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On the Characterization 
of Least Upper Bound Norms in Matrix Space 

By 

J o s ~ F  STOER 

1r 

I t  is well known tha t  every vector  norm Ilxtl in c"  gives rise to a matr ix  
norm lub (A) in the space C n' of all square matrices of order n 

lub (A) : =  sup ,[~A x l  I 
�9 . o  I1-11 ' 

which is consistent with the underlying vector  no rm:  

IIA xl] < lub (A). Ilxll 

and is a multiplicative matr ix  norm:  The inequali ty 

lub (A B) <__ lub (A). lub (e)  

holds for all matrices A and B. 

Any  vector  norm I[xl] uniquely defines a convex body  

B : =  {xl II~ll_-<~}<c ", 
which is compact  and contains the origin as an interior point. Conversely, for 
any  compact  convex neighbourhood B of the origin in C n, there exists a vector  
norm IIxll 

Hxll:=inf{ro>=olxcoJe}, where ooe:={mxlxEe}, 

with B={x[ II~ll---l}. Likewise, every matr ix  norm v(A) in C n' is associated 
with a compact  convex neighbourhood 

H:= {AI~,(A )< t }  

of the origin in C ' ,  and vice versa. But  clearly, not  every convex compact  
neighbourhood of the  origin in C ~' belongs to a lub norm. The principal problem 
to be considered here is the geometric characterizat ion of those convex bodies 
in C ~' which are associated with lub norms. The question arises because of the 
fact tha t  m a n y  of the properties of vector  norms fall quite easily and natura l ly  
out of a consideration of the associated convex bodies, and it is hoped tha t  
these results will th row some light on the ra ther  more difficult questions related 
with multiplicative mat r ix  norms and lub norms. 

This paper incorporates several unpublished results of Dr. A. S. HOUSEHOLDER, 
Prof. H. SCHNEIDER and Prof. F. L. BAUER. The author admits gratefully that  this 
paper has been initiated by their investigations and he wishes to thank them for 
communicating to him their results and for many discussions on this subject. 
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2. 

In  the  sequel, we shall assume tha t  all vec tor  norms  [Ix[[ considered are 

strictly homogeneous, 

i.e. IJ~xll= I~l.llxll holds for all complex e. Since in this case lub(A) is also 
s tr ict ly homogeneous,  it is na tura l  to require hereaf ter  tha t  all ma t r ix  norms 
v (A) encountered are also str ict ly homogeneous.  

Now, a first result  can be s ta ted  about  ma t r i x  norms  and mult ipl icat ive 
ma t r ix  norms:  

For any matrix norm v(A), there exists a scalar a > 0  such that 

][A 11: = a .v  (A) 
is a multiplicative matrix norm. 

This theorem does not seem to be in the l i terature.  A special case has been 
s ta ted  b y  GASTINEL [5]. 

For  the proof, we r emark  only tha t  in view of the compactness  of {A Iv (A) = t } ,  

~ = m a x { v ( A B )  l v (A)=v(B)  = t }  

exists and  is finite. Le t  a>=n. Evident ly  every  such a is effective. Moreover,  
a = n  is effective and optimal .  

Given any  vector  norm Ilxll, a ma t r ix  norm v(A) is said to be  consistent  
with it, if 

[[A xl]--<v (A). llx II. 

I f  v (A) is any  mult ipl icat ive ma t r ix  norm, then  for a n y  fixed vec tor  a ~ 0, 

lixTl:-- v(xa") 
defines a vector  norm,  and the ma t r ix  norm v(A) is consistent  with it because 
of the mul t ip l ica t iv i ty  v (A B)<=v (A).v(B). Thus  every  mul t ip l icat ive  m a t r i x  
norm is consistent  with some vector  norm. Evident ly ,  lub (A) is b y  definit ion 
the smallest  ma t r ix  norm which is consistent with ][x I[. Hence,  v(A)>=lub(A) 
holds for every  ma t r ix  norm v(A) which is consistent with the vec tor  norm 
Ilx[I genera t ing lub(A).  Geometr ical ly  this means  t ha t  if H is the convex  body  
associated with  the lub norm, then it contains the convex  body  associated with  
any  other  ma t r i x  norm consistent with the given vec tor  norm. Thus  convex  
bodies associated with lub norms are in this sense maximal .  

