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Summary

Classical multidimensional scaling constructs a configuration of points that
minimizes a certain measure of discrepancy between the configuration’s inter-
point distance matrix and a fixed dissimilarity matrix. Recent extensions of
classical multidimensional scaling have replaced the fixed dissimilarity matrix
with a closed and convex set of dissimilarity matrices. These formulations
replace fixed dissimilarities with optimization variables (disparities) that are
permitted to vary subject to application-specific constraints. For example,
simple bound constraints are suitable for distance matrix completion prob-
lems (Trosset, 2000) and for inferring molecular conformation from informa-
tion about interatomic distances (Trosset, 1998b); whereas order constraints
are suitable for nonmetric multidimensional scaling (Trosset, 1998a). This
paper describes the computational theory that provides a common foundation
for these formulations.
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1 Introduction

The influential survey of de Leeuw and Heiser (1982) defined scaling to be
techniques for constructing a configuration of points in a target metric space
from information about interpoint distances and multidimensional scaling
(MDS) to be scaling in the case that the target space is Euclidean. Many spe-
cific formulations of MDS are possible; a useful organizing principle, adopted
by de Leeuw and Heiser (1982) and by Trosset (1997), is to formulate MDS
as a collection of optimization problems.

Classical MDS (Torgerson, 1952; Gower, 1966) can be formulated as an
optimization problem with an objective function that is sometimes called the
strain criterion. Recently, extensions of classical MDS (Trosset, 1998a, 1998b,
2000) have been developed in which the strain criterion is minimized in more
general, application-specific settings. This paper describes the computational
theory that provides a common foundation for these formulations.

We begin by recalling some familiar definitions:

Definition 1 A hollow matriz is a square matriz whose diagonal elements
vanish.

Definition 2 A dissimilarity matriz is a symmetric hollow matriz with non-
negative elements.

We will denote dissimilarity matrices by A = [d;;]. The ¢;; are called dissim-
ilarities.

Definition 3 A p-dimensional Euclidean distance matriz is an n X n matriz
D = [d;;] for which there exist x1,...,x, € R? such that d;; = ||z; — ;]|

We will denote the set of n x n p-dimensional distance matrices by D,,(p).
Given a set of points z1,...,z, € RP, we store the coordinates of x; in row
i of the n X p configuration matrix X and denote the matrix of interpoint
distances by D(X).

It is obvious that a distance matrix is necessarily a dissimilarity matrix.
Determining whether or not a specified dissimilarity matrix is a distance ma-
trix is a famous problem in classical distance geometry. We state the standard
solution of this problem, implicit in Torgerson’s (1952) formulation of (clas-
sical) MDS and demonstrated by Gower (1966). The standard solution is a
trivial modification of the solution independently discovered by Schoenberg
(1935) and by Young and Householder (1938). Its statement requires some
additional definitions:

Definition 4 Let A = [a;;] and B = [b;;] denote m x n matrices. The
Hadamard product of A and B is A% B = [a;;b;;].
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Thus, if A is a matrix of dissimilarities, then A x A = [§7;] is a matrix of
squared dissimilarities. Notice that A x A is itself a dissimilarity matrix.

Definition 5 The double-centering operator T is a linear mapping on square
matrices. If A = [a;;] is an n x n matriz, then B = [b;;] = 7(A) is the n x n
matriz defined by

1 1 & 1 — 1 <«
by = =5 @i =5 e = D ai+ oz D au
j=1 L i=1

4,j=1

This operation is called double centering because the row and column sums
of 7(A) equal zero. Let I,, denote the n x n identity matrix and let 1,, € R
denote the vector whose elements are 1. Then double centering can also be
represented by the matrix equation

7(A) = —= <zn - 11n1;> A <zn - 11n1;> . (1)
2 n n

Notice that 7(A) is symmetric if A is symmetric. A detailed study of 7 and
related mappings was made by Critchley (1988).

Let ,, denote the set of symmetric positive semidefinite n x n matrices.
Let ,,(p) denote the matrices in (2, whose rank is no greater than p. We
now state the embedding theorem on which classical MDS is based:

Theorem 1 Let A be an n x n dissimilarity matriz. Then A € D, (p) if and
only if T(A x A) € Q,(p). Furthermore, if the n x p matriz X is such that
X'X =7(AxA), then D(X) = A.

Of course, if B € Q,(p), then it is easy to use the spectral decomposition of
B to construct an n X p matrix X such that X'X = B.

Given a set of dissimilarity matrices and a target dimension p, MDS is
concerned with constructing a configuration of points in ? whose interpoint
distance matrix matches or approximates one of the specified dissimilarity
matrices. This concern can be expressed by specifying an optimization prob-
lem in which the objective function measures the discrepancy between a dis-
similarity matrix and a distance matrix. In metric MDS, a single dissimilarity
matrix is specified. In applications of distance geometry to molecular confor-
mation, the set of dissimilarity matrices is specified by bound constraints on
the dissimilarities and the target dimension is necessarily p = 3. In nonmetric
MDS, the set of dissimilarity matrices is specified by order constraints on the
dissimilarities.

