REMARKS TO MAURICE FRÉCHET'S ARTICLE "SUR LA DÉFINITION AXIOMATIQUE D'UNE CLASSE D'ESPACE DISTANCIÉS VECTOR-IELLEMENT APPLICABLE SUR L'ESPACE DE HILBERT¹

By I. J. SCHOENBERG

(Received April 16, 1935)

1. Fréchet's developments in the last section of his article suggest an elegant solution of the following problem.

Let

$$a_{ik} = a_{ki} \qquad (i \neq k ; i, k = 0, 1, \cdots, n)$$

be $\frac{1}{2}n(n+1)$ given positive quantities. What are the necessary and sufficient conditions that they be the lengths of the edges of a n-simplex $A_0A_1 \cdots A_n$? More general, what are the conditions that they be the lengths of the edges of a n-"simplex" $A_0A_1 \cdots A_n$ lying in a euclidean space R_r $(1 \le r \le n)$ but not in a R_{r-1} ?

This problem is fundamental in K. Menger's metric investigation of euclidean spaces ([6] and [7], particularly his third fundamental theorem in [7], pp. 737–743). It was solved by Menger by means of equations and inequalities involving certain determinants. Theorem 1 below furnishes a complete and independent solution of this problem. Theorem 2 solves the similar problem for spherical spaces previously treated by Menger's methods by L. M. Blumenthal and G. A. Garrett ([1]) and Laura Klanfer ([5]); it may be conveniently applied (Theorems 3 and 3') to prove and extend a theorem of K. Gödel ([4]). The method of Theorem 1 is finally applied to solve the corresponding problem for spaces with indefinite line element recently considered by A. Wald ([8]) and H. S. M. Coxeter and J. A. Todd ([2]).

Construction of simplexes of given edges in euclidean spaces

2. A complete answer to the questions stated above is given by the following theorem.

THEOREM 1. A necessary and sufficient condition that the a_{ik} be the lengths of the edges of an n-"simplex" $A_0A_1 \cdots A_n$ lying in R_r , but not in R_{r-1} , is that the quadratic form

¹ These Annals, vol. 36 (1935), pp. 705-718.

² The quotation marks should indicate that the configuration may lie in a euclidean space of less than n dimensions.

$$(1) F(x_1, x_2, \dots, x_n) = \sum_{i=1}^n a_{0i}^2 x_i^2 + \sum_{\substack{i,k=1\\(i < k)}}^n (a_{0i}^2 + a_{0k}^2 - a_{ik}^2) x_i x_k$$

$$= \frac{1}{2} \sum_{i,k=1}^n (a_{0i}^2 + a_{0k}^2 - a_{ik}^2) x_i x_k$$

$$(\text{with } a_{ik} = 0 \text{ if } i = k)$$

be positive, i.e. always ≥ 0 , and of rank r.

The condition is necessary. Let $A_0A_1 \cdots A_n$ be an n-"simplex" with $A_iA_k = a_{ik}$. Let $A_0 = 0$ be the origin of a R_n in which A_i has the cartesian coördinates $\alpha_{i1}, \alpha_{i2}, \cdots, \alpha_{in}$. The point (in vector space notation)

$$P = x_1A_1 + x_2A_2 + \cdots + x_nA_n = (\xi_1, \, \xi_2, \, \cdots, \, \xi_n)$$

has the coördinates

$$\xi_{\nu} = x_1 \alpha_{1\nu} + x_2 \alpha_{2\nu} + \cdots + x_n \alpha_{n\nu} \qquad (\nu = 1, \dots, n),$$

whence

$$\overline{OP}^2 = ||P||^2 = \sum_{i=1}^n \xi_{\nu}^2 = \sum_{\nu=1}^n (x_1 \alpha_{1\nu} + \dots + x_n \alpha_{n\nu})^2$$

$$= \sum_{i=1}^n x_i^2 \sum_{\nu=1}^n \alpha_{i\nu}^2 + 2 \sum_{i < k} x_i x_k \sum_{\nu=1}^n \alpha_{i\nu} \alpha_{k\nu}.$$

Since

$$\sum_{\nu=1}^{n} \alpha_{i\nu}^{2} = \overline{OA}_{i}^{2} = a_{0i}^{2},$$

$$2 \sum_{\nu=1}^{n} \alpha_{i\nu} \alpha_{k\nu} = \sum_{\nu=1}^{n} \alpha_{i\nu}^{2} + \sum_{\nu=1}^{n} \alpha_{k\nu}^{2} - \sum_{\nu=1}^{n} (\alpha_{i\nu} - \alpha_{k\nu})^{2} = \overline{A_{0}A_{i}^{2}} + \overline{A_{0}A_{k}^{2}} - \overline{A_{i}A_{k}^{2}}$$

$$= a_{0i}^{2} + a_{0k}^{2} - a_{ik}^{2},$$

we have

(2)
$$\overline{OP}^2 = ||x_1A_1 + \cdots + x_nA_n||^2 = F(x_1, x_2, \cdots, x_n).$$

Hence $F(x_1, \dots, x_n)$ is positive. It follows furthermore from our assumptions that P = 0, hence F = 0, on a linear manifold of n - r dimensions in the variables x_1, \dots, x_n ; hence F is of rank r.

