where the ui, 1=1,...,n, denote the unit vectors
(0y0:0,0,1,0,..,0). The partial derivatives have the values

of
o *5

= o1 (x%uh).

. If they exist, fﬁ(xo;y) is linear on every coordinate axis.
From Property 14 it then Tfollows that £'(x";y) is linear
over the whole y-space. Hence

£1(x%;dx) =

-

Mz

aF |
' ??g; dxi

is the total differential of f£(x).

32. ILet f(x)  be convex in an
n-dimensional convex set D. Iet x°
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be an intericr point of D and suppose that
fv(xa;y) iy a linear function of y. Then
'£(x} 1s differentiable at x = x°.

Thisz gtatement is egquivalent with the following: To
every £ » 0 there is a &> 0 such that

e (x®+tu) - £(x°%) - te7(xsu)] < €+

for all unit vectors u and 0 < t £ § . From Property 29 and
Lhe definition of f*(xogy), it follows that for each fixed
vector y  there is a § (y) such thai

(%) 0 ¢ £(x%sy) - £(x°) = 27 (x%y) L €%

for 0<t g 5{y). Apply this to the vectors yi, 1= 1,...,2n,
all of whose coordinates have the value + 1 and put
i

5 = min E(yi). Then (*) 1s valigd for each y =y  and
i

0<t<é . Now for any fixed ¢ in this interval

£(x%+ty) - £(x%) - t21(x°;y) 1is a convex function of y since
£4{x;y) 1s linear in y. Hence (¥) is valid for all y in
the convex hull of the points yi (Properties 4 and 29), in

particular for all unit vecbors u. This proves the gtatement.

33. Iet f£(x) Dbe convex in a relative-
ly open convex set D of dimension 4, and
let ¥y be a Fixed vector parallel with the
minimal flat containing D. Then £'(x;y)
is an upper semicontinuocug function of x
in D. The ordinary derivative of f£(x)
in the direction y exists everywhére in
D with the possible exception of a subset
of d-meagure zero., Where it exigts the
derivative ig & continuous function of x.
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In every compict subset of D  the function F£9(x5y)

of x 1g the 1imit of a decreaging sequence of conbinuous
£(x4+6,3) -~ £(x)
functiong oy wrere G, > 0, L, —> 0. Hence

£i(x;y) is upper semicontinuous. The crdirary derivative of
f{x) in the direction ¥y exists at a point x if and only
ir £ (xyy) = -f0(x;-y). Now f£V{x;y; + £'{x3-y) > 0, since
£¥(z;y) 1s positively homogenecus and sonvex in y. Hence
the get of points at which the derivative cdoes not exist is
the set of x at which fFr{x;y) + £'{x;~y)} > 0. Thus this
get is measurable. Itg intersesciion with a 1line parallel to
y contains at most a denumerable number of points, {Property
17). Therefore the set has d-measure zero. Since f£i(x:y)
ig upper semicontinuous for every fixed vy, -Ci{x;-y)} i=s
lower semicontinuous and, hence, £'{x;y) is continuous in
the set.at which f£'{(xyy) + f*(x3-y) = 0.

4. If f£(x) 4is convex in an open
convex set D, 1t ig differentiable with
gontinuous partial derivatives everywhere
in D except for 8 geb of measure zero.

Apply 33 to each of the unit vectors ur = (0,00.,50Q,
1,0,...50) on the coordinate axes ingtead of to y. For
gach 1 = 1l,...,n, there ig 4 set >0 meagure zero at which

of

XL doeg not exist. The uniom W of these sefs has
i

measure zeros. AL every x in D bulb outgide U all partial
derivatives exist, that is ff'{xs;y) is linear in v and f(x)
differentiable (Property 32). The continuity of the partial
derivatives is an lmmediate consequence of 33,

35. if f£(x) is a twice differ-
entiable function in an open donvex set
D, f(x) is convex in D if and only
if the guadratic form
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n an
s I, ixiv. . . —
] lJ(X)JiyJ: ig(x) é)Xi ) Xj >

1g positlve semidefinite for every x In D.

From the fact that £(x) is convex if and only if it
is convex on every sbtraight segment In D and from Properties
18 and 19 it follows that f{x) is convex if and only if

2 4 n
[,Cl_fizi;gﬂl] = 2 £y, 20
dt =0 1,3=1 J ;

for all x € D and 81l y.

A sufficient condition that a function f£(x), twice
differentiable in an open convex mget D, is strictly.convex
in D is thab Efij(x)yiyj 1s positive definite. It 1s even
sufficlent that the form iz pogitive semidefinite for all x
in D and the determinant det.fij(x) is net identically zero
on any gegment in D,

5. CONJUGATE CONVEX FUNCITIONS

In Chapter IT, Section 8, polarlty with respect to
the parabolold

- 2
2z = %o ..

iry An+l(xl,..,,xn,z) was described. "This polarity will now

be used to define an involutory corregpondence between closed
cornvex functions.

For the sake of breyity, & flat in AL will be
called vertical or non-vertical according as 1f is or ig not
paralliel with the z-axig. The polar hyperplane to a point
(x,2) of A hag the equation € + % = x'& , where
(£,8 ) are variables in the space An+1( El,,..,g;l;,C)o

Let £(x) in ¢ be a closed convex function. To each polnt
e,
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(x,2) in [¢,F] Iet correspond the closed upper half-space
C 2 x%x'E - 2 bounded by the polar nyperplaze to the point.
The intersection of all these half-gpaces for (x,z} in
[6,f] 1s a vlosed convex met [i‘f:ﬁfl* i A'm“l@ Since

X'E - £f{x) »x'¢ -z forall (x,z) € [C,f], it is
sufficient to conglder the half-spaces

G zx*E - fix), xed.
3%
Hence, [C,f] 1s the met [[7, @] for the funstion

G =@&) = smngs‘xﬂ%’ ~ I{x))

defined in the projection ' in the & -direction of
[il‘;,.x‘i'lée on the hyperplanse G = 0. This function 1s convex
and clomsed since [ ,f]*’ ig convezx and slosed. A point §
ig in [ if and only 1f the fwrwbion =¥ & ~ £{x) Is bound-
ed above for x € C.

The set [[7, Pl may alse be cbbained from [0,f]
In a duzal way. A non-vertical hyperplaze hag an egquation of
the form 2 = xv§ - & with (x,2) variable. Its pole im
the point (&,Z). If and only if this hyperplanme is a
barrier te [C,f], we have f£(x) » x'Z ~ & for all
x eC, that 18 (E,5)e [, @), mus, [T, @l 1is the
get of the poles of all non-vertisal barriers to [C.T].
Since there exist such barriers (Fropositions 28 and 31},
[, 9] is not empty.

if g(x) is a clused euncave funchion defined ix
the convex set D, let [D,gl]l dencte the vlosed convex set
of a1l peints (x,z) in AT gsueh that x e D and
zZ £ g(z). To a point (x,2) in ID,gl let correspond the
cloged lower half-gpace & % x'& ~ z bounded by the polar
hyperplane of the point. The irxtersection of all these half-
spaces is the set [A,P ] for the closed concave fwoblox
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T o= PlE) = f (x7E - glx))
xe D
wilned Im the set A o all poizts € for whilch 27 ¥ - glng
heusifed belew in D. As in the copvex gase, [4,%W] is the
set of the peles of all aon-vertisal varriers to [D,zl.

DEFIMEFIONS Let IFlx; fa 0 be cowvex
and eloged, Then the oleged sorwes fwaction

Plg) = myp (x08 - £ix})

z & ’vv

defimed im the met [ of all poimis E  for
whish =¥ & « £{x) is bewnded above for X
i O iz sallad the camjugate Papebion of
Sy r{x).

et gix) in D be soncave and closed,
Then the dlesed sorcave fumation

YIE) = Inf (V& - gix)}
TE D
defined im the set 4 of all points £ fur
which %' E -~ g{x) iy bounded below fovr x
im D i called the sonjugate fDumstion of
From what has been sald it followg that egquivalent
defiitiong «f the conjugate fwnetions are

(g} = gup (x4 & - z) CE A=xt g 4z).
PLES Y e:-?cnfj} | e (x,2) € %Dggx
Thege stow that @ (€] 1s the suppert funstlon of the point

set  [0,f] for the argument (&, -1} and that -%(§) is
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the support functicn of [D,g] for ([« E,1).

From the above remarks the following geometrisal
interpretatlions of the conjugates of cunyex and concave Duwong-
tions are lwmmedliately derdved:

36. Let f{x) iIn € Dbe convex
(or concave) and closed, and Iet ?D(E )
in [7 be ity conjugate. Then [ con-
gists of all € such that [C,f] 4=
bounded in the directlon of the vector
(fp“l} (or (""E-:'I;i)» and “?(g )
is the zm-intercept of the supporting
hyperplane of [G,f] with the normal
vector (§,~1) (or {(-E£,1)).

As already mentioned, the correspondence defined
above between vloged eonvex or concave funchbions 1s involutory:

7. If ;p(g) in [7 iz the
conjugate of the cloped comvex {(or cone
cave) fumction f£{x) iIan €, then
£f{x) 4in € is the conjugate of

?(g) in [,

Let £ {x) in G be the wonjugate of @ (), /1.
From the preceding statementy it follows that [G%gf*l ig the
intersection of all supports to [C,f] whose bounding hyper-
planesg are non~vertical. Thus the statewent [G*,f*l = ¢, r]
follows from the

- IEMMA: A closed comvex st M In
pRl having supports bounded by nom-
vertical hyperplanes is the intersection
of all thege supports.
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Since M is the infersection of all its supports,
the statement iz that the supports bounded by vertical hyper-=
planeg may be omitited without changing the intergection. A
point (E{ﬂ,c}J ot in M is outside some bound or support
of M. It has to be ghown that there is such a bound or
support bounded by a mon-vertlcal hyperplane. Let H be a
barrier of M such that ( 2{39520) is separated from M by
H vut (E°,Z,) 18 not on H. If H 1is non-vertical
there i nothing to prove. Suppose H is vertical and let
Ht. be & non-vertical barrier of M, . The hyperplaneg H and
HY divide the space A™™  into four wedees, one of which
contains M but mot (E°,&,). Now turn H about the inter—
section of H and H' away from the wedge containing M, but
so Iittle that H remains in the wedges adjacent to that wedge
containing M and that (Z°,& ) is still separated from
¥M. The hyperplane c¢btained bounds & bound or support with the
reguired properties.

38. ‘Let f(x) in € and @(§&)
in [7 ve conjugate clomed convex functions.
Then

P8 < f(x) + P(§) terxec, Eel .