Because of Theorem 1, a natural way to measure the discrepancy between
a dissimilarity matrix A and a distance matrix D is

I7(A % A) = 7(D * D)l



where || - ||p denotes the Frobenius norm. The constraints typically imposed
on the dissimilarities are such that the constraints on A x A are closed and
convex. If D € D, (p), then 7(D % D) € Q,(p) C Qy,. Thus, the optimization
problems that we will consider are of the general form

minimize IT(A) — B||%
subject to A € Cy, (2)
B € B,

where C, is a closed convex set of dissimilarity matrices and B,, is a closed
subset of ,,. Because 7 is a linear transformation, 7(C,) is a closed convex
set; thus, Problem (2) is the problem of minimizing the distance between a
(certain type of) closed convex set of symmetric matrices and a closed subset
of the symmetric positive semidefinite matrices.

The set €, is closed and convex. Hence, if B, = Q,,, then Problem (2) is
convex. Unfortunately, there are few applications for which B,, = Q,,. (For
example, we have already noted that applications to computational chemistry
require B, = Q,(3).) Accordingly, we will develop methods that can be
applied to Problem (2) without assuming convexity.

In Section 2 we introduce certain subsets B,, C §2,,. These subsets have a
special structure, but are more general than the subsets ,(p). We restrict
attention to the case of a single dissimilarity matrix, i.e. C, = {A}, and
derive an explicit global solution of Problem (2). Our result generalizes a
characterization of classical MDS due to Gower (1966) and Mardia (1978).

In Section 3 we restore the weaker assumption that C, is a closed convex
set, of dissimilarity matrices. We discuss the general structure of Problem (2)
and describe two general optimization strategies, variable alternation and
variable reduction, for exploiting that structure.

In Sections 4 and 5 we establish some properties of the variable alternation
and variable reduction approaches to Problem (2). We emphasize the latter,
for which the theory is more satisfying. Using this approach, we propose a
gradient projection method for finding local solutions of Problem (2). Section
6 presents a numerical example with simple bound constraints, in which case
a more efficient algorithm is available. Section 7 concludes with a discussion
of the prospects for developing more efficient methods for solving Problem

(2)-

2 Projection into Subsets of (2,

In this section we restrict attention to the case of a fixed dissimilarity matrix,
i.e. C, = {A}. In this case, Problem (2) specializes to the problem of finding
the matrix in B,, C Q,, that is nearest the symmetric n x n matrix T' = 7(A).
When B,, = 1, this is the problem of projecting 7" into the closed convex
cone of symmetric positive semidefinite matrices. In most applications, B, is



not convex; often, however, it is still possible to find an element of 5,, that
is nearest 7'
Toward that end, let K be any closed and convex subset of

{zeR” : x> >z, >0} (3)

and let ,,(K) denote the set of symmetric n x n matrices of the form UTU’,
where U is orthogonal and diag(T") € K. Notice that, if

K={zecR" :z > - >zp =--- =0},

then Q,(K) = Q,(p). In this section we counsider the following special case
of Problem (2):

minimize || — B||% @
subject to B € Q,(K).

The following result generalizes Theorem 14.4.2 in Mardia, Kent, and Bibby
(1979):

Theorem 2 Let QAQ' represent any spectral decomposition of T' for which
the eigenvalues X\ = diag(A) satisfy \y > --- > \,. Let ™ denote projection
into K, A\ = 7\, and A = diag()\). Then B* = QAQ' is a global minimizer
of Problem (4).

Proof: Given B € Q,(K), write B=UTI'U' and R = Q'U, whereby
IT — Bl = [|QAQ" — UTU'[[% = [|A — Q'UTU'Q|[%. = ||A — RTR|[3.
For any fixed T' = diag(7y),
A = RUR'|[F = [|AllF — 2 (A, RTR) p + |7 (5)

is minimized by choosing the orthogonal matrix R = [r;;] to maximize the
inner product

(A,RTR')p =tr (ARTR') =Y X [ Y _virsy | =) ki, (6)
i=1 j=1 i=1
Notice that a; > 0 and
IED DRI B
i=1 i=1 j=1 j=1

Because Ay > -+ > \,,, we maximize (6) by choosing a; as large as possible.
Because y4 > --- > v, > 0 and R is orthogonal, this is accomplished by
choosing r1; = 1, which forces r5 = --- = r;,, = 0. Similarly, we maximize



Y i, a;A; by choosing 1 = 1, and so on. It follows that, for any I, (6) is
maximized, hence (5) is minimized, by choosing R = I. We conclude that

IA=BJ% = IA = RCR': > [JA=T[% = A= A|P

A= A2 = A = AJl%

QA — AQ'|13 = QAQ" — QAQ'|I%
I - B3,

>
>

as claimed. O

We conclude this section by recording several expressions for the global
minimum of Problem (4). For reasons that will become apparent in Section
5, we represent the minimum as a function, F o 7, of A. Because 7 is a
linear function of A and Fk (T) is the squared distance from T to Q,(K),
Fk o7 is a continuous function of A. In general,

Fgor(A) = [[QAQ — QAQ'I7 = |Q(A - N)Q'|I7
= o [(A=A)°] =D "(h— M) (7)

i=1

If Q,(K) = Q,(p), then these expressions specialize to

'Mﬁ

F,or(A) = [A; — max(A;,0)] Z A

1 i=p+1

d(A Z p(A (8)

1 i=p+1

2

[
M@
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where ¢(t) = t*I(_ 0)(t) and ¢(t) = #* are continuously differentiable func-
tions.