. 

A deeper insight into the nature  of lub norms  is gained b y  using the  power-  
ful tool  of duali ty.  Associated with any  vector  norm Ilx[I in n-space, which m a y  
be identified with the space of all n-dimensional  column vectors,  is the dual  
norm 
(1) H y n ] ~ : ~ s u p  Reyn~x - - s u p  R e t r ( y n x )  =sup R e t r ( x y n )  

, , .o  M , , .o  ll:ll , , .o  M 

defined in the linear space of all n-dimensional  row vectors  yn. F r o m  this the  
H61der inequal i ty  

Re yn x ~ Uy n I~" l[ x ]] 
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follows. Since it is assumed tha t  HxII is s tr ict ly homogeneous,  this is equivalent  to 

(2) lynxl ~ IlYnl~.llxl[ and IlySl~ = sup lYsX~ 
�9 . 0  It'll 

Two vectors  x 4= O, yn 4= 0 yielding equal i ty  in (2) are said to be mutua l ly  dual, 
which is denoted b y  x[] yn. 

The convex  bodies B and  B D belonging to the norms x and ]lyn]~, respec- 
t ively,  are related b y  polar i ty :  

B D = {yn[ Reynx  <= i for all x• B}. 

The concept  of the polar  

KD:_ {yn[ Reynx  ~ I for all xcK} 

is meaningful  for a rb i t r a ry  sets K in n-space. For  later use, we note  the well 
known relat ion (see for instance EGGLESTON [4]) 

(3) K DD = {x[ Re ynx <= t for all yn~ K D} = .9 (Kw {0}), 

i.e. K DD is the  closure of the convex  hull of K and 0. Since for each vec tor  
norm [Ixlt the set B = {xlilxl[_<_ t} is a c losed  convex neighbourhood of the origin, 
the relation 

BDD= ~ (K w {0})= B 
shows tha t  

Re yH x 
(4) ]lX]l DD= sup ReyHx -- m a x  --Ilxll  

y ~ . o  IlyH]I D y ~ , o  IIyHH D 

holds for any  vector  no rm Iixil. 

Clearly, the concepts  of a dual norm, and of polar i ty  of sets have  their  
counte rpar t s  in the linear space C "  of all square matr ices  of order n: If  v(A) 
is a m a t r i x  norm, its dual norm ~D (A) m a y  be defined b y  

Re tr (A B) v ~ (A) = sup 
B . o  ~(B) 

If  K is a set  in this ma t r i x  space, its polar  K D is 

KD: ---- {A ] Re  t r  (A B) ~ t for all B ~ K}.  

These definitions are the na tura l  extensions of the  corresponding definitions 
in n-space. 

In  the  sequel, the  class of matr ices  of r ank  1 is ve ry  impor tan t .  Their  lub 
norm is easily calculated,  since the norm is s t r ict ly homogeneous:  

I / A  = x yn is any matrix o/rank t, then 

lub (A) = IICll D'llxll. 

In  fact,  the  definition of lub(xy n) and (2) yield immedia te ly  

lub (x yS) = sup lix ynu[] _ sup [yS u 1" ][xl[ _ IiyS [ID. Ih x []. 
. , o  II~tl . , o  Ilull 

Denote  b y  
P :={xyHllub(xy ~) ~ t }  

the set  of all matr ices  A = x y  n with l u b ( A ) ~ t .  
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Then, it is easy to show 

(5) lub(A) = sup Re t r (A B).  
BEP 

Indeed,  we obtain  b y  (4) 

sup Re t r  (A B) = sup Re tr (A x yn) _ sup Re yH A x 
BcP ~,o II."ll IlyHIp ~,o Ily~P II~ll 

y.U~ 0 y~=~ 0 

= sup sup = sup 
�9 . o  I ] ~ y ~ . o  IIyHIP , . o  [Ixll 

= l u b  ( A ) .  