To every x € ¢ fur which f£t{x,y) is
finlte for 2ll ¥ for which it is defined,
there is at least one E € /7 psuch that
equality is valid, and dually. TFor concave
functions the ineguality 1s reversed.

The irequality follows immediately from the definition

of the conjugate function. The statement concerning the egquality
sign iy a conBeguence of Propogltions 31 and 36.
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In gereral there ig v eilwple relatlion between the
properties of the demaizs € and [ of twe conjugate Furo-
tions. Te a pudnt x In ¢ correspond all poluts &  of
/7 with the property that through the point | {x,£(x))
there ig & supporting hyperplame tv  0,F] with the zorsal
direction (& ,-1), and dually. Thus, the correspundence
between the sets depends stroagly on the pehavicr of the
function f(x). But there ip oze very simple direct rela-
tion betweenn ¢ and [’ which will play a rele in the
following:

If one of the sets iz bounded Ixm the dirsction 77,
the agympbotie come of the other woe centalng the ray with
the directlom 7.

This iy seen in the following way: Suppoge that
¢ iz vounded in the direction 77. Then [€,f] im bounded
In the direction (77,0) and like every set [C0,f], in
some directiom (& ,~1). Since the dirsctiomg iz which a
get iy bownded form a convex cone, 10,f] is bounded in
all directlous (§+p% ,-1), P % 0. Femee [1 contalus
the half-line & +p%, P2 0.

In the remainirg part of this gectisn, orly convex
funetions are corgidered. The corregpondirne regulits for con
cave Furctiong are cbtained by rather obvicus changes follow-
ing from the fact that C,~f amd ~[, -~ @ are conjugate
it C,f and [7,@ are conjugate. More generally:

39. Lebt f£(x) 3 C be a c¢losed
convex furction axd @(&) iz M its
conjugate functlon. Then for any real
A £ 0 the conjugate fu_nm it uf
MNE(x) iz © is /\ﬁi }\) i M.

Thig follows from the relatioms
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(ng

supﬁ’(:z:'fi - A F(x)) = A mup - F{x)7,

ZEeC x el
fer A>0, Fe [ ana

sup (27 & - A£(x)) = X iﬁf‘,(g%\g- - £(x}),
x € P A

for A<0, e A[.

Other cbviouy conseguences of the definitlon of con=
Jugate Tunctlong are the Tollowing:

4o, Tet f£(x) in € Dbe a cloged
convex function and ¢P( £y i [7 its
corjugate function. Then the conjugate
function of f£{x) +% in €, k 4a con~
stant, iy @ EY -k 4in [7. The son-
Jugate funstiom of Flx-v ) in € 4 v ,
v a congtant vector, 1s g?( E) + v g

m [,

The first statement iz ¢lear and the second followg
From

sup (=28 -f{x-v )) = suwp {({x-v}'§ -~ £{x-v) + viE.
X & C4v X~V &C

Now let fy(x) 1in C; and fy(x) in C, be closed
convex functlong, where Oy and €, have polnts in common.
Thenr fq(x) + f,(x) 1is a convex fureticm defined in clﬂ Cpe
It ig easily seer that this function iz c¢losed. To prove 1%,
let y be z relative boundary polut of €; /N C,. If
Y € C; /M Cpa we have £(x) —> £1(y}, f({x) —> £,{y) as x
approaches y on any segment In Cy ¢, (Propesition 26).
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Herice fl(x) + fa(x) —> £ (v) + £,(y) under the szame

eondition., This impiies that  1lm (fl(x} + fz{x)) < oo
- , X o> 5
as X appréacdhes v arbitrarily and (again by Froposition

26) that this lim is fl(y) + fé(y). Iif v 4ig not in
¢,/1 €y, we have either f£y(x) —> 00 or £,(x) —> 00
as x —>y, and hence f,(x} + fgix.) —>00 , =mince I
and :f.‘2. are bounded below in a neighborheod of y.
k1. Iet f£y(x) im €, and £ (x)

in CE be closed convex functions with

the conjugates 991(5) in /—'1 and

Po(5) 1in /_'2. Assuse that €y /N C,

is not empty. Dencte by ?(E) in [7

the conjugate of the function £ (A}:) + f,é(x)

in C;/\VC,. Then :

-7 -1
-/1+/2C/_'C751+772,
- and, for E & /71 + Fay
. 1 2
?(E) - inf (791(5 ) +?2-(§ ))
1 2
~£, & /719 E € /_;
1 2
AN S
To prove the firgt statemert, it will be shown that
the conjugate of the function P on the set [’ defined by
(*) is fl(x) + .f“e(z) in ¢, /N €,. MAccording to an observa-

tion made in connection with the definition of the conJugate
function, f£,(x) and £,(x) are the support functions of
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the sets [ [, Fi1 and | f%} ?%J with (x,-1) .as argument.
Now, the setb £f71ﬁ?91] + f/vg,tfbl, d "therefore its closure,
is bounded in all directlons (%,-1) in which both [ [7, ;1]

[ /7, $,1 are bounded, and conversely. Henve, the support

Function of [f"Iﬂ PI+ L7, P,] taken for (x,-1) 1is de-
fined in C /) C, and equals £y(x) + £,(x) (see the end of
Section 1 of thls Chapter). . The two last statements of Ul
follow from the faet that [/1i’§p P+ [%P 99 1 conalsts
of all points Z'; C) for which £ = E + 2, %’ & 1’

‘526/7 and : :l :23 :1 ?}_(% )
902‘5 )

For the applicaticn of this resuli which will be made
in Section 6 it is imperiant to have sufficient condltlons in
order that the inf in the statement of Proposition 41 may be
replaced by min. This may obviously be done 1f [ [, ?ﬁ} +

F%, ?E] 1s clesed, which will be the case If C; and C,
have points in common which are relative Interior to both
setsy that 1y, 1f ¢4 and C, cannot be separated by a hyper-
plane of S(Cltj GE) in the sense of the Separation Theorem
28, Chapter II, Section 6. However, thisg condition is not
necegsary. Necessary and sufficlent condltiong in terms of
Clgfl and -Sggfé are rather complicated and willl not be
formulated here. To the extent that the question is of
Importance it will be discussed in Section 6 in a slightly
different and wore inftuitive Fformulation.

Let Gy ,Ty ()} where of runs through any set, be
¢logsed convex furnctiong. Let C C (\ Ce De the set of those
points x at which 8 Lo (x} 1is fiaite and define
£(x) = Sup fy (%) for % € ¢. Acgording to Propomition 7,
¢ is convex, and f(x) is a convex funetion In . This
follows also from the relation

le,r] = ﬂ [e, o 1,
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which shows in addition that f£(x) is closed in C.

42. Let C, , I, i{x) be closed
convex functions and /j , ;Q(,(X) their

conjugates. Assume that the set € in
which syp fo (x) < o0 is not empty and
put f{x) = sup fu {x) for x & C. De-
note by [, 90(5 } the conjugate of
¢,f{x). Then

(r.pl= TGS &F

n o(i
P(&) = ing Z, A ;@o(i(z }s
where
o(i —~ A n AL = A i’a(i ~ %_
g wy? T1 20 B Ay =l B4 =8 3

that 1s, for a given %’ the inf has to
be taken over all representations cof g
ag a centroid of n + 1 points taken
from any n+l of the sets /;Z .

First observe that [C,£] = () [C, ,f, 1. Thus the
polar hyperplanes of the polints of [CG,f] are on the one hand
the non-vertical barriers of . [[7, @] ard on the other hand
the common mon-vertical barriers of the sets [ /], @&/1. Hence,
the sets [/7,] and Q [ /;’ » @, 1 have the same supports
bounded by non-vertical hyperplanes. From the above Lemma it
now follows that [[ ,.,;0] ig the c¢losure of the convex hull
of o(() [/}, ® 1. From Proposition 6, Chapter II, Section 2,
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we have that every point (&, Z;) of EU N 92(]2 is a

centroid of at most n + 2 points (g Z 3 " = C(.’
i

C ?290( %’ = 0,1,¢0.,0+1, Thus
1

n+l s n+1
1
? = lio Alg s z:o z .i )\ (ﬁ( :
n+l :
with )\i > 0, jf:»:o Ai = 1. This shows that fyf;,?c FCEQQ

and that ?D(g) is an inf of the form in 42, but where &
is the centroid of n + 2 points. That n + 1 poinis are
Sufflclent is seen in the following way: The n + 2 points

E al Zo( are the vertices of a (possibly degenerate) simplex

in A" 1. The vertical line through the point (E,ZO) inter-

sects the simplex in a segment containing this point. Thet
point (£, :min) of this segment for which & 1is minimum is
on some face of the simplex and, hence is a centroid of at most

n + 1 of the points (?di, :o(i). Since :min < CO, in
the expression for §ﬂ(§') the original representation of §
may be replaced by the new one ag the centrcid of n 4+ 1
points. Thils completes the proof of 42.

43, With the notations of 42
agssume that the set € 1s bounded and
that f(x) 3 2 in C, where a 1s a
congtant: Then if &> 0 is given,
n+ 1 functions fxi(x), i=0,1,...,0,
may be chosen from the functions £ (x)
such that

for suitable )\:L z 0, Z A, = 1.




Since [C,f] iz e¢losed, € Ais bounded, and £ ism
bounded below, it follows that f£(z) has a minimum %_. Then
Zz = Z, 1s a supporting hyperplane of [C,f], and so
P(6) = ~ z,. The assumption that C 18 bounded Implies
further that /7 1is the whole ¥ -space and that conssguent-
1y, M= {(&/ /;7! In particular, the expression for @(§)
in 42 way be applied for & =0, giving

n o«
@(0) = inf ii) Ay ?:90(&(5 e,
of 4 ¥ n e
16/;;/\20:2)\3:#1, E)\i§i=9.

1 T T 7 i=0 1=0

N7 "
Hence there are n + 1 polints g € /70( and
1

where &

n
Ay 20, £ Ay =1 such that
” i=0

ks of I o<'1
%A -0, = A, (3 )Y <mz_ + £,
1=0 : § " 1=0 190"(1% °

For the corresponding functions fd_(x), X & ﬂ C o P
1 i 1

Propogition 38 gives

n n e 1. 4
S OAF L, (x) TS A i-§:)\.-; ( i)>z ~&Era-£&
1=0 1 %3 ) 2 i=g T 5 =0 “ﬁi 2 © = ’

Which is the desired resull.