3 Reducible Programming Formulations
Problem (2) has the general form

minimize  f(a,b)

: (9)
subject to a € A, b€ B.

This is an optimization problem in two sets of variables with no mixed con-
straints. Furthermore, in our application, if one fixes either a or b and opti-
mizes the other, then the resulting subproblem is much easier to solve than
Problem (9) in its entirety. (Specifically, if one fixes A and minimizes B in
Problem (2), then one obtains Problem (4), for which Theorem 2 provides
an explicit formula for a global solution. Alternatively, if one fixes B and



minimizes A, then one obtains a convex problem.) Nonlinear programs with
these characteristics are sometimes called problems whose variables separate,
e.g. by Golub and Pereyra (1973). Parks (1985), however, has argued per-
suasively for the superiority of the term reducible. Her comprehensive study
of reducible nonlinear programming contains many valuable references. Fol-
lowing Trosset (1997), we describe two important strategies for exploiting
reducible structure. Various studies have suggested that both strategies in-
evitably improve on methods that fail to exploit the structure of reducible
nonlinear programs.

3.1 Variable Alternation

Variable alternation is the simple optimization strategy described in Figure 1.
It has most commonly been used when each subproblem is projection into a
subspace, in which case it is often called the Method of Alternating (orthog-
onal) Projections (MAP). MAP was first studied, in 1933, by von Neumann
(1950), who considered the problem of projecting into the intersection of two
closed linear subspaces of a Hilbert space. In this setting, alternately pro-
jecting into each subspace converges to projection into their intersection. A
recent survey of the MAP literature was made by Deutsch (1992).

A more relevant use of variable alternation was made by Cheney and
Goldstein (1959), who considered the problem of minimizing the distance
between two closed convex sets in Hilbert space, say K; and K,. Let P;
denote projection into K;. Cheney and Goldstein established sufficient con-
ditions for the sequence (P, Pg)ka: to converge to a point in K7 nearest K.
Specifically, convergence is assured either if one set is compact or if one set
is finite-dimensional and the distance between the sets is attained.

Because of its simplicity and the fact that it produces a nonincreasing
sequence of objective function values, variable alternation has appealed to a
great many statisticians. A survey of variable alternation methods in sta-
tistics was made by de Leeuw (1994). Variable alternation has been widely
used in algorithms for MDS, most notably by Takane, Young, and de Leeuw
(1977), in which context it is usually called the method of alternating least
squares. The Data Box Algorithm of Glunt, Hayden and Raydan (1993)
applies variable alternation to a distance geometry problem with bound con-
straints.

Under very weak conditions, the convergence theory of Zangwill (1969)
can usually be exploited to establish that every accumulation point of a
sequence produced by variable alternation is a fixed point, i.e. a pair (a., b«)
for which a, = argmin f(a,b.) and b, = argmin f(a.,b). However, there is
no general guarantee that (a.,b.) solves Problem (9). For instance, Trosset
(1997) constructed a simple example in which a global mazimizer was fixed
under variable alternation.

In practice, variable alternation often does converge to a local minimizer.
Unfortunately, the convergence rate of these methods is typically linear and



1. Fix ag. Set by = argmin f(ag,b) and k = 1.
2. Do until convergence:

(a) ax = argmin £(a, b 1)
(b) by = argmin f(ax,b)
(c) k=k+1

Figure 1: A variable alternation strategy.

often painfully slow.

3.2 Variable Reduction

The optimization strategy described in Figure 2 is usually employed when
one of the subproblems can be solved explicitly. By a variable reduction
method, we mean any method for solving
minimize  f(a)
. (10)
subject to a € A.

In contrast to variable alternation, variable reduction possesses the following
property:

Theorem 3 If a. is a global (local) solution of Problem (10), then (a., b(a.))
is a global (local) solution of Problem (9).

Proof: If a. is a global minimizer of Problem (10), then

flax, blar)) = f(a.) < f(a) = f(a,b(a)) < f(a,b) (11)

for all (a,b) € A x B. If a, is a local minimizer of Problem (10), then there
exists a neighborhood N(a,) in which f(a,) < f(a) and (11) holds for all
(a,b) € N(as) x B. O

Variable reduction eliminates one set of variables, albeit at the cost of
complicating the objective function. A simple example examined by Trosset
(1997) illustrates that variable reduction can be considerably more efficient
than variable alternation. The potential difficulty with variable reduction
is that the value function may not be differentiable, although when it is
the derivatives of f usually have a very simple relation to the derivatives of
f- Generalized differentiability of value functions has been the subject of
extensive investigation in nonsmooth optimization, e.g. Section 6.5 in Clarke
(1983).



1. For a fixed, define the value function by b(a) = argmin f(a, b).

2. Minimize the variable projection functional f(a) = f(a,b(a)).

Figure 2: A variable reduction strategy.

