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SummaryClassi
al multidimensional s
aling 
onstru
ts a 
on�guration of points thatminimizes a 
ertain measure of dis
repan
y between the 
on�guration's inter-point distan
e matrix and a �xed dissimilarity matrix. Re
ent extensions of
lassi
al multidimensional s
aling have repla
ed the �xed dissimilarity matrixwith a 
losed and 
onvex set of dissimilarity matri
es. These formulationsrepla
e �xed dissimilarities with optimization variables (disparities) that arepermitted to vary subje
t to appli
ation-spe
i�
 
onstraints. For example,simple bound 
onstraints are suitable for distan
e matrix 
ompletion prob-lems (Trosset, 2000) and for inferring mole
ular 
onformation from informa-tion about interatomi
 distan
es (Trosset, 1998b); whereas order 
onstraintsare suitable for nonmetri
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21 Introdu
tionThe in
uential survey of de Leeuw and Heiser (1982) de�ned s
aling to bete
hniques for 
onstru
ting a 
on�guration of points in a target metri
 spa
efrom information about interpoint distan
es and multidimensional s
aling(MDS) to be s
aling in the 
ase that the target spa
e is Eu
lidean. Many spe-
i�
 formulations of MDS are possible; a useful organizing prin
iple, adoptedby de Leeuw and Heiser (1982) and by Trosset (1997), is to formulate MDSas a 
olle
tion of optimization problems.Classi
al MDS (Torgerson, 1952; Gower, 1966) 
an be formulated as anoptimization problem with an obje
tive fun
tion that is sometimes 
alled thestrain 
riterion. Re
ently, extensions of 
lassi
al MDS (Trosset, 1998a, 1998b,2000) have been developed in whi
h the strain 
riterion is minimized in moregeneral, appli
ation-spe
i�
 settings. This paper des
ribes the 
omputationaltheory that provides a 
ommon foundation for these formulations.We begin by re
alling some familiar de�nitions:De�nition 1 A hollow matrix is a square matrix whose diagonal elementsvanish.De�nition 2 A dissimilarity matrix is a symmetri
 hollow matrix with non-negative elements.We will denote dissimilarity matri
es by � = [Æij ℄. The Æij are 
alled dissim-ilarities.De�nition 3 A p-dimensional Eu
lidean distan
e matrix is an n�n matrixD = [dij ℄ for whi
h there exist x1; : : : ; xn 2 <p su
h that dij = kxi � xjk.We will denote the set of n � n p-dimensional distan
e matri
es by Dn(p).Given a set of points x1; : : : ; xn 2 <p, we store the 
oordinates of xi in rowi of the n � p 
on�guration matrix X and denote the matrix of interpointdistan
es by D(X).It is obvious that a distan
e matrix is ne
essarily a dissimilarity matrix.Determining whether or not a spe
i�ed dissimilarity matrix is a distan
e ma-trix is a famous problem in 
lassi
al distan
e geometry. We state the standardsolution of this problem, impli
it in Torgerson's (1952) formulation of (
las-si
al) MDS and demonstrated by Gower (1966). The standard solution is atrivial modi�
ation of the solution independently dis
overed by S
hoenberg(1935) and by Young and Householder (1938). Its statement requires someadditional de�nitions:De�nition 4 Let A = [aij ℄ and B = [bij ℄ denote m � n matri
es. TheHadamard produ
t of A and B is A �B = [aijbij ℄.Milligan, George Phillips, Ri
hard Tapia, and Pablo Tarazaga.



3Thus, if � is a matrix of dissimilarities, then � � � = [Æ2ij ℄ is a matrix ofsquared dissimilarities. Noti
e that � �� is itself a dissimilarity matrix.De�nition 5 The double-
entering operator � is a linear mapping on squarematri
es. If A = [aij ℄ is an n� n matrix, then B = [bij ℄ = �(A) is the n� nmatrix de�ned bybij = �12 0�aij � 1n nXj=1 aij � 1n nXi=1 aij + 1n2 nXi;j=1 aij1A :This operation is 
alled double 
entering be
ause the row and 
olumn sumsof �(A) equal zero. Let In denote the n� n identity matrix and let 1n 2 <ndenote the ve
tor whose elements are 1. Then double 
entering 
an also berepresented by the matrix equation�(A) = �12 �In � 1n1n10n�A�In � 1n1n10n� : (1)Noti
e that �(A) is symmetri
 if A is symmetri
. A detailed study of � andrelated mappings was made by Crit
hley (1988).Let 
n denote the set of symmetri
 positive semide�nite n� n matri
es.Let 
n(p) denote the matri
es in 
n whose rank is no greater than p. Wenow state the embedding theorem on whi
h 
lassi
al MDS is based:Theorem 1 Let � be an n�n dissimilarity matrix. Then � 2 Dn(p) if andonly if �(� � �) 2 
n(p). Furthermore, if the n � p matrix X is su
h thatX 0X = �(� ��), then D(X) = �.Of 
ourse, if B 2 
n(p), then it is easy to use the spe
tral de
omposition ofB to 
onstru
t an n� p matrix X su
h that X 0X = B.Given a set of dissimilarity matri
es and a target dimension p, MDS is
on
erned with 
onstru
ting a 
on�guration of points in <p whose interpointdistan
e matrix mat
hes or approximates one of the spe
i�ed dissimilaritymatri
es. This 
on
ern 
an be expressed by spe
ifying an optimization prob-lem in whi
h the obje
tive fun
tion measures the dis
repan
y between a dis-similarity matrix and a distan
e matrix. In metri
 MDS, a single dissimilaritymatrix is spe
i�ed. In appli
ations of distan
e geometry to mole
ular 
onfor-mation, the set of dissimilarity matri
es is spe
i�ed by bound 
onstraints onthe dissimilarities and the target dimension is ne
essarily p = 3. In nonmetri
MDS, the set of dissimilarity matri
es is spe
i�ed by order 
onstraints on thedissimilarities.Be
ause of Theorem 1, a natural way to measure the dis
repan
y betweena dissimilarity matrix � and a distan
e matrix D isk�(� ��)� �(D �D)k2F ;