But,  this implies immedia te ly  

P D = { A I R e  tr(A B)--<I for all B c P }  

={A ] l u b ( A ) < q ,  

and therefore the inclusion 
p <pD 

holds. 

The  main  result can now be s ta ted:  

T h e o r e m  1. Every lub norm has the /ollowing properties." 

a) {A ] lub (A) ~ 1 } = pP. 

b) {A I lube  (A) ~ 1 } = pD v = g) {A = x yU[ lub v (A) <: t }. 

c) lub(A)<=lubD(A) /or all square matrices A o/ order n. 

d) l u b ( A ) = l u b O ( A )  /or all matrices A = x y  H o/ rank I or 0. 

f) lub D (A) is a multiplicative matrix norm, which is consistent with the vector 

norm Hxll generating lub(A).  
Pro@ Prope r ty  a) has a l ready been established. Since a) is true,  and P (_ pD, 

the definition of the dual norm lub D (A) of lub (A) implies a t  once 

Re tr (A B) lub D (A) : = sup . . . . . . . . . . . .  sup lxe tr  (A B) 
•4=o lub (B) B~pD 

sup Re tr  (A B) =- lub (A), 
BEP 

which establishes c), and by  (3) 

pDV = {A i lub D (A) ~ t } =  ~ ( P  ~ {0}). 

Obviously,  0 c P  and P is a compact  set, which proves  

(6) pOD = g) ( p .  {0}) = ~ (P) ,  

since the convex  hull of a compac t  set is also compac t  (see EGGLESTON I41). 

d) is a consequence of c), since for matr ices  A = x yH 

1Re tr(A B) Re yH B x  IlyHIp. lub (B)-I1~11 
lub D (A) = sup- lub (B) --  sup lub (B) ~ sup lub(B) 

B4=0 B:I=0 B + 0  

= t u b  ( A ) .  
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Thus, lub (x yU) _= lub D (x yn), and therefore 

pDD = {A [ lub D (A) ~ 1} = ~)(P) ---- ~) ({A = x yU[ lub D (A) ~ t}), 

which proves b). 
e) is implied by (6): If lub D (A) ----t, then A E ~ (P), and A is a convex com- 

bination of matrices BiE P:  

A = ~, 2i Bi, where lub (Bi) = 1 ,  2i>=0, ~, 2 i = t .  
i 

On the other hand, if 
A = ~, #i Bi,  BiE P,  tti>= 0 

i 

is another decomposition of A, then by the norm properties of lubD: 

lub" (A) =< ~,/,~ lub D (Bi) --<__ ~,/zi, 
i i 

because of d). This establishes e). 
f) The consistency of lub D (A) follows directly from c). I t  remains to be 

shown that  lubD(A) is multiplicative. But this is implied by c): 

lub D (A B) = sup l ie  tr (A B C) _< sup lubD (A) lub (B C) 
c4:0 lub(C) c*o  lub (C) 

_~ sup lub~ (A) lub (B) lub (C) = lub D (A) lub (B) 
C.  o lub (C) 

< lub D (A) lub D (B), 

which completes the proof of Theorem t. 

Theorem I leads to 
Lemma 1. For every matrix norm v (A) that is consistent with the vector norm 

M and satis/ies 
v(A)<=lub(A) /or all A = x y  n, 

the inequalities 
lub (A) <_--v (A) ~ lub D (A) 

lub (A) =< ~D (A) g lub D (A) 
hold /or all matrices A. 

Indeed, the consistency of v(A) with x means that  lub(A)<=v(A) for all A, 
and therefore, by the hypotheses of the Lemma, lub (A)=v(A) for all A = x y n. 
But now Theorem I, b), d) implies v(A)<=hibD(A) for all A proving the first 
inequality 

lub (A) =< v (A) _< lub D (A). 

The second one follows by forming the dual of the previous inequality: 

lub (A) ~ D  (A) ~ l u b  o (A). 

