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ABSTRACT 

In this paper we prove the existence of an unique global minimum point of a 
convex function under some smoothness conditions. Our proof permits us to calculate 
numerically such a minimum point utilizing a constructive homotopy method. 

1. INTRODUCTION 

With the invention of high-speed computers, large-scale problems from 
such diverse fields as economics, agriculture, military planning, and flows in 
networks became at least potentially solvable, a lot of them being extremum 
problems. 

The great importance of extremum problems in applied mathematics leads 
us to the general study of the extremum of functions from R” to R. It is not 
easy to know the extremum points, for differentiable functions because it is 
not always possible to solve the equation Vf<x> = 0 to calculate critical 
points. Convex functions have a particularly simple extremal structure [2], and 
there exist algorithms to calculate extremum points, supposing its existence. 
However, it is not easy to prove the existence of extremum even in the case 
of convex differentiable functions [2, 31. Therefore, it is very important to give 
sufficient conditions to guarantee this existence. 

2. PROOF OF A UNIQUE GLOBAL MINIMUM POINT 

Given a strictly convex function f from R” to R, we prove the existence of 
a unique global minimum point for f if the following condition is verified: 
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lim 
Sf( X)/6X, 

xi 

> 0 foranyvalueofi E l,...,n. (1) 
X-m 

This proof is founded on the continuation method and the method can serve 
to determine that point numerically as we have shown in [S, 61; see also [I], 
and [7]. 

THEOREM 1. Let f: R” + R, f E C3(R”) be a strictly convex function 
verifying (1). Th en there exists an unique minimum point for f. 

PROOF. We have Vf: R” * R”, with Of E C2(R”>. We construct the 

function 

H:R”[O, l] --f R”, liI(X,t) = (1 -t)x+tVf(X). 

1) Let us first prove that zero is a regular value for H. Since f is strictly 
convex, zero is a regular value for Of, and hence 

rank S2f( X) ( i 6X&$ l<i<j<n = n. . . . 

Moreover, the former matrix is the matrix of a symmetric definite positive 
bilinear transformation. 

Let us now consider the matrix 

(1 -t) + t a2;;;) 
S”f(X) 

**a 
1 t 6X,6X, 

H,(X,t) = 
. . . 

S”f( X) *** 

. . . 

S2f(X) 

t 6X,6X, 
*** (1 -t) + t 6x2 

\ n 



Minimum of Convex Functions 215 

and the symmetric bilinear transformation 

hH,( X, t)hT = t h 
[ [ziz; jl<i<,.,“T] + (1 - t)hhT 

with h E R". If h # 0 and t E (0, 11, both summands are greater than zero, 

whereby 

hH,( X, t)hT > 0, 

if t E [0, 11. Therefore, H,(X, t) is the matrix of a symmetric definite 
positive bilinear transformation, and so Sylvester’s theorem implies that 
det H,( X, t) > 0. Thus, zero is a regular value for H and for H16(R”[O, I]). 
Moreover, H E C2 as’ composition of C2-functions. 

2) Let’s now prove that H- ‘(0) includes an arc passing through the point 

X = 0, t = 0. We have for every point 

Y” = (X0, to) E H-'(O), det H,( X0, to) + 0 

and so, the Implicit Function Theorem implies the existence of a neighbor- 
hood N of to and exactly one function g E C2, such that g(tO) = X0, 
H(g(t), t) = 0, Vt E N. Therefore, H-‘(O) consists of arcs and only arcs, 
and as (0,O) E H-l(O), there exists an arc C of H-l(O) passing through 

(0,O). 
3) Let’s see that, in the analytical continuation of C, the coordinate t is 

strictly monotonous as a function of the arc length s. Let us parameterize C 
with respect to s, 

Y = (Yl,.. .,y,+,> = (x,t> = Y(s). 

When s grows, Y(s) describes C and we have in a 0-neighbourhood 

H(Y(s)) = 0. (2) 

Differentiating, we obtain 

n+1 GH(Y(s)) dY, o 
c -= 

i=l 
SY, ds ’ 
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or equivalently 

T 

H'(Y) g = 0. ( 1 (3) 

Let’s consider the linear system (3), clearly indeterminated. Since 

det H,( X, t) # 0, 

as solution of (3) is 

dYi 
x = (-1)‘det H’_,(Y), i = l,..., n + 1, (4) 

where H’,(Y > is the result of suppressing the ith column in H’(Y ). The 
initial value problem formed by the system (4) and an initial value 

(s”,YO),YO = Y(s*) E c 

has a unique solution of class two (Picard-Lindelof theorem) Y*(s) defined 
on D = [s*, s* + k] (k E R+) that verifies (1) and Y * E C on t( D> f~ N. 
We define 

u: D L R + R"+l by u(s) = H(Y*(s)) 

Differentiating, 

d4s) - = 
ds 

nkl SH(Y*(s)) dYi*(s) 
- = 0 * U(S) = constant, 

i=l 6 Yj ds 

but 

u(s*) = H(Y*(s*)) = H(YO) = 0 - H(y*(s)) = 0. 

For any continuation of Y*(s), the t-coordinate verifies dt/ds = 
(- l)“+‘det H,(X, t), and det H,(X, t) > 0. Therefore, t(s) is strictly 
monotonous. 
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4) Let us now show that Y * can only be continued by bounded values of 
IlXll. This is a consequence of the condition (1) of the theorem because the 
equation 

tVf(X)+(l-t)X=O 

leads us to 

‘f( “)/sxi 1-t 
=- 

‘i -t ’ 
i = 1,. . . ,n, (5) 

and t E (0, 11, (1 - t/ - t) =G 0 ( or - ~0 when t --f 0). But (5) is absurd for a 
sufficiently great 1) X 1) since it implies 

against the hypothesis. 

lim sf(x>/xi < o 

IIXII-fm xi ’ 

5) The right extreme point of the maximal continuation of Y * belongs to 
the hyperplane t = 1. That follows from det H’,(Y) (i = 1,. . . , n) being 
continuously differentiable, and the system (4) autonomous; so it is possible 
to continue Y * to the boundary of R"[O, l] with s E [0, + a) [4]. Clearly, that 
right extreme point T+ of the maximal prolongation of Y * cannot coincide 
with the initial value t = 0 by 3), and the trajectory of this prolongation is 
only defined for bounded values of X by 4). Therefore, 

T+= (A,l) E R”(1). 

6) Finally, let’s note that A is a minimum local point for f(X) since 

lim 
(X,t)-r(A,l) 

H(X,t) = 0 

implies that Vf( A) = 0 due to the continuity of H. 

Theorem B [2, p. 1241 implies that this minimum is global and A is the 
unique minimum point for f. 8 

We don’t develop here the numerical aspect, but is has been developed in 
similar conditions i; other papers of ours [k, 6j. 
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