DOUBLY STOCHASTIC MATRICES AND COMPLEX VECTOR
SPACES.*

By SEYMOUR SHERMAN.

A doubly stochastic (d.s.) matrix is a matrix P such that Py=0,
S P;j— S P;—1 for all 4 and j. A. Horn has proved
i J

TuEOREM 1. If y=— Pz, where @, y are complex n-vectors, and P is @

"
d.s. matriz, and ¢, cs- -+, Cy are any complex numbers, then X cy; lies in
i=1

the convex hull of all the points iciwai, ae R, where Rm is the set of all
the permutations of (1, - -,n) -
and conjectured the truth of

THEOREM 2. If @,y are complex n-vectors and Ci,Cs: * *,Cn are any

complex numbers imply that iciyi lies in the comvex hull of the wectors
%=1

é Citoi, %€ R", then y— Pz where P is a d.s. matriz.
i=1
In what follows Theorem 2 is established.

Let E be complex n-space. Let n represent the general complex linear
functional on B (ne E*) and the value of 4 for some e I is represented by
(n,z). If we consider / as real 2n-space, then each real linear functional p
on I has the property that for some e E* (p, ) = R(n,), where B (n,)
is the real part of (4, ).

Lemma 1. Let X be a compact convex set in E. Suppose that for
each ne B* (n,y) e (9, X) ={(n,2):2eX}. Then yeX.

Proof. Since (n,9) € (9, X), it follows R(n,y) e B(n, X). But then
from a standard separation theorem ([2], p. 47) it follows that yeX.

If Lemma 1 is applied to the case where X is the convex hull of the
vectors which are derived from z by taking all permutations of the com-
ponents of z relative to a fixed complex coordinate system, then yeX for y
satisfying the hypothesis of Theorem 2. Now note
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Lemma 2. Let G be a finite collection {G1, Gsy- + -, G} of linear trans-
formations E— E. Let xe E. Denote by K (@) the convex hull of G. Denote
by K(x) the convex hull of Gov= {Giz, Gox,- - -, Guz}. If ye K(x), then
y =Dz where De H(G).

Proof. Since ye K (z) it follows that y= % wi(Gyz), with w; =0,

i=1
Sw;=1, and so y = Dz with D = X w;G;e H(G). (There are extensions to
the case where @ is not finite but K («) is compact; since such results are
not needed in the sequel they are not presented here.) The application of
Lemma 2 to yeX implies that y— Dz with 2,y elements of the complex
vector space I/ and D an n by n d.s. matrix (since D is a convex combination
of permutation matrices). This establishes Theorem 2.
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