The condition is sufficient. Let us first assume F to be positive definite, i.e. r = n. By means of a certain linear non-singular transformation

$$(3) (y) = H(x)$$

we get the identity

(4)
$$F(x_1, \dots, x_n) = y_1^2 + y_2^2 + \dots + y_n^2.$$

Call A_0 the origin of the cartesian space of the variables (y_1, \dots, y_n) and

$$A_1, A_2, \cdots, A_n$$

the n points which in virtue of (3) correspond to

$$(5) (x_1, x_2, \cdots, x_n) = (1, 0, \cdots, 0), (0, 1, 0, \cdots, 0), \cdots, (0, 0, \cdots, 0, 1),$$

respectively. Their y-coördinates are readily found by (3). For their mutual distances we find by (3), (4) and (5),

$$\overline{A_0 A_i^2} = F(0, \dots, 1, \dots, 0) = a_{0i}^2,
\overline{A_i A_k^2} = F(0, \dots, 1, \dots, -1, \dots, 0) = a_{0i}^2 + a_{0k}^2 - (a_{0i}^2 + a_{0k}^2 - a_{ik}^2)
= a_{ik}^2, (i < k)^4$$

which show that $A_0A_1 \cdots A_n$ is precisely the *n*-simplex we are looking for. It is indeed an *n*-simplex because the points (5) are independent and (3) is non-singular.

If r < n, then (4) has to be replaced by

(6)
$$F(x_1, \dots, x_n) = y_1^2 + y_2^2 + \dots + y_r^2.$$

The above procedure gives an *n*-simples $A_0A_1 \cdots A_n$, however the quantities

$$F(1, 0, \dots, 0) = a_{01}^2, \qquad F(1, -1, 0, \dots, 0) = a_{12}^2, \dots$$

are no more the squared lengths of the edges $\overline{A_0A_1^2}$, $\overline{A_1A_2^2}$, ..., but, viewing (6), the squared lengths of their projections on the sub-space (y_1, \dots, y_r) , i.e., on the manifold $y_{r+1} = \dots = y_n = 0$. Hence the projection $A_0'A_1' \dots A_n'$ on this manifold of the *n*-simplex $A_0A_1 \dots A_n$ is an *n*-"simplex" of the type we are looking for, i.e. with $A_i'A_k' = a_{ik}$. This *n*-"simplex" $A_0'A_1' \dots A_n'$ is by construction contained in a R_r but not in a R_{r-1} , as readily seen.

Remark. If the matrix H of (3) is $H = ||h_{ik}||$, then the y-coördinates of the vertices A_i and A'_i are

$$A_{i} = (h_{1i}, h_{2i}, \dots, h_{ni}), \qquad A'_{i} = (h_{i1}, h_{2i}, \dots, h_{ri}, 0, \dots, 0).$$

The actual construction (i.e. determination of the coördinates of its vertices) of an n-"simplex" of edges a_{ik} is therefore carried out by a reduction of the quadratic form (1) to its canonical form (6). This is a problem of the second degree, for the transformation (3) is by no means required to be orthogonal.

As an illustration of this method let us construct a regular *n*-simplex with $a_{ik} = 1$. By (1) we have

$$F(x_1, \dots, x_n) = \sum_{i=1}^n x_i^2 + \sum_{i \leq k} x_i x_k.$$

The identity

$$F(x_1, \dots, x_n) = \sum_{i=1}^n \frac{i+1}{2i} \left(x_i + \frac{x_{i+1}}{i+1} + \frac{x_{i+2}}{i+1} + \frac{x_{i+3}}{i+1} + \dots \right)^2,$$

$$(x_i = 0, \text{ if } i > n),$$

shows that F is positive definite, hence the existence of our regular n-simplex is insured. The coördinates of the vertices of one such simplex may be read off from this last identity: one vertex is $A_0 = (0, \dots, 0)$ while the coördinates of A_r $(r) = 1, \dots, n)$ are

$$\frac{1}{\sqrt{2\cdot 1\cdot 2}}, \frac{1}{\sqrt{2\cdot 2\cdot 3}}, \frac{1}{\sqrt{2\cdot 3\cdot 4}}, \cdots, \frac{1}{\sqrt{2(\nu-1)\nu}}, \sqrt{\frac{\nu+1}{2\nu}}, \overbrace{0, \cdots, 0}^{n-\nu}.$$

Construction of simplexes of given edges in spherical spaces

3. Denote by S_r^{ρ} the r-dimensional spherical space

$$x_1^2 + x_2^2 + \cdots + x_{r+1}^2 = \rho^2$$

immersed in a R_{r+1} . The problem is as follows.

