Numerische Mathematik 6, 302—314 (1964)

On the Characterization
of Least Upper Bound Norms in Matrix Space

By
JOSEF STOER

1.

It is well known that every vector norm |x| in C* gives rise to a matrix
norm lub(4) in the space C* of all square matrices of order n

o A
b (d) = sup Tpr

which is consistent with the underlying vector norm:
JA 2] < 1ub (4) |
and is a multiplicative matrix norm: The inequality
lub (4 B)=1lub (4)-lub(B)

holds for all matrices 4 and B.
Any vector norm |x| uniquely defines a convex body

B:= {x] |x| =1}<C",

which is compact and contains the origin as an interior point. Conversely, for
any compact convex neighbourhood B of the origin in C*, there exists a vector
norm x|

|¥|:=inf{w =0|xcw B}, where wB:={wx|xcB},

with B={x] |¥]<1}. Likewise, every matrix norm »(4) in C* is associated
with a compact convex neighbourhood
H:={4|»(4)<1}

of the origin in C*, and vice versa. But clearly, not every convex compact
neighbourhood of the origin in C* belongs to a lub norm. The principal problem
to be considered here is the geometric characterization of those convex bodies
in C* which are associated with lub norms. The question arises because of the
fact that many of the properties of vector norms fall quite easily and naturally
out of a consideration of the associated convex bodies, and it is hoped that
these results will throw some light on the rather more difficult questions related
with multiplicative matrix norms and lub norms.

This paper incorporates several unpublished results of Dr. A. S. HOUSEHOLDER,
Prof. H. ScuNeIDER and Prof. F. L. BAugr. The author admits gratefully that this
paper has been initiated by their investigations and he wishes to thank them for
communicating to him their results and for many discussions on this subject.
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2.
In the sequel, we shall assume that all vector norms |x| considered are

strictly homogeneous,

ie. Jax|=|«|-|*| holds for all complex «. Since in this case lub(4) is also
strictly homogeneous, it is natural to require hereafter that all matrix norms
v{4) encountered are also strictly homogeneous.

Now, a first result can be stated about matrix norms and multiplicative
matrix norms:

For any matrix norm v(A), there exists a scalar >0 such that

l4]:= o-v(4)
is a multiplicative matrix norm.

This theorem does not seem to be in the literature. A special case has been
stated by GASTINEL [§].

For the proof, we remark only that in view of the compactness of {4|v(4)=1},
x=max{y(4 B)|v(4)=v(B) =1}

exists and is finite. Let 6=#. Evidently every such ¢ is effective. Moreover,
o= is effective and optimal.

Given any vector norm |x|, a matrix norm »(4) is said to be consistent
with it, if

|4 ] <v(4)-|*].
If »(A4) is any multiplicative matrix norm, then for any fixed vector a <=0,
]| : = » (xaf)

defines a vector norm, and the matrix norm »(4) is consistent with it because
of the multiplicativity v(4 B)<w(A)-»(B). Thus every multiplicative matrix
norm is consistent with some vector norm. Evidently, lub(4) is by definition
the smallest matrix norm which is consistent with |x. Hence, »(4)=1ub(4)
holds for every matrix norm »(4) which is consistent with the vector norm
|| generating lub(A4). Geometrically this means that if H is the convex body
associated with the lub norm, then it contains the convex body associated with
any other matrix norm consistent with the given vector norm. Thus convex
bodies associated with lub norms are in this sense maximal.

3.

A deeper insight into the nature of lub norms is gained by using the power-
ful tool of duality. Associated with any vector norm |x| in n-space, which may
be identified with the space of all n-dimensional column vectors, is the dual

norm

H
(1) Iy# P : = sup Rey?% _ sup
oy P71

230

Retr(y#x) _ sup Re tr (x yH)
=l P

defined in the linear space of all n-dimensional row vectors ¥¥. From this the
Holder inequality

Re y?x < |y¥|P x|
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follows. Since it is assumed that |x| is strictly homogeneous, this is equivalent to

(2) |y el = 7P [ and Jy7|P = sup |yll:ﬁd'

Two vectors x =0, y 0 yielding equality in (2) are said to be mutually dual,
which is denoted by x|y".