If closed convex fumetions C, , £, (x) are given,
the guestion arises under which conditions f(x) = sue Lo (x)
doeg exist, I.e. i finite for some x. This 1s the case if
and only if the sets [Cy ,f,, 1 bave a common point, which
in turn 1z the case 1f and only if the sets [ /], Pl bave
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a common non-vertical barrier. There will be such a zommon
non-vertical barrier if fU [ B ] E is not the whole
space A" untie {U is the whole A", i.e,, if

f!{/ /1} has no barrier. r”he ilatter part of the condition is
satisfied if the asymptotic cones AO(GD( 3 of the sets Cuy
have no common ray, for the existence of a common barrier to
the gets Fc.( implies the existence of a commen ray of the
cones A (Co( ). {(Compare the remark following 38.) To en-
sure that {U[ % 5 f%(lg is not the whole space it is
sufficient to assume that there is a fixed hyperplane

z = xt E° - :o such that any n+ 1 of the sets [0 ,f, |
have a common point below this hyperplane. Then the point
(£°,5,) -cannot belong to {{) [}, @1 . 1f it did, it

would be the centroid of n + 1 points E Z taken
from certain n 4+ 1 sets ?Qx , 1 = O,l,o.o,n, In other
n
words there would be numbers )\i ;__ 0, % ’\i = 1, such that
10
' n n
) l i
Y Z =3 NG, > 5 A (& )
E 120 % o o501 O(l o5 3 ?QO( 5

From 42 applied to the n + 1 functions ¢ x a, (x),

i=0,1,.0.,n, it would now follow that 2z = x! % - ;o

is a barrier to /) [Co( o f ! which contradicts the assumpbion.
1 i i
Thus the following theorem is proved:

hi. Iet f, in €, be closed con-
vex functions. Assume that the asymptotic
cones of the sets C, have no common ray
and that there is 4 fixed non-vertical
hyperplane below which any n + 1 of the
sets [C, ,f, ] have at least one point in
copmori, Then all the sets [C_ ,f, 1 have
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UAQH%&(BJuﬂS
a common point, éﬁéy/%%p Lo () 1=
Pinite for at least one  X.

In the special case where all £, are ldentically
zero (and hernce the sets Uy are closed) the eﬁistenae of a
hyperplane with the regquired property is cbvious (any hyper-
plane z =z, » 0 will suffice) and 44 becomes Helly's
Theorem:

45, Let Cy be closed convex sets
in A", Assume that the asymﬁtatiﬁ.canﬂs
of the sets C, have no common ray and
that any n + 1 of the sets have a common
point. Then all seis have & compion polint.

Obviously the assumptlon that the asymptotic cones
of the (4 have no common ray way be replaced by the usual
ories There are mets among the C, which have a non-empty,
bounded intersectlon. '

Filnally some specilal cages and applications of con-
jugate convex Ffurneticns wilill be memtiored.

Iet f{x) be identically zers in a clesed convex
gset C. The gonJugate fwnotlion

P(§) = sup_ x* & =n(§)

xecs

is the suppcrt furetion of €, an=d [7 is the cone of thosme
directions & in which C ig bounded. Thils implies that
every support functiow 1s cleged. Conversely, let 99(§ )
be defined, pogitively homogernecus, convex, and cloged iz a
convex cone ['. Them [/7,9] is a cone with the origin
as vertex,. and herce all non-vertical supportinug hyperplanes
to [[7,@] pass through the origin. This means that the



conjugate f£(x) of @ (&) 1is ideutically zers in some corn-
vex set € (which must be closed since £{x) is clozed in
¢). Hence

§6. A funetlon @{&) defined in a
convex cone [’ is the support funcbicn of
some polnt set If and only iF it is positive-
1y homogerneous, convex, and closed in [ .

In the pamticular case f, (x) =0 the @(§)
of’ Proposition 42 ig the support function of the intersection
g = Q ('}"0'< expressed in terms of the support funchticns §0°((§ )
of the sets Cy . Because of the homogenelity of the funciions
Fi  the expression may here be written
(Eh)

h{E ) =1up I

h,
=0 (3

where f“l = /70(1-3 s Eo{% = &3 that is, the Inf has to be
| 1=0

taken over all representaticns of %' a8 a gu of <4 1 points
taken from any w4+ 1 of the peiy E‘O{ .

Jemsider agaln an arbitrary coovex Punotlior  £(x)
slesed in a sonvex set . Denote it® vonjugate by 1, @(§).
The supporting hyperplane % = x! 57 - D £%)y to  [g,£]
with mormal directics ('%'mel)y ‘§@ e [ . intersects [C,T]
iw a {possibly empty) cloped convex set. Let {Eﬁ'} denote
the projection of this set oo the hyperplane 2z = 0. Thus,

x is im Q(E®) 1F and only if (x,£{(x)) iz in the hyper=
plane =z =x7'§°% - ¢(§D~); that is, if

(g} = x'E° - ?9(%'”“‘

Interpreted dually, =x 48 in C{ 5 ﬁ} i and cnly if therse is

10,

o



a supporting hyperplane o [f7,90] having normal direction
(x,-1) and passing through (&°, @(%°)). In particular,
c{ EO) 1s empty if and only if there is no non-vertical
supporting hyperplane to [ [, @1 through (E°, @(E™)).
This 18 the case only if E‘o is a relative boundary point
of [7 at which the dlrecticnal derivative 99*(30;72} is
infinite. Dually, to a given x° €& € there corresponds a
subget of [7 with the analogous properties. This set will
ve denoted by /7 (x%). Obviously, =x° € C{E®) implies

EG & [(x°), and conversely.

The directional derivative f£f{x°;y) as a function
of y is convex but not necessarily cloped in its domaln
PXO(C) -~ x%. But if it is not closed it may be made so by
the unessential changes described in connection with Propo-
gltion 25. Then we may speak of its conjugate function, which
is identically zerc since f'(xa;y} is positively homogeneous.
To find the domalin of the conjugate, congider first the con-
vex function f£(x°%) + £7{x%;%-x°), xer>r o(C), or, if nec~
eggary, the function obtained by closing ?t, From Proposition

30 it follows that the conJugate of this function iz the
linear function

P(E) =3x8 - £(x°), T elE".

Application of Propcsition 40 now shows that the conjugats of
£1{x%;y) (or of the function obtained by closing it) iz de-
fined in  [7(x").

et x° €& ¢ be such that f£r{x%;y) is finite.
Dencte by £{£+,x°) the lineafity of the cone
M m[PXO(C) - x°,F¥(x3y)]; that is, the maxirum number of

linearly independert directions in which f{x) is differ-
entiable at x°. Then
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Le1,2%) + al7(z%)) = n,

where d([7{x%)) is the dimemsion of ['{x”). To prove this,
cbrerve that 1f the come M is lald off from the point (0,1},
1ts normal cone M‘"‘ ingersects the hyperplae z =0 in
(%Y. Hence (E% V=1 4+ a{ [ (27 and, by the corcllary
to Theorem 5, Chapter I, Secticn 4, Z{¥) + ﬂ{‘&i Y = n + 1.

Suppose mow that € is opeu and that f£{x) is
differentiable in €. Then for every x € ¢, ['{zx") cone
gists of ome point S © whose ¢oordinates are the partial
derivatives of f at the poixt x-. Hence, there is a one-
valued mapping x — E ef € outs 1 determined by

of
(‘%‘) Ei = mz S j.. = 1323-190335&0

If, morecver, 99{5 } satisfies the same zonditions as £(x).
1.8, if £(x) 4z sirictly convex, the wapping is oune-to-on
and, vecause of the Invelubory charaster of the cou Jgate re-

lation, the inverse mapping must be glvenr by =z, = mz_— .
. 1 =] i
' This ieads to the folliowing rrocedure for the compu~

tation of the conjugate of & smooth vonver fuwcotion: Tet
f{x}; be strictly couvex, cloged, and differentiablie iz an
open convex set . Ther the i {7 ofF the conjugate
Furaticn 90 is determired ag the lxage of ¢ by the mapping
(#). By solving {*}, the x; are fusd as Puneblons of the
Ei and substituted in

iy
Sy

P(E) =x7§ - £ix

to give ¢ in terms of .
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6. A GENERALIZED PROGRAMMING PROBLEM

Iet f(x) in ¢ be a closed convex function and
g{x) 4in D a closed concave function. Consider the follow-
ng extremum problem:

PROBLEM I: Tc¢ find a point x°
in ¢ N D such that g(x) - £{zx) as
a function in C () D hag a maximum
at x°.

If g{x) - £(x} » 0 im CND this problem stated
geometrically, is o find the maximum vertical chord of the con-
vex set [C,£f1N [D,g]l in At ogp P(x) =0 1in C,  Prch-
iem I reduces to a programming problem, viz. to maximize g(x)
under the conditiocn x & C.

Denoting by @(§) in [T and ’%(f) n A the
cenjugates of €,f(x) and D,g{x) wrespectively, conslder the
gimlliar problem:

PROBIEM II: To find a point E°
in I'NA  such that ?9(%')~=="W(§}

as a functlon inm N4 ras a winimum
at EO,

Ir () - P(F) 20 an [T/1A thris statea
gecmetrically is to find the minimon vertical segment Joizing
the sets [[7,@P] and idﬁ}ﬁ] 15 AT

These two problems are connected by

k7, let the furmction £(x) in C
be convex and clesed, C,'ﬂ{f yoan [T iss
conjugate. Iet further gl(x) 42 D be
sonnave and closed, }0( £ in 4 1ts
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conjugate. If the sets CND and [NA
are non-empty, then g(x) - £{x) is
bounded above, 59( £) -% (&) is pouna-
ed below, and

L (sx)-1(x)) = : ;'-ﬁri;‘hd(?(?%?’/(f))-

- We shall give twe proofs. The first and more formal
proof is based on Proposition 41 applied to the functions £
and -g (instead of f; and f,). Let A (%) be the con-
jugate of f£(x) + (-g(x)) in € N D. From 41 and 39 it follows
that ){(g') is defined in a set confaining f7+ (*él). Since
[’ and A rhaVe points in common, /_T - A contains the origin.
Hence, X (0) is defined and, again by 41 and 39,

= inf Ly . "
XO) = g e (PED YD)
£tiE2 - 0
= inf  (@(§) - %(%)).
£ e 'nd 7 ¥

On: the other hand, the very definition of the conjugate of
r{x) - g(x), taken for § =0, yilelds

Y (0) = LS (g(x) = 2(x)). , .

- This proves the statement.

A second prcof, more gecomeirical and more elementary,
is based or the interpretation given 1n Proposition 36 of the
conjugate of a convex function. It dces rot give 47 in 1ty full
generaliiy but, on the other hand, it allows an intuitive dils-
cussion of the existerice of the extremum values in guestion.
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r ¥ & ['NA, there exist supports z > x7% ~=—-§0(§)
and z ¢ x+& ~ WY (§) of I[c,£f] and [D,g] respectively.
Since ugﬂ('g ) and wP(E) are the z-intercepts of the
supporting hyperplanes, 99(27) - ?é(g') is the vertiecal width
of the strip bounded by theze hyperplanes, taken with a sign
in the usual way. Now, for §& & [7 Na,

tx) xx1 § - @(F), xec,
g(x) < x* & - Y(E), =xebD,

which givesg,

g(x) - £(x) £ P(&) -p(§), xecND.