Given $\binom{n}{2}$ positive quantities α_{ik} $(i \neq k; i, k = 1, 2, \dots, n)$ and a positive ρ , to decide whether there exist, on some S_r^{ρ} , n points A_1, A_2, \dots, A_n , such that their spherical distances $A_i A_k = \alpha_{ik}$.

According to a remark of J. von Neumann this problem may be reduced to the preceding one regarding the construction of simplexes in euclidean spaces.³ Combining his remark with Theorem 1 we get the following theorem which solves completely the problem stated above.

THEOREM 2. Let $\alpha_{ik} = \alpha_{ki}$ ($i \neq k$; $i, k = 1, 2, \dots, n$) be $\binom{n}{2}$ given positive quantities. Necessary and sufficient conditions that there be, on some spherical manifold of radius ρ , n points A_1, A_2, \dots, A_n , of mutual spherical distances equal to the α_{ik} , i.e. $\widehat{A_i A_k} = \alpha_{ik}$, are the inequalities.

$$\alpha_{ik} \leq \pi \rho$$

together with the condition that the quadratic form

(8)
$$\Phi(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \cos(\alpha_{ik}/\rho) x_i x_k \quad (\alpha_{ik} = 0, \text{ if } i = k)$$

be positive. If $r (\geq 1)$ is the rank of Φ , then we can find such points in S_{r-1}^{ρ} , but not in S_{r-2}^{ρ} (which is undefined if r = 1).

³ After Prof. von Neumann's verbal communication I noticed that the same reduction has already been used by Laura Klanfer ([5]) to carry over Menger's results from euclidean spaces to spherical spaces.

The meaning of the inequalities (7) is obvious viewing the fact that no distance on a sphere of radius ρ can exceed $\pi \rho$. Suppose there are required points A_1 , \cdots , A_n on some $S_m^{\rho}(m \ge 1)$. Call A_0 the sphere's center. Then $A_0A_1 \cdots A_m$ is an n-"simplex" in R_{m+1} , the lengths of its edges being

(9)
$$A_0A_1 = \rho = a_{0i}, \quad A_iA_k = 2\rho \sin \frac{\alpha_{ik}}{2\rho} = a_{ik} \quad (i, k = 1, \dots, n; i \neq k).$$

From Theorem 1 we know that the construction of such a "simplex" amounts to the investigation of the quadratic form

$$F = \frac{1}{2} \sum_{i,k=1}^{n} \left(a_{0i}^{2} = a_{0k}^{2} - a_{ik}^{2} \right) x_{i} x_{k} = \rho^{2} \sum_{i,k=1}^{n} \left(1 - 2 \sin^{2} \frac{\alpha_{ik}}{2\rho} \right) x_{i} x_{k}$$
$$= \rho^{2} \sum_{i,k=1}^{n} \cos \left(\alpha_{ik}/\rho \right) x_{i} x_{k} = \rho^{2} \Phi.$$

Its positivity is necessary and sufficient for the existence of $A_0A_1 \cdots A_n$ with the properties (9). Its rank r indicates that $A_0A_1 \cdots A_n$ is contained in R_r but not in R_{r-1} , hence $A_1A_2 \cdots A_n$ with the desired properties, i.e. $A_iA_k = \alpha_{ik}$, is contained in S_{r-1}^{ρ} but not in S_{r-2}^{ρ} .

4. The set of quantities α_{ik} in Theorem 2 could be thought of as the edges of an abstractly defined (n-1)-simplex (in Menger's terminology it is a semi-metric space composed of n-1 points). Theorem 2 answers the question whether or not this abstract simplex can be immersed isometrically, i.e. by congruence, in a spherical space of given radius.

An interesting consequence of Theorem 2 is the following theorem.

THEOREM 3. Let σ_{n-1} be a (n-1)-simplex of a $S_{n-1}^{\rho_0}$; there exists a radius $\rho_1 \leq \rho_0$ such that σ_{n-1} can be immersed isometrically in $S_{n-2}^{\rho_0}$.