The convex bodies B and B” belonging to the norms x and [y¥|P, respec-
tively, are related by polarity:

BP?={y¥|Rey"x <1 for all xc B}.
The concept of the polar
KP:={y#|Rey? x <1 for all xcK}
is meaningful for arbitrary sets K in n-space. For later use, we note the well
known relation (see for instance EGGLESTON [4])

3) KPP —{x|Rey"#x <1 for all Y7 K’} =9H(Ku{0}),

ie. KPP is the closure of the convex hull of K and 0. Since for each vector
norm |x|| the set B={x||x| <1} is a closed convex neighbourhood of the origin,
the relation

BPP=§(Ku{0})=B
shows that

ReyHxy Rey x

4 x||PP =5 = =
4 =] H:;:po P y“:o TP = ||
holds for any vector norm ||x|.

Clearly, the concepts of a dual norm, and of polarity of sets have their
counterparts in the linear space C* of all square matrices of order n: If ¥(4)
is a matrix norm, its dual norm »?(4) may be defined by

W0 (A) = sup Retr(4B)
“) B:t:I()) »(B)
If K is a set in this matrix space, its polar K” is
KP:={A|Retr(4 B)=1 for all BeK}.

These definitions are the natural extensions of the corresponding definitions
in n-space.
In the sequel, the class of matrices of rank 1 is very important. Their lub
norm is easily calculated, since the norm is strictly homogeneous:
If A=xy¥ is any matrix of rank 1, then
lub (4) = [y ]

In fact, the definition of lub(x¥¥) and (2) yield immediately
lub (% ) = sup X4l _ g 1974121 = [yH [P - ||
N 1 R S 1]

Denote by
P:={xy"|lub(xy") <1}

the set of all matrices 4 =xyH with lub(4) <1
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Then, it is easy to show

{s) lub(4) = sup Re tr (4 B).
BEP
Indeed, we obtain by (4)

sup Re tr(d B) = sup Retr(dayf) o, Reyfdx

BEP _x=i=0 "”” HJ’H”D - x+0 _”;HHITH;IF
yH40 yHE+0

H
= sup{ ] SUP -R_'EXH_;?’L} = supM
x40 yH 40 yH || TE0 [l

=lub (4).
But, this implies immediately
PP={4|Re tr(4 B)<1 for all Be P}
={4|lub(4)=1},

and therefore the inclusion
pPcpP

holds.
The main result can now be stated:
Theorem 1. Every lub norm has the following properties:
a) {4|lub(4) <1} =PP.
b) {4|lub?(4) <1}=PPP = H{4 = xy"|lub” (4) < 1}.
c) lub(A4 )<lubD (A) for all square matrices A of order n.
d) lub(4)=1ub?(A4) for all matrices A=xy" of rank1 or 0.
e} lub?(4) Hinf{z A; }
1) lub?(4) s a mz;lti;hlicative mairix noym, which is consistent with the vector
norm ||x|| generating lub(A).

i

Proof. Property a) has already been established. Since a) is true, and PC PP,
the definition of the dual norm lub?(4) of lub(4) implies at once

, Re tr (4 B)
lub? (A) :=su 2] — sup Retr(4 B
ub?(4) B#I()) ub(B) Bagi etr( )
= sup Retr(4 B) =lub(4),
BEP

which establishes c), and by (3)
DD — {4 |lub? (4) =1}=9 (P {0}).
Obviously, 0¢< P and P is a compact set, which proves
(6) PPP=9(Po{0})=9H(P),
since the convex hull of a compact set is also compact (see EGGLESTON [4]).

d) is a consequence of c), since for matrices A=zxy"