(If g(x) - £(x) » 0 in € /1D, this simply means that
[c,f1N [D,g] 1is contained in the strip.) Hence, the left
glde is bounded above, the right side iz bounded below, and

(1) L (B0 - s(x)g Eenf;M(gom - PLEN.

Denote by e the value of the left side ¢f imequality (1).
Then

glx) < f(x) +p, x&€CND.

Thus, the only points (X,z) which are common to the sets
[D,g] and [C,f+pm], if any, are those for which

z = g(x) = £(x) + 4. These points are cbviously relative
boundary poinbs of both sets. Therefore, the Separation
Theorem 28, Chapter II, Secticn © may be applied, and con~
seguently, there is in the smellest flat S containing buoth
sets a hyperplane h which separates [D,gl and [C,f+ee]
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in the sense of that theorem. The normals tc S8 through the
points of h form a hyperplane H of A" with the fFollow=
ing properties: H does riot conbain beth sets, [D,g] is cone
tained in one of the closed half-spaces bounded by H, and
[C,f+ ] 1s contalned in the other closed half-space bound-
ed by H.

Suppose first that there 1 a nor-vertical separating
hyperplane h din S. Thenr H too is non-~vertical and its
equation is of the form z = x*§° - &_. Now, the distance
of the two sets belng zero, H 1s a supporting hyperplane to
voth [D,gl and [C,f+uxl, and thus, by Propositions 36
and 40,

Co = Y(EC) = P(EY) ~ m.

Together with (1) thils shows that mim(?(?) - ’}&(? )} ex-
igts and that

: mg {; == An - 1.
(2) xesgpﬂ D(f‘(:%:) g(x)) g;rpnﬂ(f(f) 263

Suppoge now that there 1s no rnou-vertical hyperplane
in. 8 which separates [D,g] and [C,f+ml]. ILet o be a
vertical separating hyperplane and dencte by hﬁ its inter-
section with z = 0. By projection parallel to the z-axis
[D,gl, [C,f4+ ], and h are projected into D, ¢, and hy
respectively, and h, separates £ ard D. This shows that
the present case cccurs only if € and T have no polnts in
common which are relative interior to both mebs. Hernce, we may
coriclude that if C N D coxtaims polints relative Interlor to
both sets, the minimuwm problem has a solution and (2) is valid.

The preceding, together wilth the dual argument, ledds
to the following ftheorem:
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48. . With the notations of 47
suppose that € and D have points
in common which are relative infericr
to both sets and that [ and A
gsatlsfy the same condltion. Then
g(x)=f{x) has a waximum i C /N D,
PE)-Y(E) has a minimum In [N4,

and

. emx;ﬂ:gxn D(%(X)-f(X)) ﬁggif_”lnA(?(E =% (E)).

It may be mentioned without prool that if the direc-
ticnal derivatives f£Y(x;y) and g'(x;y) are uniformly
bounded for =z e C N D and all y for which they are defined,
there 1s a non-vertical hyperplane separating [D,g] and
[C,f+p] even if € and D Lave no points in common which
are relative Intericr to both mets. Hence, 1f this condltion
and the corresponding condition for qD and Y are satisfied,
the conclusiorns of 48 are valid.

A corntinuous function whome domaln is closed and can
be divided into finitely many subsets in each of which the func-
tiom ig linear, wlill be called & plecewige linear function.
Observe that if such a function 1s bounded above (below), it
has a maximom (mintwum) since 1t cannot approach its least
upper (greatest lower) bound asymptetically. Consequently,
1f the functions f,g and, thus, ¢ ,Y are piecewise linear,
and if the assumptions of Propositicn 47 are made, the con-
clusions of 48 hold.

From the definlitions of the conJugate functions it
is clear that Propositicn A7 i equivalent to either of the
two following statements:

49. TUnder the assumptions of 47
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inf sup (FE&~£{x)=p(¥ )
E e€rnA xec ¥

= Sup 1ot (x0F -P(x]-%(E)),
x€ CND Ee4 g i

and

sup inf (@(% Helx)-x§ )
xe CND ¥§Fef ?E :§

=  Inf sup (@ (& eg(x)=x§ ).
e M4 =zebD

If Problems I and II have golutiong, as is the case
urider the agsumphises of 48 or if the functionsg involved sre
plecewise lirear, the outer inf ard sup in the lsmediately
preceding equations may be replaced by min and max respectively.

The palr of Problems I and IT is egulvalent to each
of the two follewing saddle value problems:

PROBIEM IXL: Let £{x} Dbe convex and
cloged in C and let 7y {E) be coucave

and closed in A . Put

F(x,8) = x'& -~ £{x) » ®(§).

To find an x° € ¢ and & E € /A such
that

F(x, °) < F(x°, ) £ #(x", §)
for all x € € and all E&d .

PROBLEM TII': Let g{(x) be concave
and closed in D and let Q{E 1 be convex
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and cloged in P Put

P(E,x) = P(E) + alx) - =7 .

To find arx x° & D and a §'G & [
guch that

P ) PECE0) p p(FCm)

for all £ &/ and all x & D.

s

Consider Prcblem IXII. Dencte the conjugatescf C,F
and 4 ;¥ vy r, ¥ and D,g respectively. From the defi-
nitiong of the conjugate fumctions we have

(3) F(x,E) ¢ p(F) -p(E)
for x€¢, § € MNA , and

(4) F(x,8) 2 elx) -£(x)

for x€CND, & el .

Suppcge Problem I has a sclutlon x°€ ¢cND and
Problem II has a sclubicn EO e ["NA. Put

i

g(x") - £(x")

?9(5@} - jé(gt?j = .

Ther: (3) and (4) give
F(x, ) < u
F(z", ) 2 pes Eed.

P x €0,

A

Hence, F(x°

,gc) =/u, arnd



Fix, £°) ¢ F(x", E°) < F(z°, %)

for x60C, Eed .

Suppose now Probilem III has a sclution z%€ C,
E°ed . From F(x,5%) ¢ F(x",£°) for x&C 1t follows
that x'£° - £(x) attains a maximm at x°. Thisg implies
that Eo € [T and that the maximum value is 9@(5 ®Y. Hence ,

F(x%, €°%) = @(£°) - p(E9),

Analogously, - F(x°, () 2 F(x°, %’O) for £ € & ylelds
x°€ D and

F(x°, %) = g(x") - £(x").
Now, by (3) and (&)

g(x)-f(x) g 8(x°)=£(x") = @(E)-RLE") g @ (¥)-

for x€CND, & &€ "NA , which shows that z° and g‘"
are polutions of I and IT respectively.

By interchanging the roles of © and 99 anxd of Y
and g it iz Immediately seen that Problew ITD7 alse is eguiva-
lent with the pair of Problems I and II.

The malin theorem cf the theory of the zero-sum two-
person game ig a particular case of 49,

Let R be a given m by n matrix. Let C de-

note the get of all peints =z for which x ¥ 0, 2 x; = 1
: jo1
and define f{x) = O i C. Iet A be the set of all points

& = Atw, uy O, Zul =1, and define P(E) =0 1in A.
= =1
Then

x¥ & « £{x) - }b(g) = w'AX
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n m

for x>0, % x,=1, uzO, = u, =1, and both [  and
| J=1 9 1=1

D are the whole n-space since C and 4 are bounded. Hence,

49 yields

e

min max 1TAX = max min urTAx.
EFed xeC e £ed

The existence of fhe extreme values 1s obvicus in thils case.

Iet A bean m by n matrix, b an m-dimension-
al vector, and ¢ an n-dimensional vector. A pair of basic,
mutually dual, linear programming problems isg

1) to £ind the maximum of c'X subject
to the conditions x 2 0, Ax £ bj

2) to find the minimum of b'u subject
to the conditions u 2 0, A'u 3z c.

If Ax { b for some x » 0 and A*u x ¢ for seme u 2 O,
both problems have solutions and wmax c¢'x = min biu.

To show that thisg is & particular case of the pre-
ceding results suppose first that m = n and that A is
non-singular. Define ¢ to be the set of all x gatisfy-
ing Ax < b and put f(k) =0 in €., Define D to be the
positive orthant =x » 0 and put g{x) = ¢'x in D. Then
Problem I reduces to the linear programming Problem i. To
determine the conjugate functions /73?9(5) and A ,;A( Z)
introduce a parameter vector u by u = A‘*J'g » Then

?’(5)“ sup £'x = sup u'Ax.
Ax < b Ax g b

Since Ax assumes any value less than or equal to¢ b as x
varies in €, wu'Ax 1g bounded above if and only 1f u 2 O.
Thus, [ is the set of all & =A%, ux 0 and P(&) = u's.
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Further

74'(5) = dnf (& -¢)'x

xg@

where the right side is finite (then havirng the value zerc) if
and only if & » ¢. Thus, 4 ig the get of all & = Atu r ¢
and %(¥) =0 in A . This shows that Problem II reduces
to the linear Problem 2.

The general case where A is arbitrary rectangular
may be reduced to the cage just considered 1n the following
way. DBenote by E, the 1 by 1 identity matrix. Ingbead
of A congider the non-glngular m+ n by m+ n mtrix

(“é gm) . Complete the vectors b, ¢, X, 5, u %o
n

(m#r)-dimensional vectors (g), (8), (?‘;)_,, (-‘;), (3),

Ther the two linear problems take the forms: 1) to maximize
c¥x subject to the conditions

A Em P4 b 23
(e 0 ()

~Eﬂ 0 v 0 NT
whigh' san be written Ax +y < b, x> 0, .¥ » 03 2) to mini-
mize b'u subject To The conditions

AF - En u | e 12

z s z 0,
Em 0 v o v

-

or A'u -v ye, wxO0, V >»0. 8irnece c¢fx and b'u do not
depend on yw and v r’espectively, theps problems are egquivas=
lent with the original Problems 1 and 2. For, if x°,y° and
u”, v° are solutions of the new problems, %o ard u° solye
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i and 2; and if x° and u” are solutions of the latter prob-
lems, xo,ye and uO, v° solve the new ones for arbitrazry
yo and v° satlsfying O < yo < b-AxO, 0L v o.g__, A1nC-c.
Since the functionsg ccourring here are plecewlse
linear, the assumptions of 47 gusrantee the existernce of the
two extreme valueg. Thege assumptioﬁs take here the follow-
ing form: there exist X > 0, ¥y 2 0 satisfying Ax +y £ b
and there exist wu > 0, V 0 gmatisfying A'u -v 2> c.
Obviously, it is sufficient to require the exisbence of at
leagt one x > O such that Ax £ b and of at leagt one
u » & such that Afu » ¢, for this x and this u to-
gether with y =0 and v = 0 satligfy the stated con—
ditions. Herewith the statement concerning the linear
programming Problems 1 and 2 is completely proved.

