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Figure 1: Convex hull of three points (N = 3) in R
n (n = 3) is shaded. The

small × denotes the geometric center.

1 Euclidean Distance Matrix

We may intuitively understand a Euclidean distance matrix, an EDM D ∈
R

N×N, to be an exhaustive table of distance-squared between points from a
list of N points in some Euclidean space R

n. Each point is labelled ordinally,
hence the row or column index of an EDM, i or j ∈ {1 . . . N}, individually
addresses all the points in the list.

Consider the following example of an EDM for the case N = 3.

D =





0 1 5
1 0 4
5 4 0



 (1)

Observe that D has N2 entries, but only N(N − 1)/2 pieces of information.
In Figure 1 we show three points in R

3 that can be arranged in a list to cor-
respond to this particular D. Such a list is not unique because any rotation,
reflection, or offset of the points would produce the same D.
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1.1 Metric space requirements

If by dij we denote the i, jth entry of the EDM D, then the distances-squared
{dij, i, j = 1 . . . N} must satisfy the requirements imposed by any metric
space:

1.
√

dij ≥ 0, i 6= j (positivity)

2. dij = 0, i = j (self-distance)

3. dij = dji (symmetry)

4.
√

dik +
√

dkj ≥
√

dij (triangle inequality)

where
√

dij is the Euclidean distance metric in R
n. Hence an EDM must

be symmetric D = DT and its main diagonal zero, δ(D) = 0. If we assume
the points in R

n are distinct, then entries off the main diagonal must be
strictly positive {

√

dij > 0, i 6= j}. The last three metric space requirements

together imply nonnegativity of the {
√

dij}, not strict positivity, [6] but
prohibit D from having otherwise arbitrary symmetric entries off the main
diagonal. To enforce strict positivity we introduce another matrix criterion.

1.1.1 Strict positivity

The strict positivity criterion comes about when we require each xl to be
distinct; meaning, no entries of D except those along the main diagonal
δ(D) are zero. We claim that strict positivity {dij > 0, i 6= j} is controlled
by the strict matrix inequality −V T

NDVN ≻ 0, symmetry DT = D, and the
self-distance criterion δ(D) = 0.1

To support our claim, we introduce a full-rank skinny matrix VN having
the attribute R(VN ) = N (1T );

VN =
1√
N















−1 −1 · · · −1
1 0

1
. . .

0 1















∈ R
N×N−1 (2)

1Nonnegativity is controlled by relaxing the strict inequality.
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If any square matrix A is positive definite, then its main diagonal δ(A) must
have all strictly positive elements. [4] For any D = DT and δ(D) = 0, it
follows that

− V T
NDVN ≻ 0 ⇒ δ(−V T

NDVN ) =











d12

d13
...

d1N











≻ 0 (3)

Multiplication of VN by any permutation matrix Ξ has null effect on its
range. In other words, any permutation of the rows or columns of VN pro-
duces a basis for N (1T ); id est, R(ΞVN ) = R(VNΞ) = R(VN ) = N (1T ).
Hence, the matrix inequality −V T

NDVN ≻ 0 implies −V T
N ΞTDΞVN ≻ 0 (and

−ΞT V T
NDVNΞ ≻ 0). Various permutation matrices will sift the remaining dij

similarly to (3) thereby proving their strict positivity.2 ♦

1.2 EDM definition

Ascribe the points in a list {xl ∈ R
n, l = 1 . . . N} to the columns of a matrix

X;
X = [x1 · · · xN ] ∈ R

n×N (4)

The entries of D are related to the points constituting the list like so:

dij = ‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2xT
i xj (5)

For D to be EDM it must be expressible in terms of some X,

D(X) = δ(XTX)1T + 1δT(XTX) − 2XTX (6)

where δ(A) means the column vector formed from the main diagonal of the
matrix A. When we say D is EDM, reading directly from (6), it implicitly
means D = DT and δ(D) = 0 are matrix criteria (but we already knew that).
If each xl is distinct, then {dij > 0, i 6= j}; in matrix terms, −V T

NDVN ≻ 0.
Otherwise, −V T

NDVN º 0 when each xl is not distinct.

2The rule of thumb is: if Ξ(i, 1) = 1, then δ(−V T
N ΞTDΞVN ) is some permutation of

the nonzero elements from the ith row or column of D.
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1.3 Embedding Dimension

The convex hull of any list (or set) of points in Euclidean space forms a closed
(or solid) polyhedron whose vertices are the points constituting the list; [2]

conv{xl, l = 1 . . . N} = {Xa | aT1 = 1, a º 0} (7)

The boundary and relative interior of that polyhedron constitute the convex
hull. The convex hull is the smallest convex set that contains the list. For the
particular example in Figure 1, the convex hull is the closed triangle while
its three vertices constitute the list.