Retr(4B) ReyH Bx [y |P - lub (B) - | x|
lub? (4) =sup —— =77 — su — =< su
Wb(A) =P yan(B) T pih lb(B) Ssub lub(B)

=lub(4).
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Thus, lub(xy¥)=1ub? (xy¥), and therefore
PPP — {A|lubP (4) <1} = H(P) = $ ({4 = x| lubP (4) <1}),

which proves b).

e) is implied by (6): If lub?(4) =1, then AcH(P), and 4 is a convex com-
bination of matrices B;c P:

A-—':Z}., Bi’ where lub(B1)=1, 1;20, Z 11:1
i i
On the other hand, if
A=) u B; BgEP, p=0
is another decomposition of A4, then by the norm properties of lub?:
Iub® (4) < 3 p; 1ub? (B) < 3 s,

because of d). This establishes e).

f) The consistency of lub?(4) follows directly from c). It remains to be
shown that lubP(4) is multiplicative. But this is implied by c):

1ub? (A B) = sup REFMABO) _ 1, 1ubP (4) lub(BC)

i G 1Y (o) M Tub (C)
1ub? (4) lub (B) lub(C) _
< gl:}; b (C) = lub? (4) lub (B)
< lub® (4) lub® (B),

which completes the proof of Theorem 1.

Theorem 1 leads to

Lemma 1. For every matrix norm v(A) that is consistent with the vector norm
lx|| and satisfies

v(A)<1lub(4) for all A=xy",
the inequalities
lub (4) <v(4)<1ubP (4)
lub (4) <P (4) <1lubP (4)
hold for all matrices A.

Indeed, the consistency of »(4) with x means that lub(4)=<»(4) for all 4,
and therefore, by the hypotheses of the Lemma, lub(4)=v(4) for all 4=xyH.
But now Theorem 1, b), d) implies ¥ (4)=<lub®(4) for all 4 proving the first
inequality

lub(4) v (4)<Iub? (4).
The second one follows by forming the dual of the previous inequality:
lub (4) <+P (4) <1ub® (4).
A further interesting consequence of Theorem 1 is the

Theorem of STRANG[6]. If lub;(4) and luby(d) are two lub norms and
lub, (A) Zluby(4) for all A, then Iub,(4)=Ilub,(4).
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In fact, lub, (4)<lub,(4) implies lub? (4)=1lubf (4) for all 4, and there-
fore by Theorem 1, c),

lub, (4) <lub,(4) <1ub? (4) <1ub? (4).
Since lub, (4)=Iub? (4) for all 4A=xy", the last relation, and Theorem 1, b)
lead at once to
lub? (4)==1ub? (4) for all 4,

which proves lub, (4) =lub,(4) for all 4.

STRANG’s Theorem can be used in order to find a first characterization of
lub norms. For this purpose, we call a multiplicative matrix norm »(4)

minimal multiplicative

if it is minimal among all multiplicative matrix norms — that is, if there is any
multiplicative matrix norm pu (A4) satisfying u (4) <»(4) for all 4, then p(4)=v(4)
for all A. Then we can state, following an idea by GASTINEL [5]:
Theorem 2. Every lub norm is mintmal multiplicative and vice versa.
Proof. We note first that if u(4) is a multiplicative matrix norm, then we
can find a lub norm lub,(4) with
lub,(4)=u(4) for all 4.

Indeed, define the vector norm

Jol: = e (e
for some fixed vector @ ==0. Then, by a familiar argument, the multiplicativity
of u(A4) yields

_ %Ed|
lub, (4) = sup HEAle = ().

In order to show that every lub norm is minimal multiplicative, assume that
1(A) is a multiplicative matrix norm such that

u(Ay=<lub(4) for all 4.
Then, by definition of lub,(4),
lub,(4)=u(4)<lub(4) for all 4,
and the Theorem of STRANG implies
lub, (4)=u(A)=Ilub(4) for all 4.