Z
.
L

7. THE LEVEL SETS OF A CONVEX FUNCTION

Consider an arbitrary real function ¢@(x) defined
over & set D in AR, TFor a given real number T the sub-
set L, of D conslsting of those points x of D for
which @ (x) £ T will be called the level set of @(x)
for the level T . Clearly, L, 1is eapty for T < inf 509-
and L, =D for T > sup ? « Therefore T will be re-
stricted to the swmallest interval L containing the whole
range of @ . This interval may be I'inite or infinite, open,
half open, or clesed. To exclude the trivial case when
gﬁ(‘x) is & congtant, it will be assumed that (L hasg in-

terior polnts. In the following all nwambers T, 7,

are supposed to belong to Ll . On observing that
P (=) < T, s equivalent to ?(x) < T forall T > ’CO_;,

1t is immediately geen that the family of level sets L T
has the following properties:
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I. L L = D.

T eEedL T

1T, L,Elc L,C,2 ir Ty < ’C'Q,
rrr. ) Lp =Ly , and N L. is
T> T, o Tedll

empty if {1 is open to the left.

Conversely, given a set D in A" and a family of
subsets Lo 1indexed by the real numbers of some interval and
satisfying Condltions I-III, there is a function gﬂ(x‘) de-
fined over D for which the sets L, are the level sets.

To exhibilt such a function define ?9(}:) *Lin:i;qu Then,

90(3:) is finite for all x € D because for every X & D

I ensures that some L,. contains x while III ensures that
i Ll iz unbounded below, there is some L, which does not
contaln x. The level set corresponding to '(:O of thils
function consists of all =x such that Izinsf‘ﬁf < 7_':0. Thus,
X ilg in this level set if and only if, £5 e\;ery £ > 0, there
isa T T,+& such that x & L. Because of IT this

means X & L for all T > .. and hence, by II1IL, X &€ L
T o ? To

A further conseguence of III is that ?(X) = min 7. This
: L. D%
equation establishes a one-to-one corregpondence between the

functions @(x) defined over D and the indexed families of
gubsets of D satisfying I - IIIL.

It is well known that a function ¢@(xz) with level
sets L’C‘ is Jower semicontinuous if and only 1f for all

Tell:
IV, L’Z‘ is cloged relative to D.

The condition for upper semicontinuity:
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statement holds:

50. The level sets of a function (x),
x € D, are convex if and only if gﬂ(x) ig
guasi~-convex.

To prove the necessity let x and vy be arbitrary
points of D and define 7 = max (@P(x), P(y)). Then
X € Ly, ¥ €Ly and, since L, is convex, (1-8)x + 6y € L.
Hence 5{)((1—9);: + @y) £ T. To prove the sufficilency let L,
be an arbltrary level set of @(x). If X€Lyp, Y&L,,
it follows that gv(x) LT, 9&(:_7) < T - Because of the quasi-
convexity of ¢(x), @({1-gx + 6y) ¢ 7", that is (1-8)x + 6y & L, -

A family of subgets Lf of D satisfying I -V,
that is the famlly of level sets of a lower gemicontinucus, guasi-
convex function ¢(x) defined over D with range L1, 1is
briefly called a guasi-convex family. Suppose now L’L‘ is
trangformable into the family of level sets Kt" te W , of
a convex function f£(x) = F(P(X))y- briefly called a convex
family. Then both f(x) and @ (x) are continuous. The in-
terval W, the image of L) by t = F(T), is open to the
right since a convex function in an open domain has no maxi-
mum. Hence _O_ mist have the same property. This implies in
particular that all gets L,C = Kt are proper gubsets of D,
If W is closed to the left, (L is closed to the left, and
conversely, and we have a = F(o(}. Thus, with the notations
K = inf P(x), B =sup @P(x), a = inf £(x}, and
b = sup f(x) where -c0og X < ¢ 00 and -o0<a<xbLoo,
W is a <t < Db, and ) 1s c(cé}fz‘:< (8, where the
equalities can only occur simultaneously {and, of course, only
if a and o are finite). The open intervalgs a < t < b and
o < T ,B are denoted by W, and 'Qo respectively.

A rather obvious necessary condition which a quasi-
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U L is open relative to D,
T< T, °

will nop’be’used explicitly.

Let t = F(7Z) be a strictly increasing conbinuous
function defined for T & L). Denote Py W the range of
F(z), T€{), and let = &(t), te W, be the inverse
of F. Then the family of sets K, = L £y» T EW, 1is
the family of level sets of the functiofl £(x) = F(@(x))
and satisfies Conditions I — IV if Lywr T e {2, does.

For the sake of brevity two familles like L and K
obtained from each other by & sbtrictly increasing and con-
“timuous index transformation t = F(’z:‘) wlll be sald to bhe
trangformable into each other.

The problem to be discussed in the following may now
be formulated:

Under what conditiong is 2 family
of sets L - satisfying I - IV trans-
formable into the family of level pets
of a convex function. To avold in-
esgentlal difficultlies the domalin D
will henceforth he assumed to be con-

vex &nd. open.
An obvlous necegsary condition is:

T L’L‘ ig convex for T & _Q

However, this condition is not sufficient. Call a
function 99{3;) defined over D guagi-convex if

@ ((1-8)xtoy) < max (P(x), P(y))

for 090 <1 andall x and y in D. The following
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convex family I“U must satisfy in order that it be trans-
formable into a convex family is

U

I, =
T T, T

L, for T, e_QO.

o

This expresses the fact that a2 convex functicon cannot assume
a congtant value except possgibly ifts minimum on a relatively
open subset of its domain. This condition will not, however,
be used explicitiy. The further discussion of the problem
stated above will be based on the fellowing characterization
of a convex family:

5l. A guasgi-convex family Kt’
t &€ W, 1ig a convex famlly 1f and only

if
(%) (1-8)K, + 8K, C K

to t1 t@
where 0 £ 6 < 1, to e W, tl e W,
tg = (1-e)to + b, .

To prove this, suppose K, are the level sets of

the convex function f(x), x & D. ILet x° = (1-8)x° + exl,
where x° € K s Xle— Ktl’ be an arbitrary point of
O .
(1-0)K, + ©K_ . Then
o} 1
g ’ ; o] 1y
£(x7) £ (1-6)f(x") + of{x7} £ (1-9)’50 + 0t = tg.
Hence Xg<§ Kt . Conversely, let {¥*) be satisfied and define
2] _
£f{x) = min t. As mentioned above, this function has the level
K, D x
7

119



sets K,. ZILet x° and Xl be arbitrary points of D and put
£(x%) = t,, £(x') = ty, ana x° = (1-6)x° + ex'. Then

e K, , xlg— K. , and xge K because of (*). Hence
to -tl t@

£(x8y - min t@ < tg = (1-0)8(x°) + or(x").
Kt o X%

This proves the statement.

Iet M be a polnt set. As in Chapter II, Section 5,
the cone with vertex at the origin consisting of all directions
in which M 1is bounded will be denoted by B(M). The follow-
ing rather obvious properties of cones B will be uged: For
any two point gets M, N

B(M) D B(N) if M C N,
B(AM) = B(M) for A > O,
B(M+N) = B(M) N B(N).

T E _O_ , trans-

For a quasi-convex family L'E 5
formable intec a convex family:

VI. All sets IL_, T € L1, are
bounded in the same directions, that is
B=58(L,), T&),, is independent of
T. If L, exists, B C B(Ly, } < B.

Since this statement is invariant under index trans-
formations, 1t suffices to prove it for a family Kt gsatisfy~
“ing (*). Let t & W,, t, &W_, t; > t, Dbe given and choose
t, <t in W. With 6 = (t-t_)/(t;-t,) -the relation (¥)

o
yields

(1-0)K, + ©K,

C K, .
o 1 T
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Hence, because K. C K, CK

to 1

B(K, ) C B(Kt) C [B{x, YN B{K, 11l = B(Kt ).

13} o 1 1

Thus B(Kt) = B(Kt ) which proves the statement.

1

If L, exists, B CB(Ly) because Ly € Ly,
'L’C-.O.O, It only remains to prove that B(L, )< B when
Ly exists. Let & # 0 be in B(L, ) and let H be the
supporting hyperplane of ILx with normal direction E .
In :Ld there 1s some point p whose digtance from H 1is
less that a given & > 0. Denocte by He that hyperplane
parallel to H at distance & which is separated from p
by H. In Hg consider the (n-1)-dimensional closed (solid)
unit sphere U whose center 1s the orthogonal projection of
p on HE - The compact set i having a positlive distance
_from Lo<, there 1s by III some t > & such that Kt and
u are disjoint. By the Separation Theorem 28, Section 6,
Chapter II, there is a hyperplane H' geparating Kt and
U . The normal vector Z ' of H' which 1s directed to-
wards U ©belongs tc B Dbecause X; 1s bounded in this
direction. The tangent of the angle formed by & and E'
is less than 2 £ since HY separates p from U. Hence
the ray (&) is a 1limit ray of rays (gr) e B. This
proves B(L, ) < B.

Since the asymptotic cone A(M} of a convex set
M is the polar cone, (B(M))* = Buvz)* of B(M) (Propo-
sition 26, Seetion 5, Chapter II), the preceding result
yields:

52. All level sets of a convex
funiction have the same asymptotic cone.
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Now let L., T € {1, be a family of subsets of

D satisfying conditions I - VI. Denote by

n(r,&) =nh, (%)

=

the support function of L’I . From VI it follows that for fix-
ed 7e& (1,, n(T,Z) is defined over the cone B and no-
where else. If o is finite and & 6Q , hied, F) is de-
fined not only over B, but possibly on certain boundary rays
of B which do not belong to B. However, in the sequei it
will be sufficient to consider h(&,&) for ¥ & B. Further-
more, it suffices to consider unit vectors & . By II, h(z ,%)
for fixed ¥ 1s an increasing function of 7 &€ _{) which may
be interpreted as follows. ILet T = @ (x) be the function
wilth the level sets L’L‘ . In the (n+l)-dimensional space

x,T consider the set [D,¢]. Its orthogonal projection upon
the 2-flat A° spanned by the 7Z -axig and the vector (& ,0),
£ &€ B, 1ald off from the origin is called the E -profile of
®. If -& is also in B, the (-&)-profile is identical
with the ¥ -profile. In A° introduce the < ,y-coordinate
gystem congisting of the T -axis and the oriented line de-
termined by (& ,0) as y-axis. Every line T = Tor o é.a,
in A2 parallel with the y-axis intersects the % ~profile in
a segment or a ray (in the direction -~ &) whose end-point in
the direction £ has the y-coordinate h{(z ,¥ ). This follows
because for H‘S’H =1, h(T,, £) is the distance from the
origin to the supporting {(n-1)-flat with normal direction §

of L, . Thus y=h(z,§) or, incase -¥ &3B, y=

nir, E‘? and y = -h{T ,-E) are the equations of the boundary
of the & -profile.