Thus for n=3 we get the following geometrically obvious statement: Any ordinary spherical triangle of a $S_2^{\rho_0}$ can be placed isometrically on a circumference of suitable radius $\rho_1 \leq \rho_0$.

We note first that if σ_{n-1} can be immersed in $S_{n-2}^{\rho_0}$, which happens when the rank of

(10)
$$\Phi(x;\rho) = \sum_{i,k=1}^{n} \cos \left(\alpha_{ik}/\rho\right) x_{i}x_{k}$$

is $\leq n-1$ for $\rho=\rho_1$, our theorem is proved with $\rho_1=\rho_0$. Let us now assume $\Phi(x;\rho_0)$ to be of rank n, hence

$$\Phi(x; \rho_0)$$
 positive definite and $\frac{\alpha_{ik}}{\pi} \leq \rho_0$,

by Theorem 2. Note that $\Phi(x; \rho)$ can not be positive definite for all ρ with $0 < \rho \le \rho_0$, for it fails to be so if e.g. $\rho = \alpha_{12}/\pi$ since the first principal minor of

order 2 of the discriminant of $\Phi(x; \alpha_{12}/\pi)$ vanishes. Call ρ_1 the greatest lower bound of the values σ with the property that $\Phi(x; \rho)$ is positive definite if $\sigma \leq \rho \leq \rho_0$. By a previous remark necessarily

$$\alpha_{ik} \leq \pi \rho_1.$$

Now $\Phi(x; \rho)$ can not be positive definite if $\rho = \rho_1$ for it would still be so (by continuity) for all values ρ sufficiently close to ρ_1 in contradiction to the definition of ρ_1 . But $\Phi(x; \rho_1)$ is necessarily positive, as the limit of positive definite forms $\Phi(x; \rho)$, for $\rho \to \rho_1 + 0$. Hence $\Phi(x; \rho_1)$ is positive and of rank < n. Now the proof is completed by (11) and Theorem 2.4

5. We shall now extend Theorem 3 to cover the case when $\rho_0 = \infty$, that is when σ_{n-1} is in R_{n-1} . We assume σ_{n-1} , of edges α_{ik} , to be a (n-1)-simplex of R_{n-1} , i.e.

(12)
$$\frac{1}{2} \sum_{i,k=2}^{n} (\alpha_{1i}^2 + \alpha_{1k}^2 - \alpha_{ik}^2) x_i x_k \text{ positive definite.}$$

Let us prove that σ_{n-1} can be immersd isometrically in S_{n-1}^{ρ} , provided ρ is sufficiently large. This is proved if we can show that

$$\Phi(x; \rho) = \sum_{i,k=1}^{n} \cos (\alpha_{ik}/\rho) x_i x_k$$

is positive definite if ρ is sufficiently large. A well known criterion states that a quadratic form is positive definite if and only if all the n principal minors of its discriminant chosen as follows

are positive (see Dickson [3], §40). If in the matrix of coefficients

$$\begin{vmatrix} 1 & \cos \frac{\alpha_{1k}}{\rho} \\ \cos \frac{\alpha_{i1}}{\rho} & \cos \frac{\alpha_{ik}}{\rho} \end{vmatrix}$$
 $(i, k = 2, \dots, n)$

of $\Phi(x; \rho)$ we subtract the first line from all the other lines and then the first column from all the other columns we get the symmetric matrix

(13)
$$\cos \frac{\alpha_{1k}}{\rho} - 1$$

$$\cos \frac{\alpha_{i1}}{\rho} - 1$$

$$\cos \frac{\alpha_{ik}}{\rho} - \cos \frac{\alpha_{i1}}{\rho} - \cos \frac{\alpha_{1k}}{\rho} + 1$$

⁴ Note that $\rho = \rho_1$ is the first value $< \rho_0$ which is a root of the transcendental equation $\det ||\cos(\alpha_{ik}/\rho)|| = 0$. It would be interesting to decide whether $\rho = \rho_1$ is necessarily a simple root of this equation.

which, as a result of the above criterion, will be the matrix of a positive definite form if and only if $\Phi(x; \rho)$ is positive definite itself. Noting that (13) can be written as follows

we see that the ν^{th} ($\nu > 1$) principal minor of (13) is = to $\rho^{-2(\nu-1)}$ times the $(\nu - 1)^{\text{st}}$ principal minor of the discriminant of (12), plus a remainder $O(\rho^{-2\nu})$. By (12) all these minors are positive if ρ is sufficiently large, hence $\Phi(x; \rho)$ is positive definite and σ_{n-1} can be immersed in S_{n-1}^{ρ} . For any such $\rho = \rho_0$. Theorem 3 proves the existence of $S_{n-2}^{\rho_1}$, with $\rho_1 < \rho_0$, in which σ_{n-1} can be immersed. We have thus proved the following

Theorem 3' (of Gödel). If σ_n is a n-simplex of R_n , then there always exists a S_{n-1}^{ρ} in which σ_n can be immersed isometrically.