A further interesting consequence of Theorem t is the 

Theorem of STRANG[6]. I /  lubl(A ) and hib2(A ) are two tub norms and 
lub 1 (A) < lub2 (A) /or all A,  then lub 1 (A) = l u b ,  (A). 
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In  fact, lubl(A)Glub2(A ) implies lub~(A)>=lubg(A) for all A, and there- 
fore by  Theorem t, c), 

lub 1 (A) Glub~ (A) ~ lub D (A) G lub D (A). 

Since lubl(A ) = l u b  D (A) for all A = x y n, the last relation, and Theorem 1, b) 
lead at once to 

lubg (A) = lub~  (A) for all A,  

which proves lub 1 (A) = lub~ (A) for all A. 

STRANG'S Theorem can be used in order to find a first characterization of 
lub norms. For this purpose, we call a multiplicative matrix norm v(A) 

minimal multiplicative 

if it is minimal among all multiplicative matr ix  norms --  that  is, if there is any 
multiplicative matr ix  norm # (A) satisfying # (A) <_ v (A) for all A, then # (A) = v (A) 
for all A. Then we can state, following an idea by  GASTINEL [5]: 

Theorem 2. Every lub norm is minimal multiplicative and vice versa. 

Pro@ We note first that  if # (A) is a multiplicative matr ix  norm, then we 
can find a lub norm lubv(A) with 

lub~ (A) G #  (A) for all A.  

Indeed, define the vector norm 

for some fixed vector a ~=0. Then, by a familiar argument, the multiplicativity 
of #(A) yields 

lub~(A) = sup [[Ax]]~ < #(A) .  
, . 0  I1"1~ = 

In order to show that  every lub norm is minimal multiplicative, assume that  
#(A) is a multiplicative matr ix  norm such that  

/z (A) =< lub (A) for all A.  

Then, by  definition of lub~(A), 

lubv (A) G # (A) G lub (A) for all A,  

and the Theorem of STRANG implies 

lub~,(A)=lz(A)=lub(A ) for all A. 

Conversely, let v (A) be a minimal multiplicative matrix norm. Then lub, (A) ~ v  (A) 
for all A. Since lub,(A) is a multiplicative matr ix  norm and v is minimal, we 
conclude 

lub , (A)=~(A)  for all A,  

which completes the proof of Theorem 2. 

I t  is easy to show tha t  the properties b) and c) of Theorem t are sufficient 
to characterize the lub norms among all multiplicative matr ix  norms: 
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Theorem 3. I /  v(A) is a multiplieative matrix norm satis/ying 

a) v(A) gy P (A )  

and 
b) {A [ v ~ (A) _<_ t } = ~ ({A = x yn t v D (A) ~ t }), 

then v (A) = lub (A), where 

lub (A) = sup [-IAx[~ 
, . o  INI 

is the lub norm subordinate to the vector norm Ilxll lot some/ixed a-~ O, 
and I[x]] is, up to a /actor, independent o/ a. 

Pro@ Let for some vector a * 0 ,  ]lxl] =v(xan).  Then by the multiplicativity 
of v(A), we obtain 

lub (A) ~ v  (A) for all A. 

Therefore, lub D (A) ~ v  D (A), which shows 

lub (A) =< v (A) =< v D (A) <= lub D (A). 
Theorem 1, d) yields 

lub(A)=v(A)=vD(A)=lubD(A)  for all A = x y  n, 

and by the hypothesis b) of Theorem 3, and Theorem t, b) 

lub D(A)=v D(A) for all A, 

proving lub(A)=v(A)  for all A and for arbitrary a4:0.  

A similar result can be proved for matrix norms: 
Theorem 4. I /  v(A) is a matrix norm which has the properties 
a) v(A)=vD(A) /or all A----xy n, 

b) {A[v D (A) =< ! } = g~ ({A = x yn[ VD (A) _< t }), 

c) there is a vector a 4:0 such that 

(x y ' u a  ~) __<~ (xy") ~ (ua') 

/or all vectors x, y, u ("weak multiplicativity"), 

then v(A)=lub(A) ,  where lub(A) is generated by the vector norm Ilxil : =  ~(xan). 