4where k � kF denotes the Frobenius norm. The 
onstraints typi
ally imposedon the dissimilarities are su
h that the 
onstraints on � �� are 
losed and
onvex. If D 2 Dn(p), then �(D �D) 2 
n(p) � 
n. Thus, the optimizationproblems that we will 
onsider are of the general formminimize k�(�)� Bk2Fsubje
t to � 2 Cn;B 2 Bn; (2)where Cn is a 
losed 
onvex set of dissimilarity matri
es and Bn is a 
losedsubset of 
n. Be
ause � is a linear transformation, �(Cn) is a 
losed 
onvexset; thus, Problem (2) is the problem of minimizing the distan
e between a(
ertain type of) 
losed 
onvex set of symmetri
 matri
es and a 
losed subsetof the symmetri
 positive semide�nite matri
es.The set 
n is 
losed and 
onvex. Hen
e, if Bn = 
n, then Problem (2) is
onvex. Unfortunately, there are few appli
ations for whi
h Bn = 
n. (Forexample, we have already noted that appli
ations to 
omputational 
hemistryrequire Bn = 
n(3).) A

ordingly, we will develop methods that 
an beapplied to Problem (2) without assuming 
onvexity.In Se
tion 2 we introdu
e 
ertain subsets Bn � 
n. These subsets have aspe
ial stru
ture, but are more general than the subsets 
n(p). We restri
tattention to the 
ase of a single dissimilarity matrix, i.e. Cn = f�g, andderive an expli
it global solution of Problem (2). Our result generalizes a
hara
terization of 
lassi
al MDS due to Gower (1966) and Mardia (1978).In Se
tion 3 we restore the weaker assumption that Cn is a 
losed 
onvexset of dissimilarity matri
es. We dis
uss the general stru
ture of Problem (2)and des
ribe two general optimization strategies, variable alternation andvariable redu
tion, for exploiting that stru
ture.In Se
tions 4 and 5 we establish some properties of the variable alternationand variable redu
tion approa
hes to Problem (2). We emphasize the latter,for whi
h the theory is more satisfying. Using this approa
h, we propose agradient proje
tion method for �nding lo
al solutions of Problem (2). Se
tion6 presents a numeri
al example with simple bound 
onstraints, in whi
h 
asea more eÆ
ient algorithm is available. Se
tion 7 
on
ludes with a dis
ussionof the prospe
ts for developing more eÆ
ient methods for solving Problem(2).2 Proje
tion into Subsets of 
nIn this se
tion we restri
t attention to the 
ase of a �xed dissimilarity matrix,i.e. Cn = f�g. In this 
ase, Problem (2) spe
ializes to the problem of �ndingthe matrix in Bn � 
n that is nearest the symmetri
 n�n matrix T = �(�).When Bn = 
n, this is the problem of proje
ting T into the 
losed 
onvex
one of symmetri
 positive semide�nite matri
es. In most appli
ations, Bn is



5not 
onvex; often, however, it is still possible to �nd an element of Bn thatis nearest T .Toward that end, let K be any 
losed and 
onvex subset offx 2 <n : x1 � � � � � xn � 0g (3)and let 
n(K) denote the set of symmetri
 n�n matri
es of the form U�U 0,where U is orthogonal and diag(�) 2 K. Noti
e that, ifK = fx 2 <n : x1 � � � � � xp+1 = � � � = 0g;then 
n(K) = 
n(p). In this se
tion we 
onsider the following spe
ial 
aseof Problem (2): minimize kT �Bk2Fsubje
t to B 2 
n(K): (4)The following result generalizes Theorem 14.4.2 in Mardia, Kent, and Bibby(1979):Theorem 2 Let Q�Q0 represent any spe
tral de
omposition of T for whi
hthe eigenvalues � = diag(�) satisfy �1 � � � � � �n. Let � denote proje
tioninto K, �� = ��, and �� = diag(��). Then B� = Q��Q0 is a global minimizerof Problem (4).Proof: Given B 2 
n(K), write B = U�U 0 and R = Q0U , wherebykT �Bk2F = kQ�Q0 � U�U 0k2F = k��Q0U�U 0Qk2F = k��R�R0k2F :For any �xed � = diag(
),k��R�R0k2F = k�k2F � 2 (�; R�R0)F + k�k2F (5)is minimized by 
hoosing the orthogonal matrix R = [rij ℄ to maximize theinner produ
t(�; R�R0)F = tr (�R�R0) = nXi=1 �i0� nXj=1 
jr2ij1A = nXi=1 �i�i: (6)Noti
e that �i � 0 and nXi=1 �i = nXi=1 nXj=1 
jr2ij = nXj=1 
j :Be
ause �1 � � � � � �n, we maximize (6) by 
hoosing �1 as large as possible.Be
ause 
1 � � � � � 
n � 0 and R is orthogonal, this is a

omplished by
hoosing r11 = 1, whi
h for
es r12 = � � � = r1n = 0. Similarly, we maximize



6Pni=2 �i�i by 
hoosing r22 = 1, and so on. It follows that, for any �, (6) ismaximized, hen
e (5) is minimized, by 
hoosing R = I . We 
on
lude thatk��Bk2F = k��R�R0k2F � k�� �k2F = k�� 
k2� k�� ��k2 = k�� ��k2F= kQ(�� ��Q0k2F = kQ�Q0 �Q��Q0k2F= kT �B�k2F ;as 
laimed. 2We 
on
lude this se
tion by re
ording several expressions for the globalminimum of Problem (4). For reasons that will be
ome apparent in Se
tion5, we represent the minimum as a fun
tion, FK Æ � , of �. Be
ause � is alinear fun
tion of � and FK(T ) is the squared distan
e from T to 
n(K),FK Æ � is a 
ontinuous fun
tion of �. In general,FK Æ �(�) = kQ�Q0 �Q��Q0k2F = kQ(�� ��)Q0k2F= tr �(�� ��)2� = nXi=1(�i � ��i)2: (7)If 
n(K) = 
n(p), then these expressions spe
ialize toFp Æ �(�) = pXi=1 [�i �max(�i; 0)℄2 + nXi=p+1�2i= pXi=1 �(�i) + nXi=p+1 (�i); (8)where �(t) = t2I(�1;0℄(t) and  (t) = t2 are 
ontinuously di�erentiable fun
-tions.3 Redu
ible Programming FormulationsProblem (2) has the general formminimize f(a; b)subje
t to a 2 A; b 2 B: (9)This is an optimization problem in two sets of variables with no mixed 
on-straints. Furthermore, in our appli
ation, if one �xes either a or b and opti-mizes the other, then the resulting subproblem is mu
h easier to solve thanProblem (9) in its entirety. (Spe
i�
ally, if one �xes � and minimizes B inProblem (2), then one obtains Problem (4), for whi
h Theorem 2 providesan expli
it formula for a global solution. Alternatively, if one �xes B and



