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AN ANALOGUE DERIVATION OF THE DUAL OF
THE GENERAL FERMAT PROBLEM T

D. J. WHITE
University of Manchester
The General Fermat problem is as follows (see Kuhn [2]), where X,{X,} are column
vectors.
P

Let there be given n distinct points X; = (x;, y;) in the plane and n positive weights
w, i=1,2,..., n Furthermore, for X = (x, ), let

2 I
di(X)=((x_'xi) +()’_)’i)) » )]
the Euclidean distance from X to X,, for i=1,2,..., n. Then the General Fermat
Problem asks for a point X that minimises

FX) = S wd(X). e)
Kuhn gives the following dual of P:

D
Let U, = (4, v;) denote n two-dimensional vectors. Then the dual to the General
Fermat Problem asks for the vectors U; which maximise

g(U, Uy, ..., U)=>UX,  subjectto (3)
Z U;=0 4
U | < w,fori=1,2,...,n. (5)

* All Notes are refereed.
T Processed by Dr. Willard 1. Zangwill, Departmental Editor for Linear and Nonlinear Programming;
received November 1975.
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Kuhn proves some results about P and D which, in effect, show that the optimal
values of P and D are equal. In White [4] it was shown how a particular duality
theorem might be obtained from an analogue mechanism. This note shows how the
dual problem P may also be obtained from an analogue argument.

The particular analogue to be used may be found in White [5], which is a
modification of an approach by Haley [1].

The analogue consists of a smooth table with n holes through which » strings are
passed with a weight proportional to w;, i =1, 2, ..., n, at the end of each. The holes
represent the vectors X,, i = 1,2, ..., n. The strings are joined on the surface of the
table at a point representing X. X is restricted so that it cannot be pulled through a
hole. The system settles down to a position of minimal potential energy (it is easy to
show that this is a global minimum). It is shown that (2) is equal to the potential
energy (plus a constant) and hence the analogue solves (2) (see Figure).

‘o

Now let U,, i=1, 2,..., n, denote the tension vectors relating to w,
i=1,2,...,n, respectively, measured from X, where { U,} are row vectors.

Condition (4) is equivalent to the statement that the net force at X is O in the
equilibrium condition. Condition (5) is a statement that, in the equilibrium condition,
either the tension is equal to w,, at X;, or X has been stopped by some restriction at X,.

Let us now begin by holding X (by some external force) at some origin 0 # X,
i=1,2,...,n We will gradually displace X in small amounts, AX, until it is in its
equilibrium position, by applying appropriate forces at X, which will diminish to 0 as
we approach the equilibrium condition.

The virtual work done (see Routh [3]) for such a displacement is

AW = 2 UA(X;, — X). Now (6)

S UAX = ) = A S U= X)) - Sav K, - X), ™
i i i
If T, is the tension in string /, and if V; is the unit vector in direction of tension, we
have '
AU(X; = X) = AT,V (X, — X) + TAV,(X, - X). (®)

We have AV,(X; — X) =0 (ignoring second order terms, since X; — X is parallel to
V), and, since X; # X implies AT, =0 (since T, = w; in all such cases), we have

1

AT;(X; — X) = 0. Hence, ignoring second order terms (6) and (7) give

AW=A(§ U(X, — X)). 9)
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Integrating from O to X, the virtual work done is, using (4),

W= (2 U,.X,.)X— (2 U,.X,) (10)

0
If (PE)y, (PE), are the potential energies of the system at X, 0 respectively, we have
(see Routh)

(2 U,.X,.) - (2 U,.X,.) + (PE)y— (PE)y=0. (11)

Since (PE), is minimal at the equilibrium point X, we see that 3, U, X, is maximised
at X and this establishes that D is, indeed, a dual of P, with optimal solutions
corresponding to each other. The fact that we have a “global” maximum for D follows

from the linearity of g(U,, U, ..., U,), the convexity of the feasible (U,,
U,, ..., U, region.
We easily see that:
(PE)x— (PE)y= 2 wid(X) — X wd,(0). Also: (12)
(UX)o= W Vi (—d V)= —wd(0), i=12...,n (13)

Combining (11), (12), (13) we have, at the equilibrium point,
(2 Ui'Xi) = wadi(x)~ (14)
i x i

This completes the duality results in that the maximal value of D is now equal to
the minimal value of P.
We also see (as can be seen from Kuhn’s analysis also) that:

(U= w)X~=X)=0, i=12...,n (15)

The solution procedure for P follows, as in Kuhn, once { U;} have been found, for
then, from the analogue, X — X, is parallel to U,, and the solution easily obtained.
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