The lower bound on Euclidean dimension consistent with an EDM D is
called the embedding (or affine) dimension, r. The embedding dimension r
is the dimension of the smallest hyperplane in R

n that contains the convex
hull of the list in X. Dimension r is the same as the dimension of the convex
hull of the list X contains, but r is not necessarily equal to the rank of
X.3 The fact r ≤ min {n,N − 1} can be visualized from the example in
Figure 1. There we imagine a vector from the origin to each point in the
list. Those three vectors are linearly independent in R

3, but the embedding
dimension r equals 2 because the three points lie in a plane (the unique plane
in which the points are embedded; the plane that contains their convex hull),
the embedding plane (or affine hull). In other words, the three points are
linearly independent with respect to R

3, but dependent with respect to the
embedding plane.

Embedding dimension is important because we lose any offset component
common to all the xl in R

n when determining position given only distance
information. To calculate the embedding dimension, we first eliminate any
offset that serves to increase the dimensionality of the subspace required to
contain the convex hull; subtracting any point in the embedding plane from
every list member will work. We choose the geometric center 4 of the {xl};

cg =
1

N
X1 ∈ R

n (8)

Subtracting the geometric center from all the points like so, X − cg1
T, trans-

lates their geometric center to the origin in R
n. The embedding dimension

3rank(X) ≤ min {n,N}
4If we were to associate a point-mass ml with each of the points xl in a list, then their

center of mass (or gravity) would be c = (
∑

xl ml)/
∑

ml. The geometric center is the
same as the center of mass under the assumption of uniform mass density across points. [5]
The geometric center always lies in the convex hull.
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is then r = rank(X − cg1
T ). In general, we say that the {xl ∈ R

n} and their
convex hull are embedded in some hyperplane, the embedding hyperplane
whose dimension is r. It is equally accurate to say that the {xl − cg} and
their convex hull are embedded in some subspace of R

n whose dimension is
r.

It will become convenient to define a matrix V that arises naturally as
a consequence of translating the geometric center to the origin. Instead of
X − cg1

T we may write XV ; viz.,

X − cg1
T = X − 1

N
X11T = X(I − 1

N
11T ) = XV ∈ R

n×N (9)

Obviously,

V = V T = I − 1

N
11T ∈ R

N×N (10)

so we may write the embedding dimension r more simply;

r = dim conv{xl, l = 1 . . . N}
= rank(X − cg1

T )
= rank(XV )

(11)

where V is an elementary matrix and a projection matrix.5

r ≤ min {n,N − 1}
⇔

r ≤ n and r < N
(12)

5A matrix of the form E = I − αuvT where α is a scalar and u and v are vectors
of the same dimension, is called an elementary matrix, or a rank-one modification of the

identity. [3] Any elementary matrix in R
N×N has N − 1 eigenvalues equal to 1. For the

particular elementary matrix V , the remaining eigenvalue equals 0. Because V = V T

is diagonalizable, the number of zero eigenvalues must be equal to dimN (V T ) = 1, and
because V T

1 = 0, then N (V T ) = R(1). Because V = V T and V 2 = V , the elementary
matrix V is a projection matrix onto its range R(V ) = N (1T ) having dimension N − 1.
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1.4 Rotation, Reflection, Offset

When D is EDM, there exist an infinite number of corresponding N -point
lists in Euclidean space. All those lists are related by rotation, reflection,
and offset (translation).

If there were a common offset among all the xl, it would be cancelled in
the formation of each dij. Knowing that offset in advance, call it c ∈ R

n, we
might remove it from X by subtracting c1T . Then by definition (6) of an
EDM, it stands to reason for any fixed offset c,

D(X − c1T ) = D(X) (13)

When c = cg we get

D(X − cg1
T ) = D(XV ) = D(X) (14)

In words, inter-point distances are unaffected by offset.

Rotation about some arbitrary point or reflection through some hyper-
plane can be easily accomplished using an orthogonal matrix, call it Q. [9]
Again, inter-point distances are unaffected by rotation and reflection. We
rightfully expect that

D(QX − c1T ) = D(Q(X − c1T )) = D(QXV ) = D(QX) = D(XV ) (15)

So in the formation of the EDM D, any rotation, reflection, or offset
information is lost and there is no hope of recovering it. Reconstruction of
point position X can be guaranteed correct, therefore, only in the embedding
dimension r; id est, in relative position.