For the special case of the semilinear least squares problem, differentiating
the value function entails differentiating the Moore-Penrose pseudoinverse of
a matrix. This was accomplished by Golub and Pereyra (1973), who com-
pared the performance of Gauss-Newton algorithms on the full and reduced
forms of this problem. Ruhe and Wedin (1980) determined that variable al-
ternation on this problem exhibits linear convergence, whereas Gauss-Newton
on the reduced problem exhibits superlinear convergence if Gauss-Newton on
the full problem does.

Variable reduction has also been used in algorithms for MDS, most no-
tably by Kruskal (1964a, 1964b). Variable reduction was first applied to the
so-called additive constant problem by Saito (1978); de Leeuw and Heiser
(1982) and Trosset, Baggerly, and Pearl (1996) subsequently suggested using
the variable projection functional F, o 7. Trosset (1998b) proposed a for-
mulation of nonmetric MDS using Fj, o 7 and Trosset (1997, 1998a, 2000)
suggested F}, o 1 for distance geometry problems with bound constraints.

4 Optimization by Variable Alternation

Henceforth, we restrict attention to B, = Q,,(K) for K a closed convex subset
of (3), i.e. we study

minimize  f(A, B) = [|[7(A) — BJ|%

subject to A € Cp, (12)
B € O, (K).

In this section we establish some consequences of applying variable alterna-
tion to Problem (12). Our analysis requires an additional hypothesis:

Assumption 1 For any A° € C,, the level set
Lx(A%) ={A€C,: Fxor(A) < Fgor(A%)}
s bounded.

In the applications to which we have alluded, Assumption 1 can be established
by demonstrating that limy_, o, F o 7(A*) = oo if {AF} is unbounded.
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The ensuing discussion requires a precise definition of variable alternation
on Problem (12). The variable alternation subproblems are Problem (4) for
A € C,, fixed and

minimize  ||7(A) — BJ%
subject to A € C,

for B € 2, (K) fixed. Notice that Problem (13) is the strictly convex problem
of projecting B into the closed convex set 7(Cy,).

Let M, be any function that assigns a single global solution of Problem
(4) to each fixed A € C,,. Let My be any function that assigns the unique
solution of Problem (13) to each fixed B € Q,(K).

(13)

Definition 6 By variable alternation on Problem (12) from A € C,, we
mean the method of generating from A the sequence {(A¥, B¥)}, where B¥ =
My (A*) and A¥1 = My (B*). Furthermore, we say that (A*, B*) is a fized
point of variable alternation on Problem (12) if B* = M;(A*) and A* =
M, (B*).

We begin by considering the case of ,,(K) = €, in which case variable
alternation on Problem (12) consists of alternating projections between the
closed and convex sets 7(Cp,) and ,,.

Theorem 4 If Q,(K) = Q,, then variable alternation on Problem (12) from
any A € C,, converges to a global minimizer of Problem (12).

Proof: Let {A*} be the sequence of dissimilarity matrices constructed by
variable alternation on Problem (12) from A°. Let

Fi(A) = f(A, Mi(A) = [I7(A) = Mi(A)||F = Fi o 7(A). (14)
Because
fl(Ak_H) = f(Ak_H:Bk_H) < f(Ak_H:Bk) < f(AkaBk) = fl(Ak)v (15)

{A*} C Lk (A®) and variable alternation on Problem (12) from A° is equiv-
alent to variable alternation from A° on the following problem:

minimize  f(A, B)

subject to A € Lx(AY), (16)
B € Q,(K).

Furthermore, it is transparent that the global minimizers of Problems (16)
and (12) are identical.

By Assumption 1, the closed set L (A°%) is bounded, hence compact.
Therefore, it follows from Theorem 4 in Cheney and Goldstein (1959) that
variable alternation on Problem (16) from A® converges to a global minimizer
of Problem (16). O

We now consider the case of general 0, (K). Because Problem (12) is not
convex except when Q,(K) = ), we obtain a weaker result.
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Theorem 5 Any sequence of dissimilarity matrices {AF} obtained by apply-
ing variable alternation to Problem (12) will have at least one accumulation
point. If A* is an accumulation point of {AFY} and B* = M;(A*), then
(A*, B*) is a fized point of variable alternation on Problem (12).

Proof. Because Problem (4) may have multiple solutions, it is convenient to
apply the theory of point-to-set maps. Insofar as we can do so consistently,
we adopt the terminology and notation of Hogan (1973) and Zangwill (1969).

Following Hogan (1973), let 2 denote the constant point-to-set map de-

fined by Q(A) = Q,(K). Since Q,(K) is a closed set, it is easily verified that
Q) is continuous as a point-to-set map. Next let

v(A) =inf{f(A,B): B € Q,(K)} = fi(A) = Fg o 7(A)

and
ML(A) = {B € Q(A) : (A, B) < o(A)}.

Since (2 is a continuous map and f is a continuous function, it follows from
Theorem 8 in Hogan (1973) that the point-to-set map M; is closed. (An
elementary proof of this fact is possible, but the notation is cumbersome.)

Similarly, let ©® denote the constant point-to-set map defined by ©(B) =
Cn. Like 1, O is continuous. Let

w(B) = inf{f(A, B) : A € O(B)}

and
My(B) = {A € ©(B) : (A, B) < w(B)}.