Suppose now there is a strictly increasing continucus
function % = F{T) such that f(x) = F(?(x)) is convex in
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D. Then the sets Ky =Lgy, T = $(t) the inverse of
t = F(7T ), satisfy (*) and, hence, by the properties of

support functions stated at the end of Section 1
(»*)  n(P(tg), &) 2 (1-0)n(P(t,), &) + en(P(ty), &)

where tg = (1-8)t, + 6t,. This means that ‘h(@(t),‘%’) is

a concave function of t for fixed & & B W QoA E WLH'\the

fact that the & -profiles of F(@(x)) are convex sets.
Conversely, asuppose there exists a strictly increasing

continuous function t = F{7T), Téﬂ y T = é(t), t & W,

such that for a famlly L, , T & L1 , the funetilon

n(@(t), &) is a concave function of t for every fixed

& & B, that is the & -profiles of F(P(x)) are all convex.,

It follows from this hypothesis that F(P(x)) 1is a convex

function in D. To prove this it is sufficlent to prove (*).

Now (#*¥%) is valid and for two point sets M and N,

hM(E) < hN(E) implies {M} C {N] . Hence

X, D (1-8)K. + 6K, D(1-8)K, + GK, .
tg by tq t £y

Conditicn IV implies "K"tﬂ D = X . Consequently

K, 2DMN ((1—-9)Kt

t@ o}

t @

+ OK, Y = (1-—@)Kt + BK
1 o 1

The latfer egquality follows from the inclusiong Kt < D,
o)
K‘i: C D, and the convexity of D. This completes the proof
1

of the folleowing theorem:
53. Let L,, 7& L1, be the

family of level sets of a2 lower semicon-
tinuous, quasi-convex function q9(x)
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such that the cone B(qu) = B 1is independ-
ent of T for TE -ﬂo‘ Let h(fz:,_f),

E € B, be the support function of L...
Further let t = F(Z) be a strictly in-
creasing continuous function and

T = $(t), t & W, its inverse. Then
F(gD(X)) is convex for =& D if and only
if n(P(t),E) for every fizxed § & B

is a concave function of © € W, that is

n(Ty: &) -b(7y, 8) BT %) - n(7,,8)
F(T,)-F(T,) 27 F(z,)F(T,)

for any three numbers T, < Tz < ’Z'."B in L1 .

Thls condition may be given a different form. If
h('z:E,E) = h(’ZI‘l,-E ), the inequality implies h("ﬁ'3, E) =
h('C‘QJE) since h{T,% ) increases with 7 . The inequality
being trivially satisfied in this particular case, it is egquiva-
lent to

F(T5) - F(T,) n(T,, &) -n(T,,3)
F(Tp) - F(T,) 2 0(T §) - B(Z1, E)

the right-hand side being interpreted as € whenever the de-
nominator vanishes. The guantity

h(z5,§) - n(T,,%)

gﬁ(fl’TZ’ T}) = E.Sng h(‘fg,g) —h(’C'l,E)

which only depends con the family L., is used the state the

necesgsary condition:

VII. There is a strictly increasing
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continuous funetion F{T), T E.f] .
such that

v

for any three numbers 77, < T, < TTB

inA_(l,

—

From the preceding it 1lsg clear that I - VII are nec-
essary and sufficlent conditions in order that a family of sub-
sets of an open convex set D sultably indexed by real numbers
forms the family of level gets of a convex function defined
over D. While I - VI are simple and intuitive, VII is rather
complicated. There is no simple test To decide whether the
fanction a-e(?:l, Tos rr3) is such as to admit a strictly in-
creaging continucug solution of the functional inequality
above. Both local and global properties of }ﬁ(QTlEZQa,QTB)
enter decisively. Compared with the original prcblem there
seems toc be no progress. However, VII has the advantage of .
leading to a kind of construction of the required function
F(7r). ™o indicate the procedure the following remarks may
be added.

Let T, < 771 < T Dpe Pixed in {1 . Select numbers
Tys i=14...,p+ 1 ~guch that

T, < ’Z‘2 < eee < zp< Tp+1=f°
Then (*¥%%) yields

for 1 =1,...,p. Multiplication of these inequalities for

1= 1,.00,3 £y gives

125



J
F(T ) -Flzy) 2 Flo)-Fle)) T a7, Ty Thuy)-

1=1 -
Summation over J gives
p J
F(7)-F(Ty) 2 (F(7q)-F(7,)) 'Zz .I Ilaf('ri-z’ Ty Tyoq)e
J: 1=

With the notatiocn

3
N ;_r_];_ Ty ys Tys Tiyy)

(I ]

k(ﬁfbﬂﬁzl,if) = sup

J

where the sup 1s taken over zll subdivisions fl < 72 < oos X Tp¢’2‘
of the interval ‘Z&,'t}

P(T)-F(T,) 2 (F(T)-F(T,) k(Z,, Ty, T).

Thus k(7,,Z,€) has to be finite for all T < T, < T

in (). This involves a mixture of lccal and global conditions

on %€ . If k 1s finite, a function F{Z) which has the de- -
gired preoperties for 7T > T, may be obtained as follows.

It is easily seen that the values of F({(7Z) at two points,

T, and T4 say, may be prescribed arbitrarily. Then any

atrictly increasing continuous function F(7T), T> ﬂfl,

satisfying

P(zT) 2 Fly) + (F(7)-F(T)) k(T , Ty, T)

can be shown to have the required prOpertieé. Such functions
exist since k{(7T,, Ty, 7) 1s increasing in T . In similar
ways the function can be constructed for - Dbetween T 4
and ’Z.‘l and for o less that t‘on '
In the next section the congtructicn is carried

through in the casge of smooth functions.

126



8. SMOOTH CONVEX FUNCTIONS WITH PRESCRIBRED LEVEL SETS

Iet D be an open convex set in A"™. The problem
discussed in the preceding sectlon will now be solved under
the asgsumption that the prescribed subsets Lo of D are
the level sets of a twice differentiable function = = @ (x).
As in Section 7 we set o = inf &(x), ﬁ = sup #(x). We
agk for a twlce differentiable strictly increasing function
F(T), o &, T < ,5 , such that £(x) = F(P(x is convex
in D. We start by deriving necessary ccnditions, which will
turn out to be sufficient. The results of Section 7 will not
be used.

We introduce the notations

ae;a Df
?01’
1,J=1,0eeyNa
02 @ o2 _
3% 0%, Py 5% 5%, ~ Tiy

The derivatives of f(x)

i

F(® (x)) may then be written

(1) £ = F' Py
— 1t ! 1 .
(2) Fig = T PP+ T Py
Suppose now f£(x)} = gﬁtx is convex. Then f(x) has no

critical points except possibly those at which it attains its
absolute minimum. Obviously, ¢P(x) must have the same
property.. We formulate this as the first necessary condition:

A. ?9(X) has no critical points
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except those where it attaing its absclute

minimum, 1f such a minimum exilsts.

" From (1) and ¥'{7) > O for <, T < B it there-
fore follows that F!'(7T) >0 for 7 > o« . Now f(x) is con-
vex 1f and only if for every fixed =x & D the guadratic form

; 2 . -
i}fjfij(X)yiyj = F (qo(}c))(? Py (x}y;)° + P {p(x)) f; ZRACIPEr S

in the varigbles Vo i=1,...,n, 1g positive semidefinite.
If qﬁtx)j and hence f(x)y has a minimum, this con-

dition 1s obviously satisfled at all points where the minimum

is agsumed, that is at all x & Ld . This 1g because gpi = 0

and .Ei_qpijyiyg ig positive semidefinite at these points.

Hencelig is sufficient to consider those x for which

@ (x) » L. For such x, F' > 0 so that the notations

» , 3 FE! ¢ x
7 =T = ﬁ;p‘%i)l% ’
. ' N 2
(3) Q(Y:‘Y') = izj Spidinj + O‘“(? ?Diyi) s
may be used to replace the previods condition by: Q(y,y) is
posltive semidefinite for every x din D but not in T, .

Iet such an x be fixed. The characteristic detér—

minant of Q{y,y) is

Q(A) - ﬁng" A 6;3 + U-?%_qg

= 9013'%\ gij'*g?i?oj 7

0
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Subtraction of guitable multiples of the added column from
the other columns leadsto

Py - A éig 7y
CqlA) = | .

- U'?E 1

Thig determinant eguals the minor of its lower right hand
corner, plus the value of the determinant when 1 i1is replaced
by zero. Thus the characteristic determinant of Q(y,y) takes
the form

?Dij - A 51;1 ﬁ
g
?s 0

1) A= e -AS -

1J

If it is written as a polynomial in A y
1 n
GQ(/\) =T, - Tn_l)\ +oeee 4+ (-0 AT,

we have T, = 1, and Tﬁ » P = le..,n, 1ls the 5Dth
elementary symmetric function of the characteristic roots.

