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Unidimensional Scaling

Unidimensional scaling is the special one-dimension-
al case of multidimensional scaling. It is often dis-
cussed separately, because the unidimensional case
is quite different from the general multidimensional
case. It is applied in situations in which we have a
strong reason to believe there is only one interest-
ing underlying dimension, such as time, ability, or
preference. In the unidimensional case, we do not
have to choose between different metrics, such as
the Euclidean metric, the City Block metric, or the
Dominance metric (see Proximity Measures). Unidi-
mensional scaling techniques are very different from
multidimensional scaling techniques, because they
use very different algorithms to minimize their loss
functions.

The classical form of unidimensional scaling starts
with a symmetric and nonnegative matrix � = {δij }
of dissimilarities and another symmetric and nonneg-
ative matrix W = {wij } of weights. Both W and �

have a zero diagonal. Unidimensional scaling finds
coordinates xi for n points on the line such that

σ(x) = 1

2

n∑

i=1

n∑

j=1

wij (δij − |xi − xj |)2 (1)

is minimized. Those n coordinates in x define the
scale we were looking for.

To analyze this unidimensional scaling problem in
more detail, let us start with the situation in which we
know the order of the xi , and we are just looking for
their scale values. Now |xi − xj | = sij (x)(xi − xj ),
where sij (x) = sign(xi − xj ). If the order of the xi is
known, then the sij (x) are known numbers, equal to
either −1 or +1 or 0, and thus our problem becomes
minimization of

σ(x) = 1

2

n∑

i=1

n∑

j=1

wij (δij − sij (xi − xj ))
2 (2)

over all x such that sij (xi − xj ) ≥ 0. Assume, without
loss of generality, that the weighted sum of squares
of the dissimilarities is one. By expanding the sum
of squares we see that

σ(x) = 1 − t ′V t + (x − t)′V (x − t). (3)

Here V is the matrix with off-diagonal elements
vij = −wij and diagonal elements vii = ∑n

j=1 wij .

Also, t = V +r , where r is the vector with elements
ri = ∑n

j=1 wij δij sij , and V + is a generalized inverse
of V . If all the off-diagonal weights are equal, we
simply have t = r/n.

Thus, the unidimensional scaling problem, with
a known scale order, requires us to minimize
(x − t)′V (x − t) over all x, satisfying the order
restrictions. This is a monotone regression problem,
possibly with a nondiagonal weight matrix, which can
be solved quickly and uniquely by simple quadratic
programming methods.

Now for some geometry. The vectors x satisfying
the same set of order constraints form a polyhedral
convex cone K in �n. Think of K as an ice-cream
cone with its apex at the origin, except for the fact that
the ice-cream cone is not round, but instead bounded
by a finite number of hyperplanes. Since there are n!
different possible orderings of x, there are n! cones,
all with their apex at the origin. The interior of the
cone consists of the vectors without ties, intersections
of different cones are vectors with at least one tie.
Obviously, the union of the n! cones is all of �n.

Thus, the unidimensional scaling problem can be
solved by solving n! monotone regression problems,
one for each of the n! cones [2]. The problem
has a solution, which is at the same time very
simple and prohibitively complicated. The simplicity
comes from the n! subproblems, which are easy to
solve, and the complications come from the fact that
there are simply too many different subproblems.
Enumeration of all possible orders is impractical for
n > 10, although using combinatorial programming
techniques makes it possible to find solutions for n

as large as 30 [6].
Actually, the subproblems are even simpler than

we suggested above. The geometry tells us that we
solve the subproblem for cone K by finding the
closest vector to t in the cone, or, in other words, by
projecting t on the cone. There are three possibilities.
Either t is in the interior of its cone, or on the
boundary of its cone, or outside its cone. In the first
two cases, t is equal to its projection, in the third case,
the projection is on the boundary. The general result
in [1] tells us that the loss function σ cannot have a
local minimum at a point in which there are ties, and,
thus, local minima can only occur in the interior of
the cones. This means that we can only have a local
minimum if t is in the interior of its cone [4], and it
also means that we actually never have to compute
the monotone regression. We just have to verify if t
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is in the interior, if it is not, then σ does not have a
local minimum in this cone.

There have been many proposals to solve the com-
binatorial optimization problem of moving through
the n! cones until the global optimum of σ has been
found. A recent review is [7].

We illustrate the method with a simple example,
using the vegetable paired-comparison data from [5,
p. 160]. Paired comparison data are usually given in a
matrix P of proportions, indicating how many times
stimulus i is preferred over stimulus j . P has 0.5
on the diagonal, while corresponding elements pij

and pji on both sides of the diagonal add up to 1.0.
We transform the proportions to dissimilarities by
using the probit transformation zij = �−1(pij ) and
then defining δij = |zij |. There are nine vegetables
in the experiment, and we evaluate all 9! = 362 880
permutations. Of these cones, 14 354 or 4% have a
local minimum in their interior. This may be a small
percentage, but the fact that σ has 14 354 isolated
local minima indicates how complicated the unidi-
mensional scaling problem is. The global minimum
is obtained for the order given in Guilford’s book,
which is Turnips < Cabbage < Beets < Aspara-
gus < Carrots < Spinach < String Beans < Peas
< Corn. Since there are no weights in this example,
the optimal unidimensional scaling values are the row
averages of the matrix with elements sij (x)δij . Except
for a single sign change of the smallest element
(the Carrots and Spinach comparison), this matrix
is identical to the probit matrix Z. And because the
Thurstone Case V scale values are the row averages
of Z, they are virtually identical to the unidimensional
scaling solution in this case.

The second example is quite different. It has
weights and incomplete information. We take it
from an early paper by Fisher [3], in which he
studies crossover percentages of eight genes on the
sex chromosome of Drosophila willistoni. He takes
the crossover percentage as a measure of distance,
and supposes the number nij of crossovers in Nij

observations is binomial. Although there are eight
genes, and thus

(8
2

) = 28 possible dissimilarities,
there are only 15 pairs that are actually observed.
Thus, 13 of the off-diagonal weights are zero, and
the other weights are set to the inverses of the
standard errors of the proportions. We investigate
all 8! = 40 320 permutations, and we find 78 local
minima. The solution given by Fisher, computed by
solving linearized likelihood equations, has Reduced
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Figure 1 Genes on Chromosome

< Scute < Peach < Beaded < Rough < Triple
< Deformed < Rimmed. This order corresponds
with a local minimum of σ equal to 40.16. The
global minimum is obtained for the permutation that
interchanges Reduced and Scute, with value 35.88. In
Figure 1, we see the scales for the two local minima,
one corresponding with Fisher’s order and the other
one with the optimal order.

In this entry, we have only discussed least squares
metric unidimensional scaling. The first obvious
generalization is to replace the least squares loss
function, for example, by the least absolute value
or L1 loss function. The second generalization is
to look at nonmetric unidimensional scaling. These
generalizations have not been studied in much detail,
but in both, we can continue to use the basic geometry
we have discussed. The combinatorial nature of the
problem remains intact.
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