Because D(X) is insensitive to offset, we may safely ignore it and consider
only the impact of matrices that pre-multiply X; as in D(QoX). The class
of pre-multiplying matrices for which inter-point distances are unaffected is
somewhat more broad than orthogonal matrices. Looking at definition (6),
it appears that any matrix Qo such that

XTQT
oQoX = XTX (16)

will have the property D(QoX) = D(X). That class includes skinny Qo hav-
ing orthonormal columns. Fat Qo are conceivable as long as (16) is satisfied.

6



2 EDM criteria

Given some arbitrary candidate matrix D, fundamental questions are: What
are the criteria for the entries of D sufficient to belong to an EDM, and what
is the minimum dimension r of the Euclidean space implied by EDM D?

2.1 Geometric condition

We continue considering the criteria necessary for a candidate matrix to be
EDM. We provide an intuitive geometric condition based upon the fact that
the convex hull of any list (or set) of points in Euclidean space R

n is a closed
polyhedron.

We assert that D ∈ R
N×N is a Euclidean distance matrix if and only if

distances-squared from the origin

{‖p‖2 = −1

2
aT V TDV a | aT1 = 1, a º 0} (17)

are consistent with a point p ∈ R
n in some closed polyhedron that is embed-

ded in a subspace of R
n and has zero geometric center. (V as in (10).)

It is straightforward to show that the assertion is true in the forward
direction. We assume that D is indeed an EDM; id est, D comes from a list
of N unknown vertices in Euclidean space R

n; D = D(X) as in (6). Now
shift the geometric center of those unknown vertices to the origin, as in (9),
and then take any point p in their convex hull, as in (7);

{p = (X − cg1
T )a = XV a | aT1 = 1, a º 0} (18)

Then any distance to the polyhedral convex hull can be formulated as

{pTp = ‖p‖2 = aT V TXTXV a | aT1 = 1, a º 0} (19)

Rearranging (6), XTX may be expressed

XTX =
1

2
(δ(XTX)1T + 1δT(XTX) − D) (20)

Substituting (20) into (19) yields (17) because V T1 = 0.
To validate the assertion in the reverse direction, we must demonstrate

that if all distances-squared from the origin described by (17) are consistent
with a point p in some embedded polyhedron, then D is EDM. To show that,

7



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y
1

y 2

Figure 2: Illustrated is a portion of the semi-infinite closed slab V y º − 1
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.

we must first derive an expression equivalent to (17). The condition aT1 = 1
is equivalent to a = 1

N
1 + V y, where y ∈ R

N , because R(V ) = N (1T ).
Substituting a into (17),

{‖p‖2 = −1

2
yT V TDV y | V y º − 1

N
1, −V TDV º 0} (21)

because V 2 = V . Because the solutions to V y º − 1
N
1 constitute a semi-

infinite closed slab about the origin in R
N(Figure 2), a ball of radius 1/

√
N !

centered at the origin can be fit into the interior. [10] Obviously it follows that
−V TDV must be positive semidefinite (PSD).6 We may assume −1

2
V TDV is

symmetric7 hence diagonalizable as QΛQT ∈ R
N×N. So, equivalent to (17) is

{‖p‖2 = aT QΛQT a | aT1 = 1, a º 0, Λ º 0} (22)

consistent with an embedded polyhedron by assumption. It remains to show
that D is EDM. Corresponding points {p = Λ1/2QT a | aT1 = 1, a º 0, Λ º 0}
∈ R

N(n = N)8 describe a polyhedron as in (7). Identify vertices XV =

6 ‖p‖2 ≥ 0 in all directions y, but that is not a sufficient condition for ‖p‖2 to be
consistent with a polyhedron.

7The antisymmetric part (− 1
2V TDV −(− 1

2V TDV )T )/2 of − 1
2V TDV is benign in ‖p‖2.

8From (12) r < N , so we may always choose n equal to N when X is unknown.