7minimizes �, then one obtains a 
onvex problem.) Nonlinear programs withthese 
hara
teristi
s are sometimes 
alled problems whose variables separate,e.g. by Golub and Pereyra (1973). Parks (1985), however, has argued per-suasively for the superiority of the term redu
ible. Her 
omprehensive studyof redu
ible nonlinear programming 
ontains many valuable referen
es. Fol-lowing Trosset (1997), we des
ribe two important strategies for exploitingredu
ible stru
ture. Various studies have suggested that both strategies in-evitably improve on methods that fail to exploit the stru
ture of redu
iblenonlinear programs.3.1 Variable AlternationVariable alternation is the simple optimization strategy des
ribed in Figure 1.It has most 
ommonly been used when ea
h subproblem is proje
tion into asubspa
e, in whi
h 
ase it is often 
alled the Method of Alternating (orthog-onal) Proje
tions (MAP). MAP was �rst studied, in 1933, by von Neumann(1950), who 
onsidered the problem of proje
ting into the interse
tion of two
losed linear subspa
es of a Hilbert spa
e. In this setting, alternately pro-je
ting into ea
h subspa
e 
onverges to proje
tion into their interse
tion. Are
ent survey of the MAP literature was made by Deuts
h (1992).A more relevant use of variable alternation was made by Cheney andGoldstein (1959), who 
onsidered the problem of minimizing the distan
ebetween two 
losed 
onvex sets in Hilbert spa
e, say K1 and K2. Let Pidenote proje
tion into Ki. Cheney and Goldstein established suÆ
ient 
on-ditions for the sequen
e (P1P2)kx to 
onverge to a point in K1 nearest K2.Spe
i�
ally, 
onvergen
e is assured either if one set is 
ompa
t or if one setis �nite-dimensional and the distan
e between the sets is attained.Be
ause of its simpli
ity and the fa
t that it produ
es a nonin
reasingsequen
e of obje
tive fun
tion values, variable alternation has appealed to agreat many statisti
ians. A survey of variable alternation methods in sta-tisti
s was made by de Leeuw (1994). Variable alternation has been widelyused in algorithms for MDS, most notably by Takane, Young, and de Leeuw(1977), in whi
h 
ontext it is usually 
alled the method of alternating leastsquares. The Data Box Algorithm of Glunt, Hayden and Raydan (1993)applies variable alternation to a distan
e geometry problem with bound 
on-straints.Under very weak 
onditions, the 
onvergen
e theory of Zangwill (1969)
an usually be exploited to establish that every a

umulation point of asequen
e produ
ed by variable alternation is a �xed point, i.e. a pair (a�; b�)for whi
h a� = argmin f(a; b�) and b� = argmin f(a�; b). However, there isno general guarantee that (a�; b�) solves Problem (9). For instan
e, Trosset(1997) 
onstru
ted a simple example in whi
h a global maximizer was �xedunder variable alternation.In pra
ti
e, variable alternation often does 
onverge to a lo
al minimizer.Unfortunately, the 
onvergen
e rate of these methods is typi
ally linear and



81. Fix a0. Set b0 = argmin f(a0; b) and k = 1.2. Do until 
onvergen
e:(a) ak = argmin f(a; bk�1)(b) bk = argmin f(ak; b)(
) k = k + 1Figure 1: A variable alternation strategy.often painfully slow.3.2 Variable Redu
tionThe optimization strategy des
ribed in Figure 2 is usually employed whenone of the subproblems 
an be solved expli
itly. By a variable redu
tionmethod, we mean any method for solvingminimize �f(a)subje
t to a 2 A: (10)In 
ontrast to variable alternation, variable redu
tion possesses the followingproperty:Theorem 3 If a� is a global (lo
al) solution of Problem (10), then (a�; b(a�))is a global (lo
al) solution of Problem (9).Proof: If a� is a global minimizer of Problem (10), thenf(a�; b(a�)) = �f(a�) � �f(a) = f(a; b(a)) � f(a; b) (11)for all (a; b) 2 A� B. If a� is a lo
al minimizer of Problem (10), then thereexists a neighborhood N(a�) in whi
h �f(a�) � �f(a) and (11) holds for all(a; b) 2 N(a�)�B. 2Variable redu
tion eliminates one set of variables, albeit at the 
ost of
ompli
ating the obje
tive fun
tion. A simple example examined by Trosset(1997) illustrates that variable redu
tion 
an be 
onsiderably more eÆ
ientthan variable alternation. The potential diÆ
ulty with variable redu
tionis that the value fun
tion may not be di�erentiable, although when it isthe derivatives of �f usually have a very simple relation to the derivatives off . Generalized di�erentiability of value fun
tions has been the subje
t ofextensive investigation in nonsmooth optimization, e.g. Se
tion 6.5 in Clarke(1983).



