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THE APPROXIMATION OF ONE MATRIX BY

ANOTHER OF LOWER RANK
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The mathematical problem of approximating one matrix by an-
other of lower rank is closely related to the fundamental postulate
of factor-theory. When formulated as a least-squares problem, the
normal equations cannot be immediately written do~vn, since the ele-
ments of the approximate matrix are not independent of one another.
The solution of the problem is simplified by first expressing the mat-
rices in a canonic form. It is found that the problem always has a
solution which is usually unique. Several conclusions can be drawn
from the form of this solution.

A hypothetical interpretation of the canonic components of a
score matrix is discussed.

Introduction

If N individuals are each subjected to n tests, it is a fundamental
postulate of factor theory that the resulting n X N score matrix a
can be adequately approximated by another matrix fl whose rank r is
less than the smaller of n or N. Closely associated to this postulate
is the purely mathematical problem of finding that matrix fl of rank
r which most closely approximates a given matrix a of higher rank R.
It will be shown that if the least-squares criterion of approximation
be adopted, this problem has a general solution which is relatively
simple in a theoretical sense, though the amount of numerical work
involved in applications may be prohibitive. Certain conclusions can
be drawn from the theoretical solution which may be of importance
in practical work.

To formulate the problem precisely, it is convenient to define the
"scalar product" of two n )~ N matrices as the following numerical
function of their elements:

(a,,8) ~ ~ ais flis (1)
i:l ]=I

where .~ is the C]-element of the matrix u. This function has all the
properties of the scalar product of vectors:

(a, fl)~- (flea) (2)
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(a _ fl, r) ~ (a, r) ___ (fi, r) ; (3)

(za, fl) ~--- z (a, if z i s a number; (4)

(a,a) >0 ifa=fi0 . (5)

The positive number l, defined by l 2 ~ (a, a) may be called the length
of the matrix a; the number l ~ was called the span (Spannung) of 
by Frobenius.* The length of the matrix a -- ~ may be called the dis-
tance from a to ft.

The problem can now be formulated in a definite manner: to find
that matrix ~ of rank r, such that there is no other matrix of rank r
whose distance from a is less than the distance from ~ to a. This
amounts to requiring a least-squares solution of the approximation
problem, every element of the given matrix being given equal weight.

Some preliminary theorems and remarks.

To simplify the following discussion, let a, b, u, ... denote n X n
matrices, A, B, U, ... denote N X N matrices, and a, fl, ... denote
n ~( N matrices; the special case n --- N is not excluded. The N ~( 
matrix which is obtained by writing the columns of a as rows is the
transpose of a and will be denoted by a’. The products as, aA, aB’,
a’a, ... are defined in the usual way. It is then seen that the following
equations are correct:

(a, ~) -- (a’, ~’) ; (6)

(act, fl) = (a, a’fl) ~-- (a, fla’) ; (7)

(aA, ~) ~- (a, flA’) = (A, a’fi) (8)

From Eq. (7) and (8) it follows that if u and U are orthogonal 
trices (u u’ --- u’ u ~- ln, U U’ ----- U’ U ~- 1N), then

(ua U’, u fl U’) = (a, fl) (9)

Another useful proposition is the following: if (a, b) ~ 0 for all
symmetric (skew-symmetric) matrices, b, then a is skew-symmetric
(symmetric).

The solution of the problem is much simplified by an appeal to
two theorems which are generalizations of well-known theorems on
square matrices/f They will not be proven here.

*Quoted from MacDuffee, "Theory of Matrices", Ergebn. d. Mathem., v.
2, No. 5 p. 80 (19~).

tCourant and Hilbert, "Methoden der mathematischen Physik" Berlin, 1924;
pp. 9 et seq., p. 25. MacDuffee, p. 78.
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Theorem I. For any rea~ matrix a, two ortkogonal m~trices u and
U c~. be found so that ~ ~ uaU’ is a real diagonal matrix with no
negative ele~ents.

A diagonal matrix ~ (square or rectangular) is one for which
i;; ~- 0 unless i ~- .i. If a diagonal matrix is rectangular, then there
will be some rows or columns which consist entirely of zeros. For the
following, this remark is of some importance, as will be seen. The
equation of the theorem may also be written

a~u" ~ U (10)

whose right side may be called the canonic resolution of a. If n ~ N,
~ will have N~n columns of zeros and a is seen to depend only on the
first n rows of U. If u, ~ and the first n rows of U are given, a is
determined.

Let v be the diagonal n ~ n matrix which consists of the first n
columns of ~, and ~o the n ~( N matrix composed of the first n rows
of U; then these remarks can be summarized by the equation

a = u~ v ~o (10.1)

where ~o o)’ ----- 1,, but ~o’ ~o =/= 1~.. For numerical work, Eq. (10.1) 
preferable to Eq. (10) ; for formal manipulation, Eq. (10) is 
convenient.