Like M;, M, is a closed map. Moreover, we have already remarked that
M, (B) contaius a single element, so that M, is in fact a function.

Following Zangwill (1969), we now define an algorithmic point-to-set map
A by A= Mo M. By construction, AF*! € A(A*). Suppose that At €
A(A), in which case AT = My(B¢) for some B¢ € M;(A¢). Then, as in
(15),

v(A?) = f(A%, BY) > f(M2(B°), BY) = f(AT, B) > v(AT). (17)

Because M, (B°) is unique, the first inequality in (17) is strict if and only if
At = My(B°®) = A°. Thus, either A(A°) = {A°} or A® ¢ A(A®). We define
A€ to be a solution of A if A(A¢) = {A°} and note that v(A€) > v(AT) if
A€ is not a solution.

By Assumption 1, the closed set Lx (A%) = {A € C,, : v(A) < v(A")} is
bounded, hence compact. Since it follows from (17) that v(A¥) < v(A) if
A* is generated by A, we conclude that any sequence generated by A must
lie in a compact set and hence must have an accumulation point.

Since v(A) is the distance between A and Q,(K), the closed set M;(A)
must be bounded, hence compact. It follows that, if A7 — A, then U; M; (A7)
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is contained in a compact set. Hence, if B/ € M;(A7), then the sequence
{B7} must contain a convergent subsequence. We can therefore apply Lemma
4.2 in Zangwill (1969) to conclude that A = My o M, the composition of
closed maps, must itself be closed.

We now apply Convergence Theorem A in Zangwill (1969) to conclude
that any accumulation point A* of any sequence generated by A must satisfy
A(A*) = {A*}. For any choice of M, we then have A* = My o M;(A*), so
(A*, M1(A*)) is a fixed point of variable alternation on Problem (12). O

In practice, variable alternation on Problem (12) does seem to find solu-
tions. However, it converges very slowly.

5 Optimization by Variable Reduction

In principle, there are two distinct variable reduction strategies for solving
Problem (12). First, consider the variable projection functional

f2(B) = f(M2(B), B) = ||7(M(B)) — Bl[.

Because 7(My(B)) is the projection of B into the closed convex set Cp, fo
is a convex function. An explicit formula for M (B) will rarely be available;
however, in most applications, Problem (13) will be a quadratic programming
problem and therefore Ms(B) can be computed reasonably efficiently. This
approach results in the following semidefinite programming problem:

minimize  fy(B)

(18)
subject to B € Q,(K).

If Q,(K) = Qp, then Problem (18) is convex and various optimiza-
tion strategies are available. For example, for the problem of complet-
ing a partial Euclidean distance matrix, Alfakih, Khandani, and Wolkow-
icz (1998) proposed a related semidefinite programming formulation and a
primal-dual interior-point algorithm for solving it. However, we are concerned
with situations in which Q,(K) is a nonconvex subset of €, particularly
Q(K) = Qu(p).

If a partial Euclidean distance matrix with | E| known interpoint distances
can be completed to an r-dimensional Euclidean distance matrix, then an al-
gorithm presented by Alfakih and Wolkowicz (1998) can be used to construct
an r*-dimensional Euclidean distance matrix, where r* is the greatest inte-
ger that does not exceed (/8| E| + 1 — 1)/2. Unfortunately, it appears that
r* > p in most applications. For example, if a molecule has n atoms, then
inevitably |E| >n — 1 and r* > 3 if n > 10.

Returning to Problem (18), Tarazaga and Trosset (1993) studied methods
of managing the constraint B € Q,(p). They reparametrized B by writing
B = XX' for X € R"*P_ then introduced a penalty function to remove
the resulting indeterminancy in the representation of B. Unfortunately, this
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approach destroys many of the pleasant properties of Problem (18). Thus,

the development of semidefinite programming methods that could manage

rank restrictions directly would be of enormous value. In the absence of such

methods, we explore an alternative approach.

Consider the variable projection functional defined by (14). Henceforth,

we restrict attention to the case Q,(K) = Q,(p) and consider the problem
minimize  F}, o 7(A) (19)
subject to A € C,,.

This problem has a closed convex feasible set, typically defined by linear

constraints. (For example, in applications to computational chemistry, one

usually imposes simple bound constraints on the d;;.) Here, in contrast to

Problem (18), our concern lies with the objective function.

Theorem 6 Let A be a dissimilarity matriz and let T = 7(A) have eigen-
values A\ (T) > --- > Ay (T). Then F, o1 is continuously differentiable at A,
unless A\p(T') = Ap11(T) > 0.

Proof: Because 7 is linear, it suffices to show that F}, is continuously differ-
entiable at T. From (8), we see that F), is a spectral function of T, i.e. it
depends only on the eigenvalues of T.

Given p € R", define components p; of p by p@y > - pg,). Define
fo:R" > R by

Fow) =Y "¢ (ny) + D ¥ (ue)
i=1 i=p+1

Then f, is symmetric, i.e. f(Pu) = f(p) for any permutation matrix P,

9 _ ) 26 pe <0 }
8m”h@%—{ 0 p@=0

fori=1,...,p, and

0
9 — 2u;
Py To(l) = 23

fori =p+1,...,n. It follows that V f, exists (and is continuous) at p unless
Hip) = Hip+1) 2 0.