91. For �a �xed, de�ne the value fun
tion by b(�a) = argmin f(�a; b).2. Minimize the variable proje
tion fun
tional �f(a) = f(a; b(a)).Figure 2: A variable redu
tion strategy.For the spe
ial 
ase of the semilinear least squares problem, di�erentiatingthe value fun
tion entails di�erentiating the Moore-Penrose pseudoinverse ofa matrix. This was a

omplished by Golub and Pereyra (1973), who 
om-pared the performan
e of Gauss-Newton algorithms on the full and redu
edforms of this problem. Ruhe and Wedin (1980) determined that variable al-ternation on this problem exhibits linear 
onvergen
e, whereas Gauss-Newtonon the redu
ed problem exhibits superlinear 
onvergen
e if Gauss-Newton onthe full problem does.Variable redu
tion has also been used in algorithms for MDS, most no-tably by Kruskal (1964a, 1964b). Variable redu
tion was �rst applied to theso-
alled additive 
onstant problem by Saito (1978); de Leeuw and Heiser(1982) and Trosset, Baggerly, and Pearl (1996) subsequently suggested usingthe variable proje
tion fun
tional Fp Æ � . Trosset (1998b) proposed a for-mulation of nonmetri
 MDS using Fp Æ � and Trosset (1997, 1998a, 2000)suggested Fp Æ � for distan
e geometry problems with bound 
onstraints.4 Optimization by Variable AlternationHen
eforth, we restri
t attention to Bn = 
n(K) forK a 
losed 
onvex subsetof (3), i.e. we studyminimize f(�; B) = k�(�)�Bk2Fsubje
t to � 2 Cn;B 2 
n(K): (12)In this se
tion we establish some 
onsequen
es of applying variable alterna-tion to Problem (12). Our analysis requires an additional hypothesis:Assumption 1 For any �0 2 Cn, the level setLK(�0) = f� 2 Cn : FK Æ �(�) � FK Æ �(�0)gis bounded.In the appli
ations to whi
h we have alluded, Assumption 1 
an be establishedby demonstrating that limk!1 FK Æ �(�k) =1 if f�kg is unbounded.



10The ensuing dis
ussion requires a pre
ise de�nition of variable alternationon Problem (12). The variable alternation subproblems are Problem (4) for� 2 Cn �xed and minimize k�(�)�Bk2Fsubje
t to � 2 Cn (13)for B 2 
n(K) �xed. Noti
e that Problem (13) is the stri
tly 
onvex problemof proje
ting B into the 
losed 
onvex set �(Cn).Let M1 be any fun
tion that assigns a single global solution of Problem(4) to ea
h �xed � 2 Cn. Let M2 be any fun
tion that assigns the uniquesolution of Problem (13) to ea
h �xed B 2 
n(K).De�nition 6 By variable alternation on Problem (12) from �0 2 Cn, wemean the method of generating from �0 the sequen
e f(�k; Bk)g, where Bk =M1(�k) and �k+1 =M2(Bk). Furthermore, we say that (��; B�) is a �xedpoint of variable alternation on Problem (12) if B� = M1(��) and �� =M2(B�).We begin by 
onsidering the 
ase of 
n(K) = 
n, in whi
h 
ase variablealternation on Problem (12) 
onsists of alternating proje
tions between the
losed and 
onvex sets �(Cn) and 
n.Theorem 4 If 
n(K) = 
n, then variable alternation on Problem (12) fromany � 2 Cn 
onverges to a global minimizer of Problem (12).Proof: Let f�kg be the sequen
e of dissimilarity matri
es 
onstru
ted byvariable alternation on Problem (12) from �0. Let�f1(�) = f(�;M1(�)) = k�(�) �M1(�)k2F = FK Æ �(�): (14)Be
ause�f1(�k+1) = f(�k+1; Bk+1) � f(�k+1; Bk) � f(�k; Bk) = �f1(�k); (15)f�kg � LK(�0) and variable alternation on Problem (12) from �0 is equiv-alent to variable alternation from �0 on the following problem:minimize f(�; B)subje
t to � 2 LK(�0);B 2 
n(K): (16)Furthermore, it is transparent that the global minimizers of Problems (16)and (12) are identi
al.By Assumption 1, the 
losed set LK(�0) is bounded, hen
e 
ompa
t.Therefore, it follows from Theorem 4 in Cheney and Goldstein (1959) thatvariable alternation on Problem (16) from �0 
onverges to a global minimizerof Problem (16). 2We now 
onsider the 
ase of general 
n(K). Be
ause Problem (12) is not
onvex ex
ept when 
n(K) = 
n, we obtain a weaker result.



11Theorem 5 Any sequen
e of dissimilarity matri
es f�kg obtained by apply-ing variable alternation to Problem (12) will have at least one a

umulationpoint. If �� is an a

umulation point of f�kg and B� = M1(��), then(��; B�) is a �xed point of variable alternation on Problem (12).Proof: Be
ause Problem (4) may have multiple solutions, it is 
onvenient toapply the theory of point-to-set maps. Insofar as we 
an do so 
onsistently,we adopt the terminology and notation of Hogan (1973) and Zangwill (1969).Following Hogan (1973), let 
 denote the 
onstant point-to-set map de-�ned by 
(�) � 
n(K). Sin
e 
n(K) is a 
losed set, it is easily veri�ed that
 is 
ontinuous as a point-to-set map. Next letv(�) = infff(�; B) : B 2 
n(K)g = �f1(�) = FK Æ �(�)and �M1(�) = fB 2 
(�) : f(�; B) � v(�)g:Sin
e 
 is a 
ontinuous map and f is a 
ontinuous fun
tion, it follows fromTheorem 8 in Hogan (1973) that the point-to-set map �M1 is 
losed. (Anelementary proof of this fa
t is possible, but the notation is 
umbersome.)Similarly, let � denote the 
onstant point-to-set map de�ned by �(B) =Cn. Like 
, � is 
ontinuous. Letw(B) = infff(�; B) : � 2 �(B)gand M2(B) = f� 2 �(B) : f(�; B) � w(B)g:Like �M1, M2 is a 
losed map. Moreover, we have already remarked thatM2(B) 
ontains a single element, so that M2 is in fa
t a fun
tion.Following Zangwill (1969), we now de�ne an algorithmi
 point-to-set mapA by A = M2 Æ �M1. By 
onstru
tion, �k+1 2 A(�k). Suppose that �+ 2A(�
), in whi
h 
ase �+ = M2(B
) for some B
 2 �M1(�
). Then, as in(15), v(�
) = f(�
; B
) � f(M2(B
); B
) = f(�+; B
) � v(�+): (17)Be
ause M2(B
) is unique, the �rst inequality in (17) is stri
t if and only if�+ =M2(B
) = �
. Thus, either A(�
) = f�
g or �
 62 A(�
). We de�ne�
 to be a solution of A if A(�
) = f�
g and note that v(�
) > v(�+) if�
 is not a solution.By Assumption 1, the 
losed set LK(�0) = f� 2 Cn : v(�) � v(�0)g isbounded, hen
e 
ompa
t. Sin
e it follows from (17) that v(�k) � v(�0) if�k is generated by A, we 
on
lude that any sequen
e generated by A mustlie in a 
ompa
t set and hen
e must have an a