The numerical evaluation of u and v (or ~) can be accomplished
from the consideration of the matrix a ~- a a" alone. This matrix is
closely related to the matrix of correlation coefficients of the tests. It
is seen that

and since ~ ),’ ~ ~- i s adiagonal matrix, it fol lows that u i s oneof t he
orthogonal matrices which transform the correlational matrix to di-
agonal form. The rows of u are unit vectors along the .principal axes
of ~ and the squares of the diagonal elements of v (or ~) are the
characteristic values of a; this shows that the latter can never be
negative numbers, a result which can also be obtained more directly.*
The methods for determining the principal axes and characteristic
values of a symmetric matrix are also known,? so that these remarks
may be considered as indicating the method for calculating u and ~.
If none of the characteristic values of a is zero (this will presumably
be the case in the overwhelming proportion of actual calculations)

*Courant-Hilbert, p. 20.
¢Courant-Hilbert, pp. 13, 16.
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the matrix v will have a reciprocal, and co can be obtained by solving
Eq. (10.1) 

co--- V-1 U £t .

The numerical values of the elements in the remaining rows of the
matrix U will not be needed, but could be found if necessary. For
simplicity of manipulation, it is convenient to proceed as though this
has been done.

The diagonal elements of 2 were called the "canonical multipliers"
of a by Sylvester.* The multipliers and characteristic values of a cor-
relational matrix are identical; in the case of a symmetric matrix,
there may be a difference in sign; for a general square matrix, there
is no simple relation between the two; for a rectangular matrix, the
characteristic values are not defined.

The correlational matrices, Sylvester called the "false squares"
of a. In the foregoing (and in the usual treatment of factor theory)
only the matrix a ~ a a" has been considered. However, the matrix
A ~ a’a is related to the correlation coefficients of the individuals in
the same manner as a is related to the correlation coefficients of the
tests. There is complete mathematical symmetry between the two
correlation matrices.

To every multiplier, there is associated a row of u and a row of
U; this complex of n ~ N -~- 1 numbers may be called a canonic com-
ponent of a.

Theorem II. If a ~" and ~’ a are both symmetric matrices, then
and only then can two arthogonal matrices u and U be found such
that ~ -~ u a U’ and ~ ~ u fl U" are both real diagonal matrices.

Either one (but in general, not both) of the diagonal matrices
may be further restricted to have no negative elements. This theorem
is a generalization of the theorem that the principal axes of two sym-
metric matrices coincide if and only if ab -- ha.

Solution of the problem

The distance of fl from a is given by x, where

x2~ (a,a) --2(a, fl) ~- (fl, fl) ; (11)

x is a function of all the elements of fl, and these are to be determined
go that its value is a minimum. The elements of fl are not all indepen-
.dent, however, because of the requirement that its rank be less
than the number of its rows or columns. Theorem I makes it possible

*Messeng. Math., 1~ p. 45 (1889).
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to eliminate some of the interdependence: suppose ~ to have been re-
solved into canonic form:

fl~u’~ V (12)

with ~ diagonal, and u and U orthogonal matrices. Then the rank of
fl will be r if and only if/~ has this rank i.e., if just r of the diagonal
elements of ~ are different from zero; the non-vanishing elements of
~ will be independent. However, the elements of u or U will not be in-
dependent, since these matrices must be orthogonal. It is not neces-
sary to express these matrices in terms of independent parameters
because of the following proposition:* if u is any orthogonal matrix
and the independent variables that determine it are given any infini-
tesimal increments, the resulting increment of u is

~u=us , (13)

where s is a skew-symmetric matrix whose elements are infinitesimal,
but otherwise arbitrary.

The Eq. (11) becomes, because of Eq. (12) and 

x2~ (a,a) --2(a,u’~ U).~t_ (~,~u) (14)

Since x is to be a minimum, it follows that ~ x2 ~ 0 when u is given
the increment ~ u (Eq. (13)).
Hence

0 ~ (a, -- s u" ~ U) ~ -- (a, s fl) ~ -- (a ~’, (15)

Since s is an arbitrary skew-symmetric matriX, it follows that a ~t’
must be symmetric. Discussing the increment of U in the same man-
ner, it will be found that ~/Ya must also be symmetric, and hence, by
Theorem II, the orthogonal matrices can be found so that Eq. (12)
and

a ~u’ 2 U (12.1)

(with X the diagonal matrix of the multipliers of a) are both valid.
Then Eq. (11) becomes

x~ ~ ()~--~, ;t--r)

--~]~ (2~ -- ~u~)2 (11.1)

2i and #~ being the diagonal elements of the corresponding matrices.
It remains to determine the matrix ~ so that this expression has

its minimum value, subject to the condition that just r of the #~ shall

*Courant-Hitbert, p. 2.7.
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be different from zero. It may be supposed that 21 >_~ 22 >_~ 2~ >= .-. ;
then an obvious solution of the problem is