8



Λ1/2QT ∈ R
N×N(X not unique, Section 1.4). Then D is EDM because it can

be expressed in the form of (6) by using the vertices we found. Applying (14),

D = D(X) = D(XV ) = D(Λ1/2QT ) (23)

♦

9



2.2 Matrix criteria

In Section 2.1 we showed

D EDM
⇔

{‖p‖2 = −1
2
aT V TDV a | aT1 = 1, a º 0} (17)

is consistent with some embedded polyhedron
⇒

−V TDV º 0

(24)

while in Section 1.1.1 we learned that a strict matrix inequality −V T
NDVN ≻ 0

{dij > 0, i 6= j}, −V TDV º 0
⇐

D = DT, δ(D) = 0, −V T
NDVN ≻ 0

(25)

yields distinction. Here we establish the necessary and sufficient conditions
for candidate D to be EDM; namely,

D EDM
⇔

D = DT, δ(D) = 0, −V T
NDVN ≻ 0

(26)

We then consider the minimum dimension r of the Euclidean space implied
by EDM D.
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Given D = DT, δ(D) = 0, and −V TDV ≻ 0, then by (24) and (25) it is
sufficient to show that (17) is consistent with some closed polyhedron that is
embedded in an r-dimensional subspace of R

n and has zero geometric center.
Since −1

2
V TDV is assumed symmetric, it is diagonalizable as QΛQT where

Q ∈ R
N×N ,

Λ =

[

Λr 0
0 0

]

∈ R
N×N (27)

and where Λr holds r strictly positive eigenvalues. As implied by (10), 1∈
N (−1

2
V TDV ) ⇒ r < N like in (12),9 so Λ must always have at least one 0

eigenvalue. Since −1
2
V TDV is also assumed PSD, it is factorable;

− 1

2
V TDV = QΛ1/2QT

oQoΛ
1/2QT (28)

where Qo ∈ R
n×N is unknown as is its dimension n. Qo is constrained,

however, such that its first r columns are orthonormal. Its remaining columns
are arbitrary. We may then rewrite (17):

{pTp = aT QΛ1/2QT
oQoΛ

1/2QT a | aT1=1, aº0, Λ1/2QT
oQoΛ

1/2 = Λ º 0} (29)

Then {p = QoΛ
1/2QT a | aT1 = 1, a º 0, Λ1/2QT

oQoΛ
1/2 = Λ º 0} ∈ R

n

describes a polyhedron as in (7) having vertices

XV = QoΛ
1/2QT ∈ R

n×N (30)

whose geometric center 1
N

QoΛ
1/2QT1 is the origin.10 If we like, we may

choose n to be rank(QoΛ
1/2QT ) = rank(Λ) = r which is the smallest n

possible.11

♦

9For any square matrix A, the number of 0 eigenvalues is at least equal to dimN (A).
For any diagonalizable matrix A, the number of 0 eigenvalues is exactly equal to dimN (A).

10For any A, N (ATA) = N (A). [9] In our case,
N (− 1

2V TDV ) = N (QΛQT ) = N (QΛ1/2QT
o QoΛ

1/2QT ) = N (QoΛ
1/2QT ) = N (XV ).

11If we write QT =





qT
1
...

qT
N



 in terms of row vectors, Λ=







λ1 0
. . .

λr
0 0






in terms of eigen-

values, and Qo =[qo1
· · · qoN

] in terms of column vectors, then QoΛ
1/2QT =

r
∑

i=1

λ
1/2
i qoi

qT
i

is a sum of r linearly independent rank-one matrices. Hence the result has rank r.
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Recall from (12), r < N and r ≤ n. n is finite but otherwise unbounded
above. Given an EDM D, then for any valid choice of n, there is an X∈ R

n×N

and a Qo∈ R
n×N having the property Λ1/2QT

oQoΛ
1/2 = Λ, such that

D = D(X) = D(XV ) = D(QoΛ
1/2QT ) = D(Λ1/2QT ) (31)

2.2.1 Metric space requirements vs. matrix criteria

In Section 1.1.1 we demonstrated that the strict matrix inequality −V T
NDVN ≻ 0

replaces the strict positivity criterion {dij > 0, i 6= j}. Comparing the three
criteria in (26) to the three requirements imposed by any metric space, enu-
merated in Section 1.1, it appears that the strict matrix inequality is simul-
taneously the matrix analog to the triangle inequality. Because the criteria
for the existence of an EDM must be identical to the requirements imposed
by a Euclidean metric space, we may conclude that the three criteria in (26)
are equivalent to the metric space requirements. So we have the analogous
criteria for an EDM:

1. −V T
NDVN º 0 (positivity)

2. δ(D) = 0 (self-distance)

3. DT = D (symmetry)

4. −V T
NDVN º 0 (triangle inequality)

If we replace the inequality with its strict version, then duplicate xl are not
allowed.
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2.3 Cone of EDM

13



3 Map of the USA

Beyond fundamental questions regarding the characteristics of an EDM, a
more intriguing question is whether or not it is possible to reconstruct relative
point position given only an EDM.