umulation point.Sin
e v(�) is the distan
e between � and 
n(K), the 
losed set �M1(�)must be bounded, hen
e 
ompa
t. It follows that, if �j ! �, then [j �M1(�j)



12is 
ontained in a 
ompa
t set. Hen
e, if Bj 2 �M1(�j), then the sequen
efBjgmust 
ontain a 
onvergent subsequen
e. We 
an therefore apply Lemma4.2 in Zangwill (1969) to 
on
lude that A = M2 Æ �M1, the 
omposition of
losed maps, must itself be 
losed.We now apply Convergen
e Theorem A in Zangwill (1969) to 
on
ludethat any a

umulation point �� of any sequen
e generated by A must satisfyA(��) = f��g. For any 
hoi
e of M1, we then have �� =M2 ÆM1(��), so(��;M1(��)) is a �xed point of variable alternation on Problem (12). 2In pra
ti
e, variable alternation on Problem (12) does seem to �nd solu-tions. However, it 
onverges very slowly.5 Optimization by Variable Redu
tionIn prin
iple, there are two distin
t variable redu
tion strategies for solvingProblem (12). First, 
onsider the variable proje
tion fun
tional�f2(B) = f(M2(B); B) = k�(M2(B))�Bk2F :Be
ause �(M2(B)) is the proje
tion of B into the 
losed 
onvex set Cn, �f2is a 
onvex fun
tion. An expli
it formula for M2(B) will rarely be available;however, in most appli
ations, Problem (13) will be a quadrati
 programmingproblem and therefore M2(B) 
an be 
omputed reasonably eÆ
iently. Thisapproa
h results in the following semide�nite programming problem:minimize �f2(B)subje
t to B 2 
n(K): (18)If 
n(K) = 
n, then Problem (18) is 
onvex and various optimiza-tion strategies are available. For example, for the problem of 
omplet-ing a partial Eu
lidean distan
e matrix, Alfakih, Khandani, and Wolkow-i
z (1998) proposed a related semide�nite programming formulation and aprimal-dual interior-point algorithm for solving it. However, we are 
on
ernedwith situations in whi
h 
n(K) is a non
onvex subset of 
n, parti
ularly
n(K) = 
n(p).If a partial Eu
lidean distan
e matrix with jEj known interpoint distan
es
an be 
ompleted to an r-dimensional Eu
lidean distan
e matrix, then an al-gorithm presented by Alfakih and Wolkowi
z (1998) 
an be used to 
onstru
tan r�-dimensional Eu
lidean distan
e matrix, where r� is the greatest inte-ger that does not ex
eed (p8jEj+ 1� 1)=2. Unfortunately, it appears thatr� > p in most appli
ations. For example, if a mole
ule has n atoms, theninevitably jEj > n� 1 and r� > 3 if n > 10.Returning to Problem (18), Tarazaga and Trosset (1993) studied methodsof managing the 
onstraint B 2 
n(p). They reparametrized B by writingB = XX 0 for X 2 <n�p, then introdu
ed a penalty fun
tion to removethe resulting indeterminan
y in the representation of B. Unfortunately, this



13approa
h destroys many of the pleasant properties of Problem (18). Thus,the development of semide�nite programming methods that 
ould managerank restri
tions dire
tly would be of enormous value. In the absen
e of su
hmethods, we explore an alternative approa
h.Consider the variable proje
tion fun
tional de�ned by (14). Hen
eforth,we restri
t attention to the 
ase 
n(K) = 
n(p) and 
onsider the problemminimize Fp Æ �(�)subje
t to � 2 Cn: (19)This problem has a 
losed 
onvex feasible set, typi
ally de�ned by linear
onstraints. (For example, in appli
ations to 
omputational 
hemistry, oneusually imposes simple bound 
onstraints on the Æij .) Here, in 
ontrast toProblem (18), our 
on
ern lies with the obje
tive fun
tion.Theorem 6 Let � be a dissimilarity matrix and let T = �(�) have eigen-values �1(T ) � � � � � �n(T ). Then Fp Æ � is 
ontinuously di�erentiable at �,unless �p(T ) = �p+1(T ) � 0.Proof: Be
ause � is linear, it suÆ
es to show that Fp is 
ontinuously di�er-entiable at T . From (8), we see that Fp is a spe
tral fun
tion of T , i.e. itdepends only on the eigenvalues of T .Given � 2 <n, de�ne 
omponents �(i) of � by �(1) � � � ��(n). De�nefp : <n ! < by fp(�) = pXi=1 � ��(i)�+ nXi=p+1 ��(i)� :Then fp is symmetri
, i.e. f(P�) = f(�) for any permutation matrix P ,���(i) fp(�) = � 2�(i) �(i) � 00 �(i) � 0 �for i = 1; : : : ; p, and ���(i) fp(�) = 2�(i)for i = p+1; : : : ; n. It follows that rfp exists (and is 
ontinuous) at � unless�(p) = �(p+1) � 0.Let Diag(�) denote the diagonal matrix with diagonal elements �1; : : : ; �n,let �(T ) = (�1(T ); : : : ; �n(T ))0, and write T = Q�Q0 = Q[Diag(�(T ))℄Q0.Then Theorem 1.1 in Lewis (1996) states that Fp is di�erentiable at T if andonly if fp is di�erentiable at �(T ), in whi
h 
aserFp(T ) = Q [Diag (rfp(�(T )))℄Q0= Q �2 ��� ����Q0= 2 �Q�Q0 �Q��Q0�= 2 [T �B�(T )℄ ; (20)