~2~ , i~r ;

~0 , i)r. (17)

This is also the only solution unless ~
The procedure of finding fl may be su~arized: (1.) express 

in the ~nonic fore of Eq. (12.1) ; (2.) ~place all but r of the 
agonal elements of 2 by zeros, be~nning ~th the smallest and con-
tinuing in order of increasing ma~itude. (3.) The resulting matrix
is ~, and fl is given by Eq. (12). The solution is u~que unless

The minimum value of x~ is

x2~ ~ ~2

(R being the rank of a and the multipliers being numbered as before).
This leads readily to the following conclusion: if 1 is the len~h of a,
the smallest upper bound for x is ~(1~/~)1~2. This can be u¢ilized
in esti~ting the si~ificance of an approximation ~ a ob~ined by
some other meth~ than the presen~ one.

Another impo~nt conclusion is that if ~ is the bes~ appro~ma-
~ion (o~ ~n~ ~) ~o .. e~¢n ~ = ~’(~ ~ ~’~) ~U also be thebest
a~roximation. (of rank r) ~ a =. ~ (~ = .~.). T~us. if ~ 
approximation ~o ~he s~re ~a~ix is found, ~hen ~he co~elational
matri¢e~ calcula~d ~mm it ~1~ auWmatically be the best approxima-
tions W the correlational ~tn¢es calculated from the on.hal score
matrix. This is not su~rising, but ~uires p~of; the pr~f is readi-
ly supplied from ~he foregoing result.

Concerning a hypothetical interpretation
¯ of t]~e canonic components~of fl

It is reasonable to inquire if, when a is a score matrix, those of
its canonic components that enter into fl may be interpreted as the
independent factors that determine the differences in the performance
of various individuals. In order to discuss this question let p ,- 1,
¯ .. n number the tests, i ~ 1, -.. N number the individuals, and e or
~ ~- 1, ¯ ~. r number the components of fl that have non-vanishing mul-
tipliers.. Then the component e consists of the n ~- N ~- 1 numbers

up~ , 2p>0 , U~.
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which satisfy the equations

~.., u#p u,,~, = ~,, ; ~ U~,~ U,,~ ~ ,~,, (18)

fl~,~ ~ ~ u~p 2~ U~ . (19)

These equations suggest that if these numbers have any empiri-
cal significance, then N1/" U~ will be the standard score of individual
i for the ability to exercise the factor e, and n1/2 ups, the standard score
of the test p for its demand for the exercise of the factor. The ap-
pearance of the multipliers in Eq. (19) does not correspond to the
accepted postulates of factor theory, and their interpretation is thus
not immediate.

To clarify this point, one may inquire after those empirical cir-
cumstances, which if they are actually realized, will lead one to ac-
cept the foregoing interpretation. One such set of circumstances
would be the following: suppose that two sets of individuals, N1 and
N,~ in number, have been tested by the same battery of n tests. The
scores of the NI individuals can then be arranged in an n )~ N~ ma-
trix as, those of the N~ individuals into an n ~( NI~ matrixa~[ ; or, the
scores of all N~ .~- N,, individuals can be arranged into an n X
(N[ .~- N,,) matrix a obtained by adjoining a~ and am First consider
a[ and ai~; if these can be approximated by matrices fl~ and fl~ having
the same u-matrices* (within reasonable limits of error), then the
foregoing interpretation would be appropriate. In this case the
u-matrix obtained by approximating a would also be the same as the
others. The multipliers ~,i, 2~,,~ and 2~, and of course also the
U~,~, U~,~ and U~ obtained from the three score-matrices would not
be identical. In order to discuss their interrelations, let the index i
now run from 1 to N~ -~- Nm the first N~ values designating individ.
uals of the first set, etc. Then it can be shown that

and
(20)

~ U~ = 2~,~ Up~,~ , if i ~ Nz ;

= ;t~,~1 U~,~, if i > N~ . (21)

These are precisely the relations that would be expected accord-
ing to the suggested interpretation if 2~,,~/N~ and ~.,~z2/N~ were the
variances of the tw(~ sets of individuals. This is not a tenable inter-
pretation, however, because of the symmetric manner in which the

*The sufficient condition for this equality is that a[ a~[ be a symmetric matrix,
where a~ ~ a~a~’, etc. This criterion can be applied even when u~ and u~ are not
known.
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individuals and the tests enter into the calculations. It may, how-
ever, be supposed that ~p.~2/nN~ is the product of the variance of the
set of individuals with the variance of the set of tests. It should be
noted that it has been implicitly assumed that the scores are not meas-
ured from the averages of the different sets of individuals, but from
a fiducial zero which is the same for all sets.
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