Let Diag(u) denote the diagonal matrix with diagonal elements py, . . ., tin,
let A(T) = (M(T),..., (1)), and write T = QAQ' = Q[Diag(A(1))]Q’.
Then Theorem 1.1 in Lewis (1996) states that F), is differentiable at T' if and
only if f, is differentiable at A(T"), in which case

VE(T) = Q[Diag(Vf,(M1)))] Q'
QMA-A]e
2[QAQ - QAQ]

= 2[T-B*(T)], (20)
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where B*(T') € Q,(p) denotes a solution of Problem (4) with Q,,(K) = Q,(p).
O

It is instructive to consider why Fj, is not everywhere differentiable. If T
is such that Problem (4) with Q,,(K) = Q,,(p) has a unique solution, B*(T),
then F}, is differentiable at T and —V F},(T") is the direction of steepest descent
toward B*(T'). If T is such that Problem (4) with Q,(K) = Q,(p) has
multiple solutions, then Fj, is not differentiable at 1T'. In this case, however,
one can still compute the last expression in (20) for each solution, and each
—2[T — B*(T)] so obtained is the direction of steepest descent toward the
corresponding solution. Thus, (20) provides meaningful information even
when it is not formally the gradient of F,.

To facilitate developing algorithms for solving Problem (19), we now rein-
terpret F, o 7 as a function of the m = n(n — 1)/2 subdiagonal elements of
the dissimilarity matrix A and C,, as a closed convex subset of R"". Then,
writing

6= (6i1j17"'76imjm)l € %m7
we can rewrite Problem (19) as:

minimize  F}, o 7(0)
(21)
subject to § € C,,.

When it exists, it is not difficult to compute the gradient of F, o 7 with
respect to the ;. ;.. We define n x n matrices E"® = [e[] by setting e} =

rs __

el? =1 and all other elements equal to zero. From (1), it is easily seen that
0 o
7(8) = T(E"™*).
65ikjk
Applying the chain rule yields
sy 0 7(6) = (VE(r(0), 7(E"4) . 22)
86ikjk d

Then, using (20) with S = B*(7(d)) — 7(d) and summing over indices denoted
by +, some computation simplifies (22) to
9 F d) = 2 S 2 S S 28 23
901, pOT()—m ++*H( int T Sjet) + 28, - (23)
Now we recall that double centering results in matrices T = 7(A) for
which the row and column sums vanish. This is equivalent to stating that 1,
is an eigenvector of T' = QAQ' with corresponding eigenvalue 0. The matrix
B*(T) = QAQ' has the same eigenvectors as T and \; = 0 if A; = 0. Hence,
1,, is an eigenvector of B*(T') with corresponding eigenvalue 0, i.e. the row
and column sums of B*(T') also vanish. It follows that the row and column
sums of S vanish, and consequently that (23) simplifies to
0

me 0 7(6) = 25i, s - (24)
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Because the feasible set for Problem (21) is closed and convex, it is natural
to contemplate a gradient projection method for its solution. Let 6° € C,
be given and let P denote projection into C,. Referring to (20), we define a
gradient projection method for Problem (21) to mean the construction of a

e p ([ - ). _

where t;, is obtained by a line search, i.e. by solving the univariate optimiza-
tion problem

minimize  F, o7 [P (6%~ 21 [r(8") - B*(r(s"))])]

(26)
subject to t > 0.
As we have noted, there is some ambiguity in the definition of B*(7(J))
when Problem (4) has multiple solutions at 7' = 7(§). In practice, one might
perform a single line search using an arbitrary solution or perform separate
line searches using each solution and take the best § so obtained.
We now borrow from McCormick and Tapia (1972):

Definition 7 Given § € C,,, let A(§) denote the closure of the tangent cone
to Cn at 0 and let Ps denote projection into A(5). Then 0 is a constrained
stationary point of Problem (21) if

Ps[~VE, 07(6)] = 0.

Theorem 7 Suppose that 6* is an accumulation point of the gradient pro-
jection sequence defined by (25). If F, o7 is differentiable at 0*, then 0* is
a constrained stationary point of Problem (21). If Assumption 1 is satisfied,
then the sequence will have at least one accumulation point.

Proof. Because {F,o7(d"%)} is a nonincreasing sequence, Assumption 1 implies
that the sequence {6*} is contained in a compact set and therefore has an
accumulation point.

If F, o7 is differentiable at the accumulation point §*, then the argument
used to establish Theorem 1 in McCormick and Tapia (1972) is valid in a
neighborhood of §* and establishes that §* is a constrained stationary point
of Problem (21). O

Theorem 7 is stronger than Theorem 5 in the following sense: if §* is
a constrained stationary point of Problem (21), then (7(6*), B*(7(d*))) is a
fixed point under variable alternation on the corresponding Problem (12),
but not conversely. Furthermore, although gradient projection methods are
linearly convergent, sequences constructed by gradient projection on Problem
(21) tend to converge much more rapidly than sequences constructed by
variable alternation on Problem (12).
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6 Examples with Bound Constraints

Trosset (1998a) considered the application of MDS to the problem of infer-
ring 3-dimensional structure from information about a molecule’s interatomic
distances. Suppose that L and U are dissimilarity matrices of lower and up-
per bounds on the interatomic distances. Then the embedding problem is to
determine an n x 3 configuration matrix X such that D(X) = A € [L,U].