14where B�(T ) 2 
n(p) denotes a solution of Problem (4) with 
n(K) = 
n(p).2 It is instru
tive to 
onsider why Fp is not everywhere di�erentiable. If Tis su
h that Problem (4) with 
n(K) = 
n(p) has a unique solution, B�(T ),then Fp is di�erentiable at T and �rFp(T ) is the dire
tion of steepest des
enttoward B�(T ). If T is su
h that Problem (4) with 
n(K) = 
n(p) hasmultiple solutions, then Fp is not di�erentiable at T . In this 
ase, however,one 
an still 
ompute the last expression in (20) for ea
h solution, and ea
h�2[T � B�(T )℄ so obtained is the dire
tion of steepest des
ent toward the
orresponding solution. Thus, (20) provides meaningful information evenwhen it is not formally the gradient of Fp.To fa
ilitate developing algorithms for solving Problem (19), we now rein-terpret Fp Æ � as a fun
tion of the m = n(n � 1)=2 subdiagonal elements ofthe dissimilarity matrix � and Cn as a 
losed 
onvex subset of <m. Then,writing Æ = (Æi1j1 ; : : : ; Æimjm)0 2 <m;we 
an rewrite Problem (19) as:minimize Fp Æ �(Æ)subje
t to Æ 2 Cn: (21)When it exists, it is not diÆ
ult to 
ompute the gradient of Fp Æ � withrespe
t to the Æikjk . We de�ne n � n matri
es Ers = [ersij ℄ by setting ersrs =erssr = 1 and all other elements equal to zero. From (1), it is easily seen that��Æikjk �(Æ) = �(Eikjk ):Applying the 
hain rule yields��Æikjk Fp Æ �(Æ) = �rFp(�(Æ)); �(Eikjk )�F : (22)Then, using (20) with S = B�(�(Æ))��(Æ) and summing over indi
es denotedby +, some 
omputation simpli�es (22) to��Æikjk Fp Æ �(Æ) = 2n2S++ � 2n (Sik+ + Sjk+) + 2Sikjk : (23)Now we re
all that double 
entering results in matri
es T = �(�) forwhi
h the row and 
olumn sums vanish. This is equivalent to stating that 1nis an eigenve
tor of T = Q�Q0 with 
orresponding eigenvalue 0. The matrixB�(T ) = Q��Q0 has the same eigenve
tors as T and ��i = 0 if �i = 0. Hen
e,1n is an eigenve
tor of B�(T ) with 
orresponding eigenvalue 0, i.e. the rowand 
olumn sums of B�(T ) also vanish. It follows that the row and 
olumnsums of S vanish, and 
onsequently that (23) simpli�es to��Æikjk Fp Æ �(Æ) = 2Sikjk : (24)



15Be
ause the feasible set for Problem (21) is 
losed and 
onvex, it is naturalto 
ontemplate a gradient proje
tion method for its solution. Let Æ0 2 Cnbe given and let P denote proje
tion into Cn. Referring to (20), we de�ne agradient proje
tion method for Problem (21) to mean the 
onstru
tion of asequen
e Æk+1 = P �Æk � 2tk ��(Æk)�B�(�(Æk))�� ; (25)where tk is obtained by a line sear
h, i.e. by solving the univariate optimiza-tion problemminimize Fp Æ � �P �Æk � 2t ��(Æk)�B�(�(Æk))���subje
t to t � 0: (26)As we have noted, there is some ambiguity in the de�nition of B�(�(Æ))when Problem (4) has multiple solutions at T = �(Æ). In pra
ti
e, one mightperform a single line sear
h using an arbitrary solution or perform separateline sear
hes using ea
h solution and take the best Æ so obtained.We now borrow from M
Cormi
k and Tapia (1972):De�nition 7 Given Æ 2 Cn, let �A(Æ) denote the 
losure of the tangent 
oneto Cn at Æ and let PÆ denote proje
tion into �A(Æ). Then Æ is a 
onstrainedstationary point of Problem (21) ifPÆ [�rFp Æ �(Æ)℄ = 0:Theorem 7 Suppose that Æ� is an a

umulation point of the gradient pro-je
tion sequen
e de�ned by (25). If Fp Æ � is di�erentiable at Æ�, then Æ� isa 
onstrained stationary point of Problem (21). If Assumption 1 is satis�ed,then the sequen
e will have at least one a

umulation point.Proof: Be
ause fFpÆ�(Æk)g is a nonin
reasing sequen
e, Assumption 1 impliesthat the sequen
e fÆkg is 
ontained in a 
ompa
t set and therefore has ana

umulation point.If Fp Æ � is di�erentiable at the a

umulation point Æ�, then the argumentused to establish Theorem 1 in M
Cormi
k and Tapia (1972) is valid in aneighborhood of Æ� and establishes that Æ� is a 
onstrained stationary pointof Problem (21). 2Theorem 7 is stronger than Theorem 5 in the following sense: if Æ� isa 
onstrained stationary point of Problem (21), then (�(Æ�); B�(�(Æ�))) is a�xed point under variable alternation on the 
orresponding Problem (12),but not 
onversely. Furthermore, although gradient proje
tion methods arelinearly 
onvergent, sequen
es 
onstru
ted by gradient proje
tion on Problem(21) tend to 
onverge mu
h more rapidly than sequen
es 
onstru
ted byvariable alternation on Problem (12).