Conversely, let » (4) be a minimal multiplicative matrix norm. Then lub, (4) =»(A4)
for all A. Since lub,(4) is a multiplicative matrix norm and » is minimal, we
conclude

lub, (A)=w»(A) for all 4,

which completes the proof of Theorem 2.

It is easy to show that the properties b) and ¢} of Theorem 1 are sufficient
to characterize the lub norms among all multiplicative matrix norms:



308 JoseF StoER:

Theorem 3. If v(A) is a multiplicative matrix norm satisfying
a) v(4) <" (4)

and
b) {A]s?(4) = 1}=§ ({4 =xy"|s (4) =1}),

then v(A)=1lub(A4), where

lub (4) = sup Ml
=2
is the lub norm subordinate to the vector norm ||x|:=v(xa¥) for some fixed a =0,

and |x|| is, up to a factor, independent of a.
Proof. Let for some vector a %0, |x|=v»(xa"). Then by the multiplicativity

of »(4), we obtain
lub(4)=v(4) for all 4.

Therefore, lub” (4) =+ (4), which shows

lub(A) v (4) =P (4) S1ubP (4).
Theorem 1, d) yields

lub(4)=v(A)=+" (4)=1ub?(4) for all A==x9",
and by the hypothesis b) of Theorem 3, and Theorem 1, b)
lub? (4)=+P (4) for all 4,
proving lub(4)=w»(4) for all 4 and for arbitrary a==0.

A similar result can be proved for matrix norms:
Theorem 4. If v(A) is a matrix norm which has the properties
a) v(A)=vP(A) for all A=xy",
b) {A[+” (4) S1}=9 ({4 =xy" | (4) 1)),
c) there is a vector a =0 such that
v(xyHual) <y (xy") v (ua)

for all vectors %, v, u (“weak multiplicativity” ),

then v(A)=1ub (A), where lub(A) is generated by the vector norm ||x|:= v (xa¥).
To begin the proof, we obtain from c)
lub(4)<wv(4) for all A=xy",
and therefore
lub? (4)<sP (4) for all A==xy",
since »? (x y¥) = (xyH) and lub (¥ y¥) =1ub? (x y#). Thus, b) and Theorem 1, b), d)
imply
Iub? (4) 4P (4) for all 4.

Together with Theorem 1, this proves

y(A)Slub(4) < Iub? (4) <P (4) for all 4.
Hence, by a)},
lub? (4)=+P (4) for all A=xy",
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and therefore, by b) and Theorem 1, b),
lub? (4)=+P (4) for all 4,
which shows lub(4)=v(4), and Theorem 4 is proved.
Theorem 1 shows that if the matrix norm v(A) satisfies

(7) lub (4)<v(4)=1ub” (4)
then
v(4 B)=Ilub(4 B)<lub(4) lub(B)=v»(4)-»(B)

for all matrices 4 =xy", B=wuv" of rank 1; i.e. »(4) is weakly multiplicative
(see Theorem 4). Thus the question arises whether relation (7) implies that

v(A) is a multiplicative matrix norm. The following counterexample shows that
this is not true:

Take as a vector norm
Jol = max .

The corresponding lub(4) and lubP (4) are easily determined:
lub(4) =max 2} |a;|,  lub”(4) = max |a;l.
% k k k3

For the matrices
A:z(1 1), A2:(3 1)
2 0 2 2

lub(4d)=2,  lub?(4)=3
lub(A2)=4, lubP(4%)=5.