Using the methods of Section 5, we can formulate the embedding problem
as a nonlinear optimization problem with simple bound constraints:

minimize  F3 o 7(A)

(27)
subject to A € [LxL,UxU].
We find a 3-dimensional structure that is consistent with the interatomic
distance information by first finding a matrix A* of squared dissimilarities
that solves Problem (27), then using classical MDS to recover X from A*.

Problem (27) requires m = n(n — 1)/2 variables, one for each interatomic
distance. For large molecules, this is a great many variables. In contrast, the
more conventional parametrization by Cartesian coordinates, D = D(X), re-
quires only 3n—6 variables (one for each atomic coordinate, less six to remove
translational and rotational indeterminancy). However, certain advantages
appear to accrue from allowing each (squared) interatomic dissimilarity to
vary independently of the others additional memory is the price that we
pay for these advantages.

For m small, as in Trosset (2000), one can solve Problem (27) with a
quasi-Newton method for bound-constrained optimization. For molecules
with hundreds or thousands of atoms (n large), as is typical in structural
molecular biology, the memory requirements of such methods are prohibitive.
The typical Hessian matrix is completely dense; hence, to store a symmetric
approximation of the Hessian matrix requires (n*—2n3+3n2—2n)/8 variables,
which is unrealistic for large molecules.

One possibility is to try to solve Problem (27) with a first-order method,
e.g. the gradient projection method discussed in Section 5. Unfortunately,
F3 o 7 does not have much curvature near solutions. This can be inferred
from the well-known fact that classical MDS is extremely stable under per-
turbations of the dissimilarity data, a phenomenon that has been studied
by Mardia (1978) and by Sibson (1979). Hence, we would expect first-order
methods to be inefficient.

In light of the preceding, our computational dilemma is to balance the
need for second-order information with the expense of managing it. A nat-
ural compromise is a limited memory method. Such methods use a small
number of recent updates to approximate the current Hessian matrix of the
objective function. For the numerical experiments reported below, we used a
limited memory algorithm that was developed by Byrd, Lu, Nocedal, and Zhu
(1995) for solving large nonlinear optimization problems with simple bound
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constraints. Their Fortran 77 implementation (L-BFGS-B, version 2.1) was
described by Zhu, Byrd, Lu, and Nocedal (1994) and is known to run very
efficiently.

For large n, the computational expense of repeatedly evaluating F3 o 7
and V[Fj5 o 7] dominates the computational expense of solving Problem (27).
Considerable care must be exercised to evaluate these quantities efficiently.
The expressions derived in previous sections, e.g. (8), although convenient
for mathematical analysis, should not be used for computation. These ex-
pressions involve the entire spectral decomposition of the symmetric n X n
matrix 7(A). In fact, only the p = 3 largest eigenvalues (and the correspond-
ing eigenvectors) are required.

Let A1, A2, A3 denote the p = 3 largest eigenvalues of 7(A) and let g1, ¢2, g3
denote the corresponding eigenvectors. Then

3
Fyor(A) = > [\ —max(\;,0)] ZAZ
i=1

= i,\ — 3 [\ — max (X;,0)]?
= @) =30 = A

and ,
i=1

so evaluating F3 o 7 and V[F5 o 7] only requires computing A1, A2, A3 and
q1,42,43.

Thus, the following computational considerations are crucial for efficiently
solving Problem (27):

e Each function/gradient evaluation requires computing p = 3 extreme
eigenvalues of a symmetric n X n matrix.

e We would like to solve problems for which n is in the hundreds, possibly
several thousands.

e As optimization progresses and the iterates begin to converge, 7(A*+1)
will be close to T(AF).

These considerations argue for using an iterative (Arnoldi/Lanczos) method
to compute eigenvalues and eigenvectors. As described by Trefethen and
Bau (1997), these methods (Lanczos is Arnoldi in the special case of a sym-
metric/Hermitian matrix) are especially efficient ways of computing a small
number of extreme eigenvalues when n is large. Furthermore, their efficiency
varies with the choice of the starting vector used to initialize the method.
Therefore, as Lehoucq, Sorensen, and Yang (1997) commented,
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“If this eigenvalue calculation is one of a sequence of closely re-
lated problems, then convergence may be accelerated if a suitable
starting vector is specified. Typical choices in this situation might
be to use the final value of the starting vector from the previous
eigenvalue calculation...”

(ARPACK Users’ Guide, Section 2.3.7, page 18)

For the numerical experiments reported below, we computed eigenvalues
and eigenvectors using ARPACK, a Fortran 77 implementation of an im-
plicitly restarted Arnoldi method developed at Rice University (Sorensen,
1992; Lehoucq, 1995; Lehoucq and Sorensen, 1996; Lehoucq, Sorensen, and
Yang, 1997) and available at http://www.caam.rice.edu/.

