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1. Introduction. A combinatorial theorem [1; 3] usually referred to 
as "the marriage problem" or "the problem of distinct representa- 
tives" has the following matrix formulation; the convex hull of the 
set of all n by n permutation matrices is the set of all n by n doubly 
stochastic matrices. In this note the above theorem is generalized. 

The following notation and definitions will be used. A will repre- 
sent an n by n matrix with non-negative real entries aij; S will repre- 
sent the sum of all entries of A, S= Es Ej aij; Ri will represent the 
sum of the entries in the ith row and Cj will represent the sum of 
the entries in the jth column; M will represent the largest row or 
column sum of A, M =max (Ri, Cj). Also used will be the concept of 
a sub-permutation matrix of rank r. By this is meant a matrix P 
with the following properties: (1) each entry of P is either 1 or 0; 
(2) each row and each column of P contains at most one 1; (3) P con- 
tains exactly r entries equal to 1. In terms of this notation the theorem 
quoted above becomes; a matrix A lies in the convex hull of the set 
of all permutation matrices if and only if M= 1 and S = n. In [2] the 
authors of the present note obtain sufficient conditions in order that 
a matrix A with non-negative entries contain nonzero entries in the 
places occupied by 1 in a permutation matrix of rank r. In this note 
necessary and sufficient conditions are given in order that a matrix 
A lie in the convex hull of the sub-permutation matrices of rank 
n-i (i=O, 1 , 2, . , n-1). 

2. THE THEOREM. Let A be an n by n matrix whose entries are non- 
negative real numbers. A necessary and sufficient condition that A lie 
in the convex hull of all sub-permutation matrices of rank n - i is that 
S = n-i and (n-i)/n <_ -A< 1. 

PROOF. The necessity is obtained as follows. Let A = ,y ajPj 
where a,>O0, Ej ao = 1 and Pj is a sub-permutation matrix of rank 
n-i. Then each matrix ajPj has the sum of all its entries equal to 
(n-i)aj and each row or column sum has the value aj or 0. Hence 
S=(n-i)Zjaj=(n-i) and M1?<Ejaj=1. Also since n-i=S 
= Zj3Rj <nM, (n-i)/n <.?M. Hence S=n-i and (n-i)/n _ M< 1. 

To obtain the sufficiency we note that if S=n-i and (n-i)/n 

Received by the editors July 25, 1957. 
1 The research reported upon here was supported in part by the National Research 

Council of Canada and the Mathematical Institute of the Canadian Congress of 
Mathematics. 

253 



254 N. S. MENDELSOHN AND A. L. DULMAGE 

<M ? 1 then ZRj = ZCi = n - i. Also the numbers 1 -R, 
1-R2, , * * , 1 -Rn are non-negative and at least one of these is posi- 
tive if i>O. For if all of 1-R,, 1-R2, , * 1-Rn were 0 then 
Rj= 1 = M for all j so that S = n a contradiction. The matrix A is 
now augmented to a matrix A* by the addition of i rows and i col- 
umns as follows: a* =a8 if r and s are both less than or equal to n; 
a*=O if r and s are both greater than n; a*+t =(1-R,)/i for 
r= 1, 2, * ,n; t = 1,2, ***,;(n*(1 - CXi for u-=1, 2, * ,i; 
v = 1, 2, , n. The matrix A* is a doubly stochastic n+i by n+i 
matrix with zeros in the lower right hand i by i block. By the theorem 
quoted in the introduction A * = ZarP* where ar > Z, Ear = 1 and 
P* is an n+i by n+i permutation matrix. Furthermore, each P* has 
an i by i block of zeros in its lower right corner. Hence P* has 2i 
entries equal to 1 in its last i rows and i columns. If Pr is the n by n 
matrix in the upper left hand corner of P*, Pr contains (n +i) - 2i 
= n - i ones. Hence Pr, is a sub-permutation matrix of rank n - i. Also 
A = -2arPr. 
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