To begin the proof, we obtain from c) 

lub(A)~v(A) for all A = x y n ,  
and therefore 

lub D(A)~v D(A) for all A = x y n ,  

since v D (x yn) = v (x yn) and lub (x yn) = lub o (x yn). Thus, b) and Theorem 1, b), d) 
imply 

lubD(A)<=vD(A) for all A. 

Together with Theorem t, this proves 

v(A)<=lub(A)<=lubD(A)<=vD(A) for all A. 
Hence, by a), 

lubD(A)=vD(A) for all A = x y  n, 
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and therefore, by  b) and Theorem t,  b), 

lub v (A) = v  D (A) for all A, 
which shows lub (A)=v(A) ,  and Theorem 4 is proved. 

Theorem 1 shows tha t  if the mat r ix  norm v (A) satisfies 

(7) lub (A) <=v(A) =<lub D (A) 

then 
v (A B) = lub (A B) ~ lub (A) lub (B) = v  (A) .v (B) 

for all matrices A = x y  I-I, B=uv H of rank 1; i.e. v(A) is weakly multiplicative 
(see Theorem 4). Thus the question arises whether  relation (7) implies tha t  
v(A) is a multiplicative matr ix  norm. The following counterexample shows tha t  
this is not  t rue:  

Take as a vector  norm 

[Ixll:= I x, I. 
The corresponding lub(A) and lub D (A) are easily determined:  

lub(A) = max  ~ lai~l, 

For  the matrices 

A:=(; ;) 
we have, therefore, 

lub (A) = 2, 

lub (A 2) = 4, 

Define the mat r ix  norm v (C) by  setting 

lub D (A) = ~ max  la,k[. 

tub n (A) = 3 

lub n (A 2) = 5. 

�9 A 

3 Clearly, because of lub (e i~. A2 ) = 1  and lub D (e i*.  A 2 ) = - 2 -  > 1 ,  this construction 

of v (C) guarantees tha t  v (C) is a strictly homogeneous mat r ix  norm satisfying 

lub(C)<=v(C)<~lubD(C) for all C 

and simultaneously v ( A ) = 2 .  Moreover, the relation v(A~)=5,  which will be 
proved at  once, shows tha t  

v(AZ)=5>v(A)2=4 

and, therefore, v (C) is not  multiplicative. In order to show v (A 2) = lub D (A ~) = 5, 
note  tha t  the inequali ty (I = ident i ty  matrix) 

Retr( IC)<=Retr( I~- )=l  for all C with lubD(C)=<t 

exhibits the hyperplane 

E : = {C [ Re tr  (I C) = Re tr  (C) = t } 

in mat r ix  space as a support ing plane of the convex body  

B :={Cllub '(C) <1) 
Numer. Math. Bd. 6 2 2  
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through the boundary point A2/5 of B. Moreover, since 

�9 t R e t r ( I ' e ~ " ~ 2 ) ~ t r ( A 2 ) = -  2- < t  

for all real % E is also a supporting plane of the convex body e ' : =  {Clv (C) <= t}. 
This proves that  A2/5 lies also on the boundary of B',  and therefore v(A~')= 5, 
which was to be shown. 

The maximum norm ]lx ]l ---- max  ]x,] is also interesting for another reason. 
In theorem 1 we have proved 

lub (A) ~ hib D (A) for all A,  
but 

lub (A) = hib D (A) for all A = x yn. 

This suggests the question, whether equality 

lub (A) ---- lub D (A) 

holds only for m a t r i c e s a - - - - x y H o f r a n k l  or 0. The m a t r i x A = ( t  t 10) shows 

that  this suggestion is not true for the maximum norm. However, the next 
theorem demonstrates that  this irregularity cannot occur if the vector norm Ilxll 
is smooth enough: 

Theorem 5. I /  the vector norm I]xl] or its dual IlynH D is differentiable /or all 
points with exception o[ the origin, then 

lub (A)=  lub D (A) 

holds i/ and only i/ A is a matrix o/ rank 1 or O. 

