- 4. HOWARD, R. A., Dynamic Programming and Markov Processes, Wiley, 1960.
- MACQUEEN, J. B., "A Test for Suboptimal Actions in Markovian Decision Problems," Operations Research, 15, 1967, pp. 559-561.
- Morton, T. E., "On the Asymptotic Convergence Rate of Cost Differences for Markovian Decision Processes," Operations Research, 19, 1971, pp. 244-248.
- AND WECKER, W. E., "Discounting, Ergodicity and Convergence of Markov Decision Process,"
 Management Sciences Report No. 357, Graduate School of Industrial Administration, Carnegie-Mellon University, January 1975.
- 8. ODONI, A. R., "On Finding the Maximal Gain for Markov Decision Processes," *Operations Research*, 17, 1969, pp. 857-860.
- 9. Schweitzer, P. J., "Perturbation Theory and Markovian Decision Processes," MIT Operations Research Centre Technical Report No. 15, June 1965.

MANAGEMENT SCIENCE Vol. 23, No. 1, September, 1976 Printed in U.S.A.

AN ANALOGUE DERIVATION OF THE DUAL OF THE GENERAL FERMAT PROBLEM†

D. J. WHITE

University of Manchester

The General Fermat problem is as follows (see Kuhn [2]), where $X,\{X_i\}$ are column vectors.

P

Let there be given n distinct points $X_i = (x_i, y_i)$ in the plane and n positive weights w_i , i = 1, 2, ..., n. Furthermore, for X = (x, y), let

$$d_i(X) = ((x - x_i)^2 + (y - y_i^2))^{\frac{1}{2}},$$
 (1)

the Euclidean distance from X to X_i , for i = 1, 2, ..., n. Then the General Fermat Problem asks for a point X that minimises

$$f(X) = \sum_{i} w_i d_i(X). \tag{2}$$

Kuhn gives the following dual of P:

D

Let $U_i = (u_i, v_i)$ denote *n* two-dimensional vectors. Then the dual to the General Fermat Problem asks for the vectors U_i which maximise

$$g(U_1, U_2, \dots, U_n) = \sum_i U_i X_i$$
 subject to (3)

$$\sum U_i = 0 \tag{4}$$

$$|U_i| \le w_i$$
, for $i = 1, 2, ..., n$. (5)

^{*} All Notes are refereed.

[†] Processed by Dr. Willard I. Zangwill, Departmental Editor for Linear and Nonlinear Programming; received November 1975.

NOTES 93

Kuhn proves some results about P and D which, in effect, show that the optimal values of P and D are equal. In White [4] it was shown how a particular duality theorem might be obtained from an analogue mechanism. This note shows how the dual problem P may also be obtained from an analogue argument.

The particular analogue to be used may be found in White [5], which is a modification of an approach by Haley [1].

The analogue consists of a smooth table with n holes through which n strings are passed with a weight proportional to w_i , $i = 1, 2, \ldots, n$, at the end of each. The holes represent the vectors X_i , $i = 1, 2, \ldots, n$. The strings are joined on the surface of the table at a point representing X. X is restricted so that it cannot be pulled through a hole. The system settles down to a position of minimal potential energy (it is easy to show that this is a global minimum). It is shown that (2) is equal to the potential energy (plus a constant) and hence the analogue solves (2) (see Figure).

Now let U_i , i = 1, 2, ..., n, denote the tension vectors relating to w_i , i = 1, 2, ..., n, respectively, measured from X, where $\{U_i\}$ are row vectors.

Condition (4) is equivalent to the statement that the net force at X is 0 in the equilibrium condition. Condition (5) is a statement that, in the equilibrium condition, either the tension is equal to w_i , at X_i , or X has been stopped by some restriction at X_i .

Let us now begin by holding X (by some external force) at some origin $0 \neq X_i$, i = 1, 2, ..., n. We will gradually displace X in small amounts, ΔX , until it is in its equilibrium position, by applying appropriate forces at X, which will diminish to 0 as we approach the equilibrium condition.