The validation of our assertion is constructive. The embedding dimen-
sion r may be determined by counting the number of nonzero eigenvalues.
Certainly from (11) we know that dimR(XV ) = r, which means some rows
of X found by way of (??) can always be truncated.

We may want to test our results thus far.
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4 Spectral Analysis

The discrete Fourier transform (DFT) is a staple of the digital signal process-
ing community. [7] In essence, the DFT is a correlation of a windowed se-

quence (or discrete signal) with exponentials whose frequencies are equally
spaced on the unit circle.12 The DFT of the sequence {f(i) ∈ R, i = 0 . . . n − 1}
is, in traditional form,13

F (k) =
n−1
∑

i=0

f(i) e−ji2πk/n (32)

for k = 0 . . . n − 1 and j =
√
−1. The implicit window on f(i) in (32) is

rectangular. The values {F (k) ∈ C, k = 0 . . . n−1} are considered a spectral
analysis of the sequence f(i); id est, the F (k) are amplitudes of exponentials
which when combined, give back the original sequence,

f(i) =
1

n

n−1
∑

k=0

F (k) eji2πk/n (33)

The argument of F , the index k, corresponds to the discrete frequencies
2πk/n of the exponentials eji2πk/n in the synthesis equation (33).

The DFT (32) is separable in the real and the imaginary part; meaning,
the analysis exhibits no dependency between the two parts when the sequence
is real; viz.,

F (k) =
n−1
∑

i=0

f(i) cos(i2πk/n) − j
n−1
∑

i=0

f(i) sin(i2πk/n) (34)

It follows then, to relate the DFT to our work with EDMs, we should sep-
arately consider the Euclidean distance-squared between the sequence and
each part of the complex exponentials. Augmenting the real list of polyhe-
dral vertices {xl ∈ R

n, l = 1 . . . N} will be the new imaginary list {yl ∈ R
n,

l = 1 . . . N}, where

x1 = [f(i), i = 0 . . . n − 1]
y1 = [f(i), i = 0 . . . n − 1]
xl = [ cos(i2π(l − 2)/n), i = 0 . . . n − 1], l = 2 . . . N
yl = [− sin(i2π(l − 2)/n), i = 0 . . . n − 1], l = 2 . . . N

(35)

12the unit circle in the z plane; z = esT where s = σ + jω is the traditional Laplace
frequency, ω is the Fourier frequency in radians 2πf , while T is the sample period.

13The convention is lowercase for the sequence and uppercase for its transform.
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where N = n + 1, and where the [ ] bracket notation means a vector made
from a sequence. The row-1 elements (columns l = 2 . . . N) of EDM Dx are

dx
1l =

n−1
∑

i=0

(xl − x1)
2

=
n−1
∑

i=0

(cos(i2π(l − 2)/n) − f(i))2

=
n−1
∑

i=0

cos2(i2π(l − 2)/n) + f 2(i) − 2f(i) cos(i2π(l − 2)/n)

= 1
4
(2n + 1 + sin(2π(l(2n−1)+2)/n)

sin(2π(l−2)/n)
) + 1

n

n−1
∑

k=0

|F (k)|2 − 2ℜF (l − 2)

(36)

where ℜ takes the real part of its argument, and where the Fourier summa-
tion is from the Parseval relation for the DFT.14 [7] For the imaginary vertices
we have a separate EDM Dy whose row-1 elements (columns l = 2 . . . N) are

dy
1l =

n−1
∑

i=0

(yl − y1)
2

=
n−1
∑

i=0

(sin(i2π(l − 2)/n) + f(i))2

=
n−1
∑

i=0

sin2(i2π(l − 2)/n) + f 2(i) + 2f(i) sin(i2π(l − 2)/n)

= 1
4
(2n − 1 − sin(2π(l(2n−1)+2)/n)

sin(2π(l−2)/n)
) + 1

n

n−1
∑

k=0

|F (k)|2 − 2ℑF (l − 2)