The first term on the right side of (4) is the char-
acteristic determinant

c.(A) =8

, Rt n
p n - Sn“]‘)\ '+' 5 & O + ( 1) SO A

of the quadratic form

P(Y:Y) = . ?Dijyiy,}”
Lrd
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Here 8, =1, and SP s P = l,v..n, 1s the pth elementary
symmetric function of the characteristic roots of Ply,y). We

are going to show that the second ‘term of {(4) is essentially

the characteristic determinant G (,X} of the quadratic form

P (yv,¥y) 4in n-1 variables derived by speeializing P(y.¥y)

to the hyperplane 2 ‘7Eyi = 0. The characteristic roots of

P (y,y) are the statlonary values of P{y,y) subject to the
constraints % @Hy; =0 and % yig = l, Hence, by the multi-
1 i

plier rule, they are the stationary values of the function

Z 99 yiy + 22 2‘;991:\7 /\(i_:‘yig-—l)
L

with y; unrestricted, 2z and A dencting the multipliers.
For the critical points ¥y thig gives the ceondition

(5) %qpitjyjai-z P - Ay, =0
(6) Z:' ?Jy‘] = (O,
‘ N
(7) .'5..’. '3'12 = L.
1

The existence of a soclution Vys & of this system Implies

ﬁ,j - A gi:} 9”1
(8)

i}
o]

¥ 0

Suppose that A satisfies this eguation and that Vi¢ Z sOlve
the system (5), (6), (7). Multiplying (5) by y, and suming
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over 1, we sees that izj 9ijyiyj = >\7 so that A is the
;
stationary value in gquestion.” Hence-(8) is the characteristic
equation of P*(y,y), Formally the left side of (8) is a
polynomial of degree n in A . However, the coefficlent
of A" vanishes. The coefficlent of A" ™%, which is
needed for normalization, is obtained by dividing the deter-
minant (8) by A®"' andletting A—> 00. If this is done
by dividing each of the first n rows by A and multiply-
ing thereafter the last column by ,X, the coefficient 1is
eaglly found to be

P Po e P, O

.With the notation

we therefore have

0o(A) = - 25 i

V]

If this is written as a polynomial

_* * * -1 % -1
0p{A) =8, 1 -8 oA + .o+ (-1)%775, AT,
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* *

then So = 1 and SF is the jothAelementary symmetric func~
+*

tion of the characteristic roots of P (y,v). Hence, (4) may

be written

2

%
=0 4+ ok~ .
CQ Cp P

Therefore

(9) To = S, +{xPs) P=1,...,n.

p-17

Now Q(y,y) is positive semidefinite if and only if
all characteristic values are non-negative, that 1s

(10) T

Ag 1s well known, this implies that 1f one ?f = 0, all the
following TP vanigh too.

Looking for necegsary conditiong that there may ex-
ist an F(7) such that F(®(x)) 1is convex, we assume (10)
to be valid. The expressgion (3) shows that P*(y,y) agrees

with @Q(y,y) for yy satisfying 2 #;y; = 0. IHence,
< i

*
P {y,y) 4is positive semidefinite and thus

*
sf_l > 0, j>= Jdyaea e
Let

Mz A

v
A"

and
* * *
M2z 2 M

¥
be the characteristic values of P{y,y) and P {(v,¥y)
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regpectively. 3y the maximum-minimum properties of the char-
acteristic values of a quadratic form,

* * *
Moz Moz 2 ez e 2o X My 2 Pn

S
If r - 1 denotes the rank of P (y,y) {(which, of course,
may depend on x), then

* * * *
M1 > 05 ey g >0, M= e = = 0.

Hence

/Ml > 0O, ﬁ.,,/ur*l > 0,

and if r < n,

/“r 2 0, /&}+1 T =/%¢n—l =0, /‘dﬁ L0

This shows that the rank of P(y,y) is at most »r + 1, and
that

Spp1 = 4 ovr Mo fq £0

*
if r < n. On the other hand, because S, =0, (9) and (10)
for P =1r + 1 yield Sr+1 2 0. Hence Sr+l = 0, that is
M. =0 or /., = 0. Thus the rank of P(y,y) is actually

at most r.

B. In order that there may exist
a twice differentiable strictly increasing
function F(7 ) such that F(®(x)) is
convex, 1t is necessary that for each

133



fizxed = D th dratic £ = (X R
ixe & e quadratic form 2 ?13( )yiyJ
restricted to the hyperplane Z & {x)y; = O
i
be pesifive gemidefinite, and if r - 1 de-
notes its rank, the rank of the same form
without the restriction he at most T .

This has only been proved for =x not in L However,

for x € L, we have 7%(x) = 0 and the statement is“;bviously
true.

Q The first part of the condition, P*(y,y) positive
gsemidefinite; expresses the convexity cf the level sets of ?%X),
The second part is trivially satisfied when P*{(y,y) has the
maximal reank n - 1. At polnts x where r < n 1t restricts
the local behaviour of @{x) 1in a way indicated by the follow-
ing example:

Iet n =2 and assume that for each 5 cf a cer-
tain subinterval of o(é_)f< /6 the curve ?(x} =7 (7. a

o o}
constant) contains a segment depending smoothly on .. Then

the rank of P#*{y,y) 1s zeroc at the points of the se;mentsa
The surfaces 7T =@{x) and, hence, £ = £{x} then contain
pieces of ruled surfaces whose generators are parallel to the
x{¥,-plane. Such a ruled surface can only be convex if it is
2 cylinder, that ig 1f the generators and, thus, the gegments
are mutually parallel. This i1s just what the conditlon, rank
of P(y,y) at most one, requires in this case.

Even if ?ij is an analytic function, the
rank condition may restrict its local behaviour. Take
again n = 2 and assume That the curvature of a curve where
P(x) 1is a constant vanishes at some point. Then the rank
condition regquires that the Gaussian curvature of the sur-
face T = @(x) also vanish at that point.

Conslder again a fixed x not Iin L, . In view of

(9) and because of S_ = Sy _ =0 for > r +the condition
[ £
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(10) reduces to T > o~ where

— - Sp
F=0(x) = max -] .
14PST '\ X Sfml
Let this maximum be attained for P = f,. For the coefficients

of the characteristic equation of Q{y,y)
by T we then have

T =8, +0 k- > 0

i P 2

the equality gign being valid for
= 0 for
fb. This gives

bove, this implies T

f =

Y

ticular, for

(11)

For each fixed x
we therefore have

M
12 = O
(12) Filr

59( x?—

L= for
F >'.f3’

not in Lod

with ¢ replaced

f>: 1y 000,Ty

As mentioned a-
hence,; 1in par-

and T = qD(X)

3
' o2 (- e ) °

where the sup has to be taken over all x € D for which

PiE)=1.

Thus, we have the further necessary condition:

C. If for a twice differentiable,
strictly increasing function F(7),

% LTS B,

ig convex, then
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Filop ) & SU*E (’ o )

Conversely, let there be given a twice differentiable
function T = gv(x), X &D, and a twice differentiable, strict-
1y increasing function F(7T), X g T< B, where o« = 1inf @
and ﬁ = sup ¢ , such that conditions A, B, and C are satis-
filed. Then f£(x) = F{@(x)) is convex in D. We have %o

show that the quadratic form = flJy yJ
1,
definite for each x & D. For the points =x & L, ., 1if any,

£his 1is obvicusly the case as mentioned at the beginning of
this sectlion. For =x not in L, we have to show that
Q(y,y) 1is positive semidefinite. Because of C,

is positive semi-~

g

Q(yay) = z' gpljy ',ST + =T (Z ?yi
. _}_’

)2

v

s
iy .
2 Pi¥iYy - oo (B @y,

Tt therefore suffices to prove that the latter form, call i1t
Q' (y,y) , is positive semidefinite. From (3) and (9) it is seen
that the coefflcients of 1ts characteristic equation are

. ) Sr * -1
Tﬁ. = Sf - S* Sf'lﬁ f’-.., yoooglle
r-1

.
Now, S? = Sf-l'z 0 for f =r 4+ 1,...,n, because of B.
Hence

T,V = 0, £ =r,rtl,...,n,

which shows that the rank of Q'(y,y) is at most » - 1. On
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the other hand, Q'(y,y) restricted to the hyperplane
*

A ?iyi = 0 agrees with P (y,y). Because of B,

i

*
P (y,y) has r» - 1 positive characteristic roots.
Hence Q'{y,y) must have the same property. This
proves the statement.
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HISTORICAL NOTES
CHAPTER I
CONVEX CONES

Sectiong 1 - 6. Important contributions to the theory of

convex cones are contained {(more or less explicitly) in Minkowski's
posthumous paper [48]. The basic paper on the subject is, how-
ever, Part II of Steinitz's paper [57]. Practially all the con-
cepts and results of Sections 1 - 6 are to be found in this

paper. Also many of the proofs given here are based on ldeas

due to. Steinitz. Polyhedral convex cones have been the subject

of several more recent expositions, namely Weyl [66] (with

purely algebraic metheds), Gale [21], Gerstenhaber [24].

Section 7. As mentioned in the %Lext, the theory of (poly-
hedral) convex cones is closely related to the theory of
(finite) systems of linear inequalities. For the latter theocry
and its variocus geometrical interpretations the reader is re-
ferred to Dines and McCoy [16] and especially to the disserta-
tion of Motzkin [49]. Included in the latter is a very com-
plete bibliography ﬁp to 1934, Of more recent papers Dinesg
[14], Biumenthal [5], [6], Levi [#42], La Menza [40], Nagy [50]
may be mentioned. Further references may be found in Contri-
butions to the Theory of Games {Annals of Mathematics Study
24, Princeton, 1950).

For the second interpretation used in Section 7 see also

Gale {21]. The orem 17 for polyhedral cones has been announced
by Tucker [63]; the coroilaries III - VI are likewise due to
Tucker.

CHAPTER II

CONVEX SETS
For the literature up to 1934 concerning baslic properties
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of convex sets the reader is referred to the report [8] by
Bonnegen and the author. Atfention is called to the disser-
tation of Straszewicz [6C] which gives a -comprehensive
account for compact sets and to Part I of Steinitz [57] which
deals with arbitrary convex sets. For convex polyhedra see
also Kirchberger [36] and especially Weyl [66]. More recent,
mainly expository articles are Dines [14], Botts (9], Bate-
man [3], Macbeath [45]., TFor a generalization of the concept
of convex sets see (Greenand Gustin [25].

Section 2. In Proposition 6 (stating that every point
of the convex hull cf a peint set M 1is a centroid of at most
n+ 1 points of M) the maximal number n + 1 can be re-
placed by n 1f the set M has certaln properties of
connectedness. See (8] p. 9 for references to the first papers
on this subject. Further references are Bunt [11], Hanner
[281], and especially Hanner and RAdstrém [29]. The following
question is likewise connected with Proposition 6: What is
the smallest positive Integer p with the property that every
point 2z relative iaterior to the convex hull of a set M of
linear dimensicrn d > 0O 1is relative infterior to the convex
hull of a subgset of M with lilnear dimension d consisting
of at mest p points? Thne answer is p = 2d ag is easily
gseen by applying the Corollary to Theorem 8 {Chapter I) to
the cone with verfex =z consisting of the rays which Join
2 with the points of M. This result (essenfially due to
Steinitz) cccurs implisitly in the discussion of systems of
lirear inegqualities of the form Ax > O. (Cf. Chapter I,
Section 7 and e.g. Dines and McCoy [16], Dires [14].) A
direct proof has recently been gilver by Gustin [26].