Pro@ Because of Theorem I we need only show the "only if" part  of The- 
orem 5. We assume without loss of generality that  

lub (A) = lub D (A) = 1, 

and that  Hx]l is a differentiable vector norm in C' .  The case of a differentiable 
[[yn]~ can be treated analogously. 

Because of lub D (A) = 1, we get by  Theorem t, e) 

A----~,3,ix, y ~, where IIx, ll.lly~l~--l, 4,>__o, y. 4 , = t .  
i i 

Now, by  Theorem 1, a), 
lub (A) = sup Re tr  (A B) 

B E P  

and there exists a matr ix  B o = x o y ~ c P  with lub (Bo)~1  such tha t  

1 = lub (A) = Re tr  (A Bo) = Re yHA x o 

= X 4, l y~ x,I. I y," Xol 
i 

-~ E 4, Ilyo ~ IN I1 x, II" Ify, ~ IN llxo II 
i 

---- ~, 4, lub (Xoy n) lub (x, y u) 
i 

-<_~, ~ = 1 .  
i 
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But  this can only be t rue  if 

[ Y~ xi I = ]]Yo n[l D l] xi]]' or x ill Y~o 

ly xol= lly l llXoll, or Xolly~ 
for all i = 1, 2, . . . ,  t ha t  is, the hyperplanes  

f x I R  Y~/ x -  Ilxo[I} E,:=l I 
are suppor t ing planes of the convex set 

B : =  (xl Ilxll-<- Ilxoll} 
passing through the boundary  point  x o of B. I t  is well known tha t  the  differ- 
ent iabi l i ty  of Ilxll implies a t  once t ha t  there is exac t ly  one such suppor t ing plane 
through x 0. Therefore,  

mus t  be  valid for some c o n s t a n t s / ~ i > 0  and a vector  yu # 0 .  This proves  

A = ~, 2,x, y in=(~  X,/~,x,) .~n,  
i 

and A is a ma t r i x  of rank  I or 0. 

4. 

As an interest ing applicat ion of these ideas we shall exhibi t  a result  of 
BAUER [1] concerning the funct ion 

m (A) : = sup {Re tr  (A B)[ B = x y/~ & lub (B) = Re ynx = Re t r  (B) = 1 } 

as a special case of a general theorem. This function was considered b y  BAUER 
in order to obta in  localisation theorems for the eigenvalues of the ma t r i x  A. 
He proved  the  following relation between m(A) and lub(A):  

T h e o r e m .  The equation 

m ( A ) =  limoo (lub (A + 31) --  z) ,  I = identity matrix, 

holds [or every square matrix A o[ order n. 
Pro@ We note t ha t  for every  ma t r ix  B =  x y n the H61der inequal i ty  for 

lub and lub D yields 

Re yn x = Re  t r  (B) = Re t r  (I B) < lub ~ (B) lub (I) 

= l u b  D (B) = l u b  (B), 

b y  Theorem t ,  d). Therefore,  the plane 

(8) E : =  {A IRe t r  ( IA)  = 1} 

is a suppor t ing  plane of the  convex body  

p v o  = {A [lub ~ (A) --< 1 } = ~ (V) = ~ ({B = x yn[ lubD (B) = lub (B) =< t }). 

22* 
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Hence,  re(A) can be equivalent ly  defined b y  

(9) m (A)" ---- sup {Re tr  (A B) ] lub D (B) = Re  t r  (B) = 1 } 

= sup{Re t r (A B)]BEE~pDD}.  

As noted  in [1], we remark  fur ther  t ha t  the  relation main ta ined  in the Theorem 
is equivalent  to 

re(A) = lira lub( I  + aA) -- lub(I)  
a - - + 0  

t . = : lub (I, A),  

where lub ' ( / ;  A) is the directional derivat ive,  or "Rich tungsder iv ie r te"  (see 
BONNESEN, FENCHEL [3]) of the convex function lub a t  the point  I in the 
direction of the ma t r i x  A. I t  is well known (see [3, 41) t ha t  l ub ' ( I ;  A) exists 
always. 