166 Examples with Bound ConstraintsTrosset (1998a) 
onsidered the appli
ation of MDS to the problem of infer-ring 3-dimensional stru
ture from information about a mole
ule's interatomi
distan
es. Suppose that L and U are dissimilarity matri
es of lower and up-per bounds on the interatomi
 distan
es. Then the embedding problem is todetermine an n� 3 
on�guration matrix X su
h that D(X) := � 2 [L;U ℄.Using the methods of Se
tion 5, we 
an formulate the embedding problemas a nonlinear optimization problem with simple bound 
onstraints:minimize F3 Æ �(�)subje
t to � 2 [L � L;U � U ℄: (27)We �nd a 3-dimensional stru
ture that is 
onsistent with the interatomi
distan
e information by �rst �nding a matrix �� of squared dissimilaritiesthat solves Problem (27), then using 
lassi
al MDS to re
over X from ��.Problem (27) requires m = n(n� 1)=2 variables, one for ea
h interatomi
distan
e. For large mole
ules, this is a great many variables. In 
ontrast, themore 
onventional parametrization by Cartesian 
oordinates, D = D(X), re-quires only 3n�6 variables (one for ea
h atomi
 
oordinate, less six to removetranslational and rotational indeterminan
y). However, 
ertain advantagesappear to a

rue from allowing ea
h (squared) interatomi
 dissimilarity tovary independently of the others|additional memory is the pri
e that wepay for these advantages.For n small, as in Trosset (2000), one 
an solve Problem (27) with aquasi-Newton method for bound-
onstrained optimization. For mole
uleswith hundreds or thousands of atoms (n large), as is typi
al in stru
turalmole
ular biology, the memory requirements of su
h methods are prohibitive.The typi
al Hessian matrix is 
ompletely dense; hen
e, to store a symmetri
approximation of the Hessian matrix requires (n4�2n3+3n2�2n)=8 variables,whi
h is unrealisti
 for large mole
ules.One possibility is to try to solve Problem (27) with a �rst-order method,e.g. the gradient proje
tion method dis
ussed in Se
tion 5. Unfortunately,F3 Æ � does not have mu
h 
urvature near solutions. This 
an be inferredfrom the well-known fa
t that 
lassi
al MDS is extremely stable under per-turbations of the dissimilarity data, a phenomenon that has been studiedby Mardia (1978) and by Sibson (1979). Hen
e, we would expe
t �rst-ordermethods to be ineÆ
ient.In light of the pre
eding, our 
omputational dilemma is to balan
e theneed for se
ond-order information with the expense of managing it. A nat-ural 
ompromise is a limited memory method. Su
h methods use a smallnumber of re
ent updates to approximate the 
urrent Hessian matrix of theobje
tive fun
tion. For the numeri
al experiments reported below, we used alimited memory algorithm that was developed by Byrd, Lu, No
edal, and Zhu(1995) for solving large nonlinear optimization problems with simple bound
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onstraints. Their Fortran 77 implementation (L-BFGS-B, version 2.1) wasdes
ribed by Zhu, Byrd, Lu, and No
edal (1994) and is known to run veryeÆ
iently.For large n, the 
omputational expense of repeatedly evaluating F3 Æ �and r[F3 Æ � ℄ dominates the 
omputational expense of solving Problem (27).Considerable 
are must be exer
ised to evaluate these quantities eÆ
iently.The expressions derived in previous se
tions, e.g. (8), although 
onvenientfor mathemati
al analysis, should not be used for 
omputation. These ex-pressions involve the entire spe
tral de
omposition of the symmetri
 n � nmatrix �(�). In fa
t, only the p = 3 largest eigenvalues (and the 
orrespond-ing eigenve
tors) are required.Let �1; �2; �3 denote the p = 3 largest eigenvalues of �(�) and let q1; q2; q3denote the 
orresponding eigenve
tors. ThenF3 Æ �(�) = 3Xi=1 [�i �max (�i; 0)℄2 + nXi=4 �2i= nXi=1 �2i � 3Xi=1 [�i �max (�i; 0)℄2= k�(�)k2F � 3Xi=1 ��i � ��i�2and B� (�(�)) = 3Xi=1 ��iqiq0i;so evaluating F3 Æ � and r[F3 Æ � ℄ only requires 
omputing �1; �2; �3 andq1; q2; q3.Thus, the following 
omputational 
onsiderations are 
ru
ial for eÆ
ientlysolving Problem (27):� Ea
h fun
tion/gradient evaluation requires 
omputing p = 3 extremeeigenvalues of a symmetri
 n� n matrix.� We would like to solve problems for whi
h n is in the hundreds, possiblyseveral thousands.� As optimization progresses and the iterates begin to 
onverge, �(�k+1)will be 
lose to �(�k).These 
onsiderations argue for using an iterative (Arnoldi/Lan
zos) methodto 
ompute eigenvalues and eigenve
tors. As des
ribed by Trefethen andBau (1997), these methods (Lan
zos is Arnoldi in the spe
ial 
ase of a sym-metri
/Hermitian matrix) are espe
ially eÆ
ient ways of 
omputing a smallnumber of extreme eigenvalues when n is large. Furthermore, their eÆ
ien
yvaries with the 
hoi
e of the starting ve
tor used to initialize the method.Therefore, as Lehou
q, Sorensen, and Yang (1997) 
ommented,



18\If this eigenvalue 
al
ulation is one of a sequen
e of 
losely re-lated problems, then 
onvergen
e may be a