(37)

where ℑ takes the imaginary part of its argument. In the remaining rows
(m = 2 . . . N, m < l) of these two EDMs, Dx and Dy, we have15

dx
ml =

n−1
∑

i=0

(cos(i2π(l − 2)/n) − cos(i2π(m − 2)/n))2

= 1
4
(4n + 2 + sin(2π(l(2n−1)+2)/n)

sin(2π(l−2)/n)
+ sin(2π(m(2n−1)+2)/n)

sin(2π(m−2)/n)
)

dy
ml =

n−1
∑

i=0

(sin(i2π(l − 2)/n) − sin(i2π(m − 2)/n))2

= 1
4
(4n − 2 − sin(2π(l(2n−1)+2)/n)

sin(2π(l−2)/n)
− sin(2π(m(2n−1)+2)/n)

sin(2π(m−2)/n)
)

(38)

14The Fourier summation
∑ |F (k)|2/n replaces

∑

f2(i); we arbitrarily chose not to mix
domains. Some physical systems, such as Magnetic Resonance Imaging devices, naturally
produce signals originating in the Fourier domain. [11]

15 lim
i→2

sin(2π(i(2n−1)+2)/n)
sin(2π(i−2)/n) = 2n − 1
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We observe from these distance-squared equations that only the first row and
column of the EDM depends upon the sequence itself. The remainder of the
EDM depends only upon the sequence length n.

17



To relate the EDMs Dx and Dy to the DFT in a useful way, we consider
finding the inverse DFT (IDFT) via either EDM. For reasonable values of
N , the number of matrix entries N2 can become prohibitively large. But the
DFT is subject to the same order of computational intensity. The matrix
form of the DFT is written

F = Wf (39)

where F = [F (k), k = 0 . . . n − 1], f = [f(i), i = 0 . . . n − 1], and the DFT

matrix is [8]

W = W T =



















1 1 1 · · · 1
1 e−j2πk/n e−j4πk/n · · · e−j(n−1)2πk/n

1 e−j4πk/n e−j8πk/n · · · e−j(n−1)4πk/n

1 e−j6πk/n e−j12πk/n · · · e−j(n−1)6πk/n

...
...

... · · · ...

1 e−j(n−1)2πk/n e−j(n−1)4πk/n · · · e−j(n−1)22πk/n



















(40)

When presented in this non-traditional way, the size of the DFT matrix
W ∈ R

n×n becomes apparent. It is obvious that a direct implementation of
(39) would require on the order of n2 operations for large n. Similarly, the
IDFT is

f =
1

n
WHF (41)

where we have taken the conjugate transpose of the DFT matrix.
The solution to the computational problem of evaluating the DFT for

large n culminated in the development of the fast Fourier transform (FFT)
algorithm whose intensity is proportional to n log(n). [7] It is neither our
purpose nor goal to invent a fast algorithm for doing this, we simply present
an example of finding the IDFT by way of the EDM. The technique we use
was developed in Section 2.1:

1. Diagonalize −1
2
V TDV as QΛQT ∈ R

N×N .

2. Identify polyhedral vertices XV = QoΛ
1/2QT ∈ R

n×N where Qo is an
unknown rotation/reflection matrix, and where Λ º 0 for an EDM.
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5 Matrix completion problem

Even more intriguing is whether the positional information can be recon-
structed given an incomplete EDM.
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A loose ends

r = rank(XV ) = rank(V TXTXV ) = rank(−V TDV )

−V TDV º 0 ⇔ −zTDz ≥ 0 on z ∈ N (1T )

tr(−1
2
V TDV ) = 1

N

∑

i,j

dij = 1
2N

1TD1

D(X) = D(XV ).
Then substitution of V TXTXV = −1

2
V TDV ⇒

D = δ(−1
2
V TDV )1T + 1δT(−1

2
V TDV ) + V TDV

A.1 Vw

Vw =























−1√
N

−1√
N

· · · −1√
N

1 + −1
N+

√
N

−1
N+

√
N

· · · −1
N+

√
N

−1
N+

√
N

1 + −1
N+

√
N

· · · −1
N+

√
N

...
...

. . .
...

−1
N+

√
N

−1
N+

√
N

· · · 1 + −1
N+

√
N























∈ R
N×N−1 (42)

V can be expressed in terms of the full rank matrix Vw; [1]

V = VwV T
w (43)

where V T
w Vw = I. Hence the positive semidefinite criterion can be expressed

instead as −V T
wDVw º 0.16

Equivalently, we may simply interpret V in the positive definite criterion
to mean any matrix whose range spans N (1T ). The fact that V can be ex-
pressed as in (43) shows that V is a projection matrix; all projection matrices
P can be expressed in the form P = QQT where Q is an orthogonal matrix.

16This is easily shown because V T
w Vw = I and −zT V TDV z ≥ 0 must be true for all z

including z = Vwy.
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