The virtual work done (see Routh [3]) for such a displacement is

$$\Delta W = \sum_{i} U_{i} \Delta (X_{i} - X). \quad \text{Now}$$
 (6)

$$\sum_{i} U_{i} \Delta(X_{i} - X) = \Delta \left(\sum_{i} U_{i}(X_{i} - X) \right) - \sum_{i} \Delta U_{i}(X_{i} - X). \tag{7}$$

If T_i is the tension in string i, and if V_i is the unit vector in direction of tension, we have

$$\Delta U_i(X_i - X) = \Delta T_i V_i(X_i - X) + T_i \Delta V_i(X_i - X). \tag{8}$$

We have $\Delta V_i(X_i - X) = 0$ (ignoring second order terms, since $X_i - X$ is parallel to V_i), and, since $X_i \neq X$ implies $\Delta T_i = 0$ (since $T_i = w_i$ in all such cases), we have $\Delta T_i(X_i - X) = 0$. Hence, ignoring second order terms (6) and (7) give

$$\Delta W = \Delta \left(\sum_{i} U_{i}(X_{i} - X) \right). \tag{9}$$

94 NOTES

Integrating from 0 to X, the virtual work done is, using (4),

$$W = \left(\sum_{i} U_{i} X_{i}\right)_{X} - \left(\sum_{i} U_{i} X_{i}\right)_{0}.$$
(10)

If $(PE)_X$, $(PE)_0$ are the potential energies of the system at X, 0 respectively, we have (see Routh)

$$\left(\sum_{i} U_{i} X_{i}\right)_{X} - \left(\sum_{i} U_{i} X_{i}\right)_{0} + (PE)_{X} - (PE)_{0} = 0.$$
(11)

Since $(PE)_X$ is minimal at the equilibrium point X, we see that $\sum_i U_i X_i$ is maximised at X and this establishes that D is, indeed, a dual of P, with optimal solutions corresponding to each other. The fact that we have a "global" maximum for D follows from the linearity of $g(U_1, U_2, \ldots, U_n)$, the convexity of the feasible (U_1, U_2, \ldots, U_n) region.

We easily see that:

$$(PE)_X - (PE)_0 = \sum w_i d_i(X) - \sum w_i d_i(0)$$
. Also: (12)

$$(U_i X_i)_0 = (w_i V_i \cdot (-d_i V_i'))_0 = -w_i d_i(0), \quad i = 1, 2, \dots, n.$$
(13)

Combining (11), (12), (13) we have, at the equilibrium point,

$$\left(\sum_{i} U_{i} \cdot X_{i}\right)_{X} = \sum_{i} w_{i} d_{i}(X). \tag{14}$$

This completes the duality results in that the maximal value of D is now equal to the minimal value of P.

We also see (as can be seen from Kuhn's analysis also) that:

$$(|U_i| - w_i)(X - X_i) = 0, \quad i = 1, 2, \dots, n.$$
 (15)

The solution procedure for P follows, as in Kuhn, once $\{U_i\}$ have been found, for then, from the analogue, $X - X_i$ is parallel to U_i , and the solution easily obtained.

References

- 1. HALEY, K.B., "The Siting of Depots," International Journal of Production Research, 2, No. 1, 1962.
- 2. Kuhn, H. W., On A Pair of Dual Nonlinear Programs, in Nonlinear Programming, Ed. J. Abadie, North Holland Publishing Company, 1967, pp. 37-54.
- 3. ROUTH, E. J., Analytical Statics, Cambridge University Press, 1896.
- WHITE, D. J., "A Linear Programming Analogue, A Duality Theorem, and a Dynamic Algorithm," Management Science, 21, No. 1, 1974, pp. 47-59.
- 5. ——, Decision Methodology, Wiley, 1975, pp. 144-145.