Define the matrix norm »(C) by setting

{Clp(C) <1} := @({cllubD )< 1}u{c — 7. %‘(p real}).

we have, therefore,

Clearly, because of lub (e""’ . %) =1 and lub? (e“” . —‘;1—) = —g - > 1, this construction

of »(C) guarantees that »(C) is a strictly homogeneous matrix norm satisfying
lub(C) < (C)<1ubP (C) for all C

and simultaneously v{4)=2. Moreover, the relation »(42% =5, which will be
proved at once, shows that

p(A2)=5>v(4)2=4

and, therefore, ¥ (C) is not multiplicative. In order to show »(42) =Iub? (42)=5
note that the inequality (I = identity matrix)

H

Retr(IC) S Retr( %):1 for all C with lubP(C) <1
exhibits the hyperplane
E:={C|Retr(IC)=Retr(C) =1}
in matrix space as a supporting plane of the convex body

B:={C|lub?(C) <1}

Numer. Math, Bd. 6 22
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through the boundary point A4?%/5 of B. Moreover, since
vt AN <r (A = L
Retr(I ¢ 2):tr<?)— <A1

for all real g, E is also a supporting plane of the convex body B':={C|»(C) =1}.
This proves that A2/5 lies also on the boundary of B’, and therefore »(42)=3§,
which was to be shown.
The maximum norm |x|= max |x;| is also interesting for another reason.

In theorem 1 we have proved

lub(4)<IubP(4) for all 4,
but

lub(A4)=1ubP? (4) for all A=xy".
This suggests the question, whether equality

lub(4)=1ub? (4)

holds only for matrices A=xy" of rank1 or 0. The matrix 4= (: (1)) shows

that this suggestion is not true for the maximum norm. However, the next
theorem demonstrates that this irregularity cannot occur if the vector norm |x|
is smooth enough:

Theorem 5. If the vector morm ||x|| or its dual ||v¥||P is differentiable for all
points with exception of the origin, then
lub (4) =1ub? (4)
holds if and only if A is a matrix of rank 1 or 0.
Proof. Because of Theorem 1 we need only show the “only if”’ part of The-
orem 5. We assume without loss of generality that
lub (4) =1ub® (4) =1,
and that ||x| is a differentiable vector norm in C”. The case of a differentiable
[y#|P can be treated analogously.
Because of lub?(4) =1, we get by Theorem 1, €)

A=22;% 9], where |z]-|y7IP=1, ALzo0, 2ZAi=1.

Now, by Theorem 1, a),

lub(4) = 21;1})) Re tr(4 B)

and there exists a matrix By=x,v§¢cP with lub(B,) =<1 such that
1=lub(4)=Re tr (4 By)=Rey§ A ,
= Z A |ye x| |97 o
= 2 Al Pl - P ol
= X A, 1ub (%55 lub (%, y7")
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But this can only be true if
|76 % = s Plel, o x|

|y 2ol = [V P Il or ol
for all : =1, 2, ..., that is, the hyperplanes

E;: lRe }
Iy H“D " ol
are supporting planes of the convex set

B:= {z||x]| = %}

passing through the boundary point x, of B. It is well known that the differ-
entiability of || implies at once that there is exactly one such supporting plane
through x,. Therefore,

v = p yH
must be valid for some constants p;>0 and a vector ¥ ==0. This proves
4= Z }n‘xi%’ = (Z }‘i;uixi) '? s
and 4 is a matrix of rank 1 or 0.

4,

As an interesting application of these ideas we shall exhibit a result of
BAUER [1] concerning the function

m(A) := sup{Re tr (4 B)| B=x y¥ &lub(B) = Re y#x =Re tr (B) =1}

as a special case of a general theorem. This function was considered by BAUER
in order to obtain localisation theorems for the eigenvalues of the matrix 4.
He proved the following relation between m(A4) and lub(4):

Theorem. The equation

m(A)=lim (lub(4 +<I)—7), I=1identity matrix,

T—>0

holds for every square matrix A of order n.

Proof. We note that for every matrix B=xy" the Holder inequality for
lub and Inb? yields

Re y¥ x=Re tr(B)=Re tr (I B) <1ub” (B) lub (/)
=Iub? (B)=1ub(B),
by Theorem 1, d). Therefore, the plane
(8) E:={A|Retr(I4)=1}
is a supporting plane of the convex body

D — {A|lub? (4) =1} = (P) = 9 ({B = x y|lub? (B) =lub(B) = 1}).
22*
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Hence, m(A4) can be equivalently defined by
(9) m(A) := sup{Re tr(4 B)|1lub? (B)=Re tr(B) =1}
= sup{Re tr(4 B)| Be E~ PPP}.