We now elaborate on the computational details of some numerical exper-
iments reported by Krippahl, Trosset, and Barahona (2001). These experi-
ments were performed on a workstation with a 600 MHz Pentium III proces-
sor and 256MB of RAM, using version 5.0 of Absoft’s ProFortran for Linux
compiler. Machine precision was determined to be approximately 1.084D-19
and all floating point operations were performed in double precision.

The 3-dimensional structures of the following five molecules were obtained
from the Protein Data Bank:

n m m(7)
Desulforedoxin (monomer) | 260 33670 5951
Trypsin Inhibitor 448 100128 11613
Mutant P53 Anti-Oncogene | 514 131841 12938
Phosphotransferase 639 203841 17206
Barstar Mutant 693 239778 18996

Here, n is the number of atoms, m = n(n—1)/2 is the number of atomic pairs,
and m(7) is the number of pairs in which the interatomic distance d;; < 7.00
angstroms. If dij S 700/ then we set Eij = dij —0.01 and Uij = dij + 001,
if d;; > 7.00, then we set £;; = 7.00 and determined u;; from repeated appli-
cations of the triangle inequality. The resulting L and U thus mimicked the
lower and upper bounds that might be derived from the molecule’s chemi-
cal structure and NMR, spectroscopy, in that only information about nearby
atoms is encoded. Of course, our L and U included considerably more and
considerably more accurate information than would be available in practice.

Each attempt to solve Problem (27) began with the construction of a
plausible configuration that was used to determine A°, the initial matrix
of squared dissimilarities. This configuration was determined by constraint
programming, as described by Krippahl and Barahona (1999). The following
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table summarizes what resulted from starting L-BFGS-B from AY:

n | Tnf Time F3;071 Nact MaxViol
260 | 1427 425 | 0.00286 539  0.00547
448 | 4757 4703 | 0.05879 1067  0.08208
514 | 3763 4888 | 0.07370 1489 0.02526
639 | 2662 5398 | 0.03191 1874 0.00488
693 | 2824 6621 | 0.05103 2168 0.00791

The L-BFGS-B algorithm took Tnf function/gradient evaluations and
Time seconds to solve Problem (27). Notice that the number of seconds
per evaluation increases with n, from 0.30 for n = 260 to 2.34 for n = 693.
In each case, the search was terminated because the relative reduction in the
objective function fell below a specified threshhold.

Each problem was constructed to have a global minimum of F3 o7(A*) =
0. By the usual standards of numerical optimization, our solutions are of
fairly low accuracy. However, considerable experimentation suggests that at-
taining this level of accuracy in solving Problem (27) results in configurations
that are quite acceptable by the standards of computational chemistry.

For each problem, the L-BFGS-B algorithm returned an n x n squared
dissimilarity matrix A** € [L % L,U = U]. Of the m squared dissimilarities
d7%, a total of Nact equalled the corresponding £;; or u;. (These ij identify
the active constraints.) The matrix A** was almost but not quite a 3-
dimensional squared distance matrix. The final configuration was extracted
from it by classical MDS. Inevitably this procedure slightly violated several
constraints, by amounts no greater than MaxViol. In each case, the maxi-
mal violation was quite small—negligible in comparison to the accuracy of
the bounds that might be imposed in practice. These results offer consider-
able promise that the methods described herein can be used to solve actual
problems in structural molecular biology.

7 Discussion

Various extensions of classical MDS can be formulated as special cases of the
general problem of minimizing the (squared) distance (in Frobenius norm)
between certain closed convex sets of symmetric 7 X n matrices and certain
subsets of the symmetric positive semidefinite n x n matrices. The former sets
are obtained by linear transformation of closed convex sets of dissimilarity
matrices. In most applications, the latter sets are defined by rank restrictions.
We have presented several formulations of this general problem; at present,
our preferred formulation is Problem (21).
Let us reflect on some of the properties possessed by Problem (21):

1. The number of variables, m = n(n —1)/2 = O(n?), is potentially huge.
In applications to computational chemistry, n may be several hundreds,
if not thousands.
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2. The objective function is (usually) continuously differentiable and an-
alytic first derivatives are available. The cost of a function or gradient
evaluation is effectively the cost of computing the p largest eigenvalues
and the corresponding eigenvectors of a symmetric n X n matrix.

3. The objective function does not have much curvature near solutions.

4. The Hessian matrix is completely dense and m(m + 1)/2 = O(n*)
variables are required to specify it (or an approximation thereof).

5. The feasible set is closed and convex. In most applications, it is poly-
hedral. In some applications, it is defined by specifying simple bounds
on each variable.

There is an evident tension between certain of these properties, in that we
would like to exploit information about the curvature of the objective function
to construct algorithms with fast local convergence, but such information is
expensive to obtain and to manage. Although we have suggested a gradient
projection method for general use, first-order methods may be inadequate
when the number of variables is large and/or accurate solutions are required.

As we argued in Section 6, limited memory quasi-Newton methods appear
to be admirably suited to the task of solving Problem (21). At present, such
methods are available for problems with bound constraints, e.g. Problem
(27), but not for more general linear inequality constraints. Hence, existing
limited memory methods are applicable to distance matrix completion and
molecular conformation problems; but not to nonmetric MDS. In the future,
we hope to remedy this situation by extending limited memory methods to
accommodate order constraints.
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