elerated if a suitablestarting ve
tor is spe
i�ed. Typi
al 
hoi
es in this situation mightbe to use the �nal value of the starting ve
tor from the previouseigenvalue 
al
ulation. . . "(ARPACK Users' Guide, Se
tion 2.3.7, page 18)For the numeri
al experiments reported below, we 
omputed eigenvaluesand eigenve
tors using ARPACK, a Fortran 77 implementation of an im-pli
itly restarted Arnoldi method developed at Ri
e University (Sorensen,1992; Lehou
q, 1995; Lehou
q and Sorensen, 1996; Lehou
q, Sorensen, andYang, 1997) and available at http://www.
aam.ri
e.edu/.We now elaborate on the 
omputational details of some numeri
al exper-iments reported by Krippahl, Trosset, and Barahona (2001). These experi-ments were performed on a workstation with a 600 MHz Pentium III pro
es-sor and 256MB of RAM, using version 5.0 of Absoft's ProFortran for Linux
ompiler. Ma
hine pre
ision was determined to be approximately 1.084D-19and all 
oating point operations were performed in double pre
ision.The 3-dimensional stru
tures of the following �ve mole
ules were obtainedfrom the Protein Data Bank: n m m(7)Desulforedoxin (monomer) 260 33670 5951Trypsin Inhibitor 448 100128 11613Mutant P53 Anti-On
ogene 514 131841 12938Phosphotransferase 639 203841 17206Barstar Mutant 693 239778 18996Here, n is the number of atoms,m = n(n�1)=2 is the number of atomi
 pairs,and m(7) is the number of pairs in whi
h the interatomi
 distan
e dij � 7:00angstroms. If dij � 7:00, then we set `ij = dij � 0:01 and uij = dij + 0:01;if dij > 7:00, then we set `ij = 7:00 and determined uij from repeated appli-
ations of the triangle inequality. The resulting L and U thus mimi
ked thelower and upper bounds that might be derived from the mole
ule's 
hemi-
al stru
ture and NMR spe
tros
opy, in that only information about nearbyatoms is en
oded. Of 
ourse, our L and U in
luded 
onsiderably more|and
onsiderably more a

urate|information than would be available in pra
ti
e.Ea
h attempt to solve Problem (27) began with the 
onstru
tion of aplausible 
on�guration that was used to determine �0, the initial matrixof squared dissimilarities. This 
on�guration was determined by 
onstraintprogramming, as des
ribed by Krippahl and Barahona (1999). The following



19table summarizes what resulted from starting L-BFGS-B from �0:n Tnf Time F3 Æ � Na
t MaxViol260 1427 425 0:00286 539 0:00547448 4757 4703 0:05879 1067 0:08208514 3763 4888 0:07370 1489 0:02526639 2662 5398 0:03191 1874 0:00488693 2824 6621 0:05103 2168 0:00791The L-BFGS-B algorithm took Tnf fun
tion/gradient evaluations andTime se
onds to solve Problem (27). Noti
e that the number of se
ondsper evaluation in
reases with n, from 0:30 for n = 260 to 2:34 for n = 693.In ea
h 
ase, the sear
h was terminated be
ause the relative redu
tion in theobje
tive fun
tion fell below a spe
i�ed threshhold.Ea
h problem was 
onstru
ted to have a global minimum of F3 Æ �(��) =0. By the usual standards of numeri
al optimization, our solutions are offairly low a

ura
y. However, 
onsiderable experimentation suggests that at-taining this level of a

ura
y in solving Problem (27) results in 
on�gurationsthat are quite a

eptable by the standards of 
omputational 
hemistry.For ea
h problem, the L-BFGS-B algorithm returned an n � n squareddissimilarity matrix ��� 2 [L � L;U � U ℄. Of the m squared dissimilaritiesÆ��ij , a total of Na
t equalled the 
orresponding `2ij or u2ij . (These ij identifythe a
tive 
onstraints.) The matrix ��� was almost|but not quite|a 3-dimensional squared distan
e matrix. The �nal 
on�guration was extra
tedfrom it by 
lassi
al MDS. Inevitably this pro
edure slightly violated several
onstraints, by amounts no greater than MaxViol. In ea
h 
ase, the maxi-mal violation was quite small|negligible in 
omparison to the a

ura
y ofthe bounds that might be imposed in pra
ti
e. These results o�er 
onsider-able promise that the methods des
ribed herein 
an be used to solve a
tualproblems in stru
tural mole
ular biology.7 Dis
ussionVarious extensions of 
lassi
al MDS 
an be formulated as spe
ial 
ases of thegeneral problem of minimizing the (squared) distan
e (in Frobenius norm)between 
ertain 
losed 
onvex sets of symmetri
 n � n matri
es and 
ertainsubsets of the symmetri
 positive semide�nite n�nmatri
es. The former setsare obtained by linear transformation of 
losed 
onvex sets of dissimilaritymatri
es. In most appli
ations, the latter sets are de�ned by rank restri
tions.We have presented several formulations of this general problem; at present,our preferred formulation is Problem (21).Let us re
e
t on some of the properties possessed by Problem (21):1. The number of variables, m = n(n� 1)=2 = O(n2), is potentially huge.In appli
ations to 
omputational 
hemistry, n may be several hundreds,if not thousands.



202. The obje
tive fun
tion is (usually) 
ontinuously di�erentiable and an-alyti
 �rst derivatives are available. The 
ost of a fun
tion or gradientevaluation is e�e
tively the 
ost of 
omputing the p largest eigenvaluesand the 
orresponding eigenve
tors of a symmetri
 n� n matrix.3. The obje
tive fun
tion does not have mu
h 
urvature near solutions.4. The Hessian matrix is 
ompletely dense and m(m + 1)=2 = O(n4)variables are required to spe
ify it (or an approximation thereof).5. The feasible set is 
losed and 
onvex. In most appli
ations, it is poly-hedral. In some appli
ations, it is de�ned by spe
ifying simple boundson ea
h variable.There is an evident tension between 
ertain of these properties, in that wewould like to exploit information about the 
urvature of the obje
tive fun
tionto 
onstru
t algorithms with fast lo
al 
onvergen
e, but su
h information isexpensive to obtain and to manage. Although we have suggested a gradientproje
tion method for general use, �rst-order methods may be inadequatewhen the number of variables is large and/or a

urate solutions are required.As we argued in Se
tion 6, limited memory quasi-Newton methods appearto be admirably suited to the task of solving Problem (21). At present, su
hmethods are available for problems with bound 
onstraints, e.g. Problem(27), but not for more general linear inequality 
onstraints. Hen
e, existinglimited memory methods are appli
able to distan
e matrix 
ompletion andmole
ular 
onformation problems, but not to nonmetri
 MDS. In the future,we hope to remedy this situation by extending limited memory methods toa
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