DOUBLY STOCHASTIC MATRICES AND COMPLEX VECTOR SPACES.*

By SEYMOUR SHERMAN.

A doubly stochastic (d.s.) matrix is a matrix P such that $P_{ij} \ge 0$, $\sum_{i} P_{ij} = \sum_{i} P_{ij} = 1$ for all i and j. A. Horn has proved

THEOREM 1. If y = Px, where x, y are complex n-vectors, and P is a d. s. matrix, and c_1, c_2, \dots, c_n are any complex numbers, then $\sum_{i=1}^n c_i y_i$ lies in the convex hull of all the points $\sum_{i=1}^n c_i x_{\alpha i}$, $\alpha \in \mathbb{R}^n$, where \mathbb{R}^n is the set of all the permutations of $(1, \dots, n)$ and conjectured the truth of

THEOREM 2. If x, y are complex n-vectors and c_1, c_2, \dots, c_n are any complex numbers imply that $\sum_{i=1}^{n} c_i y_i$ lies in the convex hull of the vectors

 $\sum_{i=1}^{n} c_i x_{\alpha i}, \ \alpha \in \mathbb{R}^n, \ then \ y = Px \ where \ P \ is \ a \ d. \ s. \ matrix.$

In what follows Theorem 2 is established.

Let E be complex n-space. Let η represent the general complex linear functional on E ($\eta \in E^*$) and the value of η for some $x \in E$ is represented by (η, x) . If we consider E as real 2n-space, then each real linear functional ρ on E has the property that for some $\eta \in E^*$ $(\rho, x) = R(\eta, x)$, where $R(\eta, x)$ is the real part of (η, x) .

Lemma 1. Let X be a compact convex set in E. Suppose that for each $\eta \in E^*$ $(\eta, y) \in (\eta, X) = \{(\eta, z) : z \in X\}$. Then $y \in X$.

Proof. Since $(\eta, y) \in (\eta, X)$, it follows $R(\eta, y) \in R(\eta, X)$. But then from a standard separation theorem ([2], p. 47) it follows that $y \in X$.

If Lemma 1 is applied to the case where X is the convex hull of the vectors which are derived from x by taking all permutations of the components of x relative to a fixed complex coordinate system, then $y \in X$ for y satisfying the hypothesis of Theorem 2. Now note

^{*} Received November 5, 1954.

LEMMA 2. Let G be a finite collection $\{G_1, G_2, \dots, G_n\}$ of linear transformations $E \to E$. Let $x \in E$. Denote by K(G) the convex hull of G. Denote by K(x) the convex hull of $Gx = \{G_1x, G_2x, \dots, G_nx\}$. If $y \in K(x)$, then y = Dx where $D \in H(G)$.

Proof. Since $y \in K(x)$ it follows that $y = \sum_{i=1}^{n} w_i(G_i x)$, with $w_i \ge 0$, $\sum w_i = 1$, and so y = Dx with $D = \sum w_i G_i \in H(G)$. (There are extensions to the case where G is not finite but K(x) is compact; since such results are not needed in the sequel they are not presented here.) The application of Lemma 2 to $y \in X$ implies that y = Dx with x, y elements of the complex vector space E and D an n by n d.s. matrix (since D is a convex combination of permutation matrices). This establishes Theorem 2.

University of Pennsylvania.

REFERENCES.

- [1] A. Horn, "Doubly stochastic matrices and the diagonal of a rotation matrix,"

 American Journal of Mathematics, vol. 76 (1954), pp. 620-630.
- [2] W. Fenchel, "Convex cones, sets and functions," Princeton University Logistics Research Project, September, 1953.