As noted in [I], we remark further that the relation maintained in the Theorem
is equivalent to

m(d) = lim ub (I 4 0 4) —lub(I)

c—0 [
=:lub'(I; ),

where lub’(f; A) is the directional derivative, or ‘“Richtungsderivierte” (see
BonNESEN, FENCHEL [3]) of the convex function lub at the point I in the
direction of the matrix A. It is well known (see [3, 4]) that lub’(/; 4) exists
always.

Now, a result of BoNNESEN and FENCHEL states that if
f(#) := max Re u¥ x
2€K

is defined as the support function of the compact convex set K then the direc-
tional derivative

H H
£ ) 1= Tim f (g +"“:)—1‘(uo)

is the support function of the convex set K,:=FE, nK, where E, : ={x|Reull x=
f(ug)} is a supporting plane of K, i.e.

{'(up ; u?)=max{Re u” x| x¢ E, ~K}.
When applied to (8) and (9), this relation yields at once
m(d) = lub/(I; 4),

since lub(4)=sup{Re tr(4 B)|lub? (B) =1} is the support function of the con-
vex set PPP={B|lub”(B) <1}.

5,

Finally, let us consider lub(4) and Iub”(A4) subordinate to the euclidean
norm |xf : = (¥ x)%. It is well known that given a matrix 4 there exists a unitary
matrix U, and a hermitian matrix H, such that
(10) A=Hy U, and tr(Hy)= Z
the so called polar decomposition, where u,=us= .- = p,=0 are the singular
values of 4. Moreover, there exist unitary matrices U1 and 7] such that
{(11) Ut 4 W=D :=diag(u,, ..., ).

Further, it is well known that lub(4)=g,.

Now, if

A=Az v, *x s, Yy <1, A=zo,
i
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and if U and V are any unitary matrices, then
UHAV =X (U x) (' V),  (UHx)?(UFx) =1, (VHy)H(VPy) =1,
so that, by Theorem 1, e)
lub? (4) = lab? (U¥ A V),

hence the norm lub? is unitarily invariant. Thus, by (11), there is no restriction
in considering matrices of the form D only.

But the euclidean norm |x| is an absolute norm (i.e. |*| depends only on
the moduli |#;| of the components x; of %), and therefore, by a result of [2],

lub” (diag(dy, ..., d,)) = i |d|
holds for every diagonal matrix. This implies -
lub? (4) = lub? (D) = 'ifui'
Thus the norm lub® (A4) is the sum of the singular values.
Further, by (10), we have
lub? (4) =sup{Re tr (A U)| UF U=1}.

This implies that the convex body associated with lub(A4) is the convex hull
of all unitary matrices:

{A|lub(4) <1}=${U|UH U =1}.

As a consequence, the following remarkable formula for lub(4) is obtained
(compare Theorem 1, e)):

Jub (4) :,ulzinf{z A,

A=22,U;, where UFU; =1 and /'l,»@O}.

Such a minimal decomposition of a matrix A into a weighted sum of unitary
matrices U, can be obtained in the following way. Assume first 4 = D=diag(y;,
.y W), where py=pp= -+ =p,=0. Then, the decomposition of D is

n

D=YuxE, where E;:=diag(al,...,o)

=1
and
Ug—)::{ 1 i k<4
—1 i k>,
xi::ﬁ;ﬁ*i for i<n,
xn::—'u‘_;””-.

Clearly %;=0 holds and ) x;=p,=lub(D). Now, by (11), a decomposition of
i=1
an arbitrary matrix 4 is

A=UDW =% x,UEW" =Zl%zU1VlH(1 —2-N BV,
=1

1=
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where P, is the projector defined by
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