Section 4. Projecting cones and normal cones were in-

troduced by Minkowski [48], the cones of directions of bound-
edness and asymptotic cones by Steinitz [57]. For the theory
of asymptotic cones and various applications see Stoker [58].
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The concept of s-convexity (under the name of even convexity)
ig introduced in the authorts paper [10].

Section 6. The Separation Theorem 27 is due to Minkowskl
[48]. The useful statement 28 i1g slightly more general. Theorem
I of Klee's paper [37] may be considered as & generaligation af
Proposition 27 to an arbitrary finite number of compact convex
sets.

Section 7. TFor literature concerning extreme points and
supports see [8], p. 16, further, for polyhedra, Weyl [66].
Straszewicz [61] has shown that in Proposition %3 it is suffi-
‘cient to consider "exponed points® instead of extreme points.
An exponed point of a closed convex set 1s by definition a
point of the set through which there is a (supporting) hyper-
plane having no other pointg in common with the set.

Section 8. Convex sets in projective spaces have been

considered by Steinitz [57], Part III. (For a problem in
connection with the definition see alsc Xreser [38].) The polarity
with respect to the‘unit sphere has been introduced by Minkowski
(48], p. 146-7; ef. alsoc Haar [27], Helly (31}, von Neumann [65],
Young [671], Bateman {3]. For generalizations to certain un-
bounded sets see Radstrdm [54), Loreh [44}. Arbitrary polari-

ties have been consildered by'Steinitz 1571, Part III, and, as

in Section 8, for sets which are not necessarily closed or

open, by the author [10].

CEAPTER III

CONVEX FUNCTIONS

For the history of the theory of convex functions, various
applications, and generalizatlions as well as extensive bibli-
ographies the reader is referred to Popoviciu [51] and Becken-
bach [4]. Apart from some references to basic papers, only
more recent papers dealing or connected with the topicsg of this
report are quoted in the sequel. A modern, deftaliled exposition
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of many basic propertles of convex functions is given in Haupt,
Aumann, Pauc [30], I, Section 4.8, Section 5.4.2.1, Section
5.5, II, Section.2.2.5.

Section 1. Proposition 4 which comprises many of the
classical ihequalities of analysis seems to have been the
start of the theory (H6lder [32], Brunn [10], and the basic
paper Jensen [34].) Convex functions defined over arbitrary
point sets have Dbeen considered by Galvani [23], Tortoriei [62],
and especially Popoviciu [51]. Homogeneous convex functions
{gavge functions, supports_fuhctions) were introduced by
Minkowski [47], [48]. PFor further references see [8] Section
L. A recent paper is Rédet [68]. B8ee algo the exposition by
Bateman [3]. B

It should be pointed out that Propositions 5, 10, 11, 14,
which for gystematic reasons are deduced directly from the
definition of convex functioné,'are immediate conseqguences of
the existence of a'Support through every point x,f(x) (proved
in Section 4). | -

Sections 2 - Qi-fFor-reférEnces concerning the well-krnown

continuity'properties of convexX functions see Popovieciu [51].
The qaeétipn whether a convex furction is necessarily absolute-~
1y continuous has been discusséd by Friedman [20], the answer
peing affirmative for n = 1"only. For the behaviour of a
convex function at the boundary of its domain (Propositions
pL-26Y see the author's paper [18].

The first proofs of the existence of the one-sgided de-~
rivatives of a convex function of one variable and of the
directional derivative of a convex function of geveral
variables se€em to have been given by Stelz [59], p. 35-36
and Galvanl {2%]. The latter concept has been applied to
the study of homogeﬁeous convex functions by Bonnesen and
the author [8], Section 4. The discussion of the direc-
tional derivatives of arbitrary convex functions as given in
the present Section 4 probably has not been published
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elsewhere. A new approach tc the study of certain smoocthness
properties of convex functions has been made by Anderson and
Klee [2]. Busemann and Feller [12] and Alexandroff [1] have
proved the almost everywhere existence of a.second differential
of a convex function of several variables. A new definition

of smooth homogeneous convex functions based on the definite-
ness of the quadratic form occurring in Propesition 3% has been
proposed by Lorch [44].

Section 5. The conjugate of a convex funciion of one
variable has been defined by Mandelbrojt [46]. For the general
concept and some of its properties see the author's paper [18].
The inequality stated in Proposition 38 has a well-known
analogue for homogeneous functions: Let F(x) and H{&)
be the gauge function and the support function, (respectively),
of a convex body € containing the origin in its interior.
Then

xtE < F(x)H(E)

for all x and & . (Cf. Helly [31], von Neumann [65], Young
[671, Loreh [L44].) This may be considered as a special case
of Proposition 38. For, put’ f(x) = 0 for x €, that is
for F(x) ¢ 1. Then ?(f) = H(;%’) and hence

x'§ < H(E) ~ for F(x) ¢ 1.

- Because of the homogeneity of ¥ this 1s equivaient to the
above 1nequality.

The rest of Section ¥ ig unpublished. The corcllary,
Proposition 43, is a slight generallzation of a theorem due
to .Bohnenblust, Karlin, Shapley [71. Helly's Theorem, which
appears here as a corollary (Proposition 45) and various
generalizations have been the subject of many recent papers:
Vincensini [64], Robinson [56], Lennér [41}, Dukor [17], Rado
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[53], Horn [3%], Rademacher and Schoenberg [521, Karlin and
Shapiley [35], Levi [43], Klee [37]. For references %to the
older papers see [8] p. 3. Proposition 46 generalizes Minkows-
kil'g well-kncwn characterization of the support functions of
(compact) convex bedles. See [8], p. 28 for the older litera-
ture. Further references are Rédei [55], Bateman [3]. The
determination of the suppcort funcfion of the intersection
of cenvex sets Tollowing Proposition 46 seems to be noted
for the first time by F. Riesz (who communicated it to Lannér,
see [4110)

Section 6. Unpublished. The results gensralize the

duality property of linear programming prchlems proved by Gale,
Kuhn, Tucker [22] to non-linear problems of the type congider-
ed by Kuhn and Tucker [39}i. The consideration of completely
arbitrary closed convex functions 1s essential for the formu-
lation and the validity of a simple duality theorem. For the
theory of programming problems in general the reader is re-
ferred to Activity Analysisg of Production and Allocation

(Cowleg Commission Monograph 13, New York 1951).

Section 7. The problem of the exigtence and the deter-
mination of a convex functlion with prescribed level sets was
raised and studied by de Finetti [13] uhder the assumption that
the domain D and, thus, all level gets are compact énd con-
vex. In this case the Conditions I - VI are trivially satisfied.
The part of Section 7 dealing with these conditions in the
general case is not publighed. QCondition VII 1g a generali-
zation to the case congidered here of a result cf de Finettl.
For details of the construction of a convex function the read -
er is referred to de Finettl's paper.

Section 8. Unpublished. In a footnote de Finetti [13]
states that in his case of a compact D the smoothness of
the function ¢ (x) implies the existence of an F(7z ) such
that F{@ (x)) 1s convex. This contradicts the results of
Section 8 of the present report. Apparently de Finetti had
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overlooked the fact that the smoothness of q? does not 1mply
the smoothness of the support function h(E ,T ). This is only
the case if the rank r - 1 introduced in Section 8 has its
maximal value n - 1 everywhere in D. Then the quantity o
{see equation (11)) is easily found to be

— _ 3°n dn
-3 /2

At points where r < n, the second derivative may not exist
even if ?9 is analytic.
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INDEX OF DEFINITIONS

Asymptotic cone, 42 Convex Cone, 3

Barrier, 45 Convex family, 118

QB(M)’ u6 Convex function, 57
closed, 78

Boundary ray, 2
strictly, 57

Convex hull of a cone, 8
of a set, %6
Convex set, 36

Boundary ray, relative, 3
Bound of a set, 45

Centroid, 36
Closed cone, 2 extreme point of, 51

Closed convex function, T8 p-Convexity of a hyperplane

Concave function, 57 set, B2

Concave function, of a point set, 52
strictly, 57 s-Convexity, 42

Cone, 1
agymptotic, 42 {?’f]’_ST
closed, 2 Dlmigié?n% linear, of &

convex, 3 of a set, 39

Dimension space S{M) of a
dimension space S{M) of, 3 cone, 3

convex hull of, 8

extreme ray of, 20 Directional derivative, 79
extreme support cf, 21
linedlity of, 3

lineality space of, 3

g -neighborhood of a ray, 2
Exterior ray, 2
Extreme point of a convex

linear dimensiocn of, 3 set, 51

normal, 9 Extreme ray of a cone, 20

of directions of Extreme support of a cone, 21
boundedness, 46

open, 2 Flat, 32

polar, 10 oriented, 45

polyhedral, 22 supporting, 45

projecting, 41 non-vertical, 88

support of, 6 vertical, 88

Conjugate Function, 90 Function, closed convex, T8

ave
Convergence of a seguence concave, 57

of rays, 2 conjugate, 90
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runction (continued)
convex, 57
plecewise lirnear, 109
positively homogeneous, 66
quagi-convex, 117
strictly concave, 57
gstrictly convex, 57

Hyperplane set, p-convexity of, 52

Iinterior ray, 2

Level get, 115

Limit ray, 2

ILireallty of a cone, 3
Lineality space of a cone, 3

Linear combination of points, 29

Linearly dependent points, 31
Linear dimension of a cone, 3
of a set, 39

Metric on rays, 1

Neighborhood of a ray, 2
Non-vertical flat, 88
Normal cone, 9

Cpen cone, 2

Oriented flat, 45

p-Convexity of a hyperplane
set, 52
of a point set, B2

p~Flat, 32

p-Simplex, 32

Piecewise linear function, 10Q

Point set, p-convexity of, 52

Point, relative boundary, 39
relative interilor, 39

Polar cone, 10

Polyhedral cone, 22
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Pogitively homogeneous
function, 66

Z ~profile, 122
Projecting cone, 41

Quasi-convex family, 118
Quasi-convex function, 117

Ray, 1

boundary, 2

£ -neighborhood of, 2
exterior, 2

extreme, 20
interior, 2

1limit, 2

metric, 1

relative boundary, 3
relative interior, 3
topology, 1

Rays, convergence of a
sequence, 2

Relative interior point,39
Relative interior ray, 3
Relative boundary point, 39
Relative boundary ray, 3

s-Convexity, 42
Set, barrier of, 45
bound of, 45
sonvex, 34
convex hull of,36
linear dimension of, 39
support of, 45
suppert function of, 67
supporting flat of, 45
Simplex, 32

Strictly concave
function, 57

Strictly convex function, 57



Support, extreme, of a cone, 21 Topology on rays, 1
function of a set, 67 Transformable families, 117
of a ccne, 6
of a sget, 45

Supporting flat of a set, 45

Vertical flat, 88
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