Now, a result  of BONNESEN and FENCHEL sta tes  tha t  if 

/ (u H) : = m a x  Re  u H x, 
x C K  

is defined as the support [unction of the compac t  convex set  K then  the direc- 
t ional  der ivat ive  

/'(uno ; UH) "-- l im [ (u~ + au n) -- [(Uno ) 
a - +  O 

is the  suppor t  function of the convex set K I : =  E~o~K, where E~~ {x I Reuo n x :  
[(Uon)) is a suppor t ing plane of K,  i.e. 

]'(uH; U H) : m a x { R e  uH xl xc- Eu ~K}.  

When applied to (8) and (9), this relation yields a t  once 

re(A) = lub ' ( I ;  A) ,  

since lub (A) = sup {Re t r  (A B) ] lub D (B) <= 1 ) is the suppor t  funct ion of the con- 
vex  set pDD : {B [ l u b  D (B) ~ t ). 

5. 

Finally, let us consider lub(A) and lubD(A) subordinate  to the  euclidean 
norm [Ix[[ : :  (xHx)�89 I t  is well known tha t  given a ma t r i x  A there  exists a un i t a ry  
ma t r i x  U 0 and  a hermi t ian  ma t r i x  H 0 such t h a t  

(10) A : H o U  o and tr(Ho) : ~ # i ,  
i = 1  

the  so called polar  decomposit ion,  whe re /h~ /~2>_  ... ~ # ~ 0  are the singular 
values of A. Moreover,  there  exist un i t a ry  matr ices  U x and  V1 such t h a t  

(1t) U~A VI-~D : : d iag( /h  . . . . .  # , ) .  

Fur ther ,  it is well known tha t  l u b ( A ) : / * a .  

Now, if 
A=Z~x~y~, x,~x,<t, yfy,_<t, 4,>0, 

i 
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and if U and V are any unitary matrices, then 

u HA v = Y ~ ( u  ~x3 (y~ v),  (u~x3 s (USx3 < 1, (v  s y~)~(v s y~) < I ,  

so that, by Theorem 1, e) 
lub o (A) = lub D (UnA V), 

hence the norm lub D is unitarily invariant. Thus, by (t t), there is no restriction 
in considering matrices of the form D only. 

But the euclidean norm [Ixll is an absolute norm (i.e. Itxll depends only on 
the moduli I xd of the components x~ of x), and therefore, by a result of W2J, 

lub D (diag (d 1 . . . . .  d~))= ~ ]d d 

holds for every diagonal matrix. This implies 

lub D (A) = lub D (D) = ~./~i- 
i = 1  

Thus the norm lub D (A) is the sum of the singular values. 

Further, by (10), we have 

lub D (A) = sup{Re tr  (A U) I U s U = I}. 

This implies that  the convex body associated with lub(A) is the convex hull 
of all unitary matrices: 

{A I lub (A) < 1 } = ~  {U[ U s U = I } .  

As a consequence, the following remarkable formula for lub(A) is obtained 
(compare Theorem 1, e)): 

lub(A)=lz l=in f {Y . ,~ iA=22iU, ,  where U~U,=I and )~i~0}. 
- 6  i 

Such a minimal decomposition of a matrix A into a weighted sum of unitary 
matrices Ui can be obtained in the following way. Assume first A = D-= diag (/~1, 
. . . .  /z~), where #1>#2>= ... ~ / ~ , > 0 .  Then, the decomposition of D is 

n 

D = Y. ~iEi, where E i : =  diag (af) . . . . .  a~ 0) 
i = 1  

and 
t if k ~ i  

--1 if k > i ,  

/~i--/~i+l for i < n ,  
~ i  : - -  2 

/hE~-  
~ n  : ~  2 

Clearly ni>=O holds and ~, ~ i = / h = l u b ( D ) .  Now, by (tl),  a decomposition of 
i = l  

an arbitrary matrix A is 

A U1DVI'-- ~ --~. = _ niUlEiV1H -- uiU1Vln(I--2"V1PiVlU), 
i = 1  i = 1  
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where Pi is the projector defined by  

P / : = - -  
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