The case of indefinite spaces

6. Consider the space of real variables (y_1, \dots, y_m) with the property that the square of the distance PP' of two points is given by the formula

$$\overline{PP'^{2}} = \sum_{\nu=1}^{m} \epsilon_{\nu} (y_{\nu} - y'_{\nu})^{2},$$

with $\epsilon_{\nu} = +1$ for $\nu = 1, \dots, p$, $\epsilon_{\nu} = -1$ for $\nu = p+1, \dots, p+q$ (=m). We denote this space by $R_{p,q}$; thus $R_m = R_{m,0}$. The linear geometry of $R_{p,q}$ is obviously the same as that of $R_{p+q} = R_m$.

Let now $\frac{1}{2}n(n+1)$ real numbers $c_{ik}(c_{ii}=0,c_{ik}=c_{ki};i,k=0,\cdots,n)$ be given. Are there n+1 points A_0,A_1,\cdots,A_n in some space $R_{p,q}$ such that $\overline{A_iA_k^2}=c_{ik}$, and what is the space $R_{p,q}$ of the least number of dimensions in which there are such points? A complete answer is furnished by the following theorem.

Theorem 1'. Consider the quadratic form

(14)
$$F(x_1, x_2, \dots, x_n) = \frac{1}{2} \sum_{i,k=1}^n (c_{0i} + c_{0k} - c_{ik}) x_i x_k.$$

⁵ A heuristic proof of this theorem for n=3 is as follows. Think of the edges of σ_3 to be made of flexible strings; place in the interior of σ_3 a small sphere which is gradually inflated. This sphere will reach a certain definite size when it will become tightly packed within the 6 strings (edges) of σ_3 . Note that in the rigorous proof above a very large sphere was used which was gradually deflated to its proper size.

Let it be of type (p, q).⁶ The necessary and sufficient conditions that there be n + 1 points A_0, A_1, \dots, A_n in $R_{p', q'}$ with $\overline{A_i A}_k^2 = c_{ik}$, are the inequalities

$$p' \geq p, \qquad q' \geq q.$$

Thus $R_{p,q}$ is the least space in which there are such points.

The condition is necessary. Let the points $A_0 = 0$, A_1, \dots, A_n in $R_{p',q'}$ have the required property and let $R_{p,q}$ be the least linear subspace containing these points. We know that $p \leq p'$, $q \leq q'$, $p+q \leq n$. Let p+q=m and let $A_i = (\alpha_{i1}, \dots, \alpha_{im})$ be the coördinates of A_i in $R_{p,q}$ with respect to an orthogonal coördinate system. For the point

$$P = x_1A_1 + \cdots + x_nA_n = (\xi_1, \cdots, \xi_m)$$

of coördinates $\xi_{\nu} = x_1 \alpha_{1\nu} + \cdots + x_n \alpha_{n\nu}$ we find as in section 2 the identity

$$\overline{OP}^2 = \sum_{\nu=1}^m \epsilon_{\nu} \xi_{\nu}^2 = \sum_{\nu=1}^m \epsilon_{\nu} (x_1 \alpha_{1\nu} + \cdots + x_n \alpha_{n\nu})^2 = F(x_1, \cdots, x_n).$$

Viewing our assumption that the matrix of the $\alpha_{\mu\nu}$ is of rank m and the law of inertia (Dickson, [3], p. 72), we see that F(x) is of type (p, q).

The condition is sufficient. Assume first p + q = n. By a non-singular transformation

$$(3') (y) = H(x)$$

we get the identity

$$F(x_1, \dots, x_n) = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_n^2$$

Consider in the space $R_{p,q}$ of the variables (y_1, \dots, y_n) the points whose x-coördinates are given by (5). We find as in section $2 \overline{A_i A_k^2} = c_{ik}$ and the theorem is proved, for $R_{p,q}$ can be considered as a subspace of $R_{p',q'}$, if $p' \geq p$, $q' \geq q$.

If p + q = m < n, then we get

$$F(x_1, \dots, x_n) = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_n^2$$

To get the desired points we have to project the points A_0, \dots, A_n on the manifold $y_{m+1} = \dots = y_n = 0$, which is a $R_{p,q}$.

7. It should be remarked that F defined by (14) is the most general real quadratic form in n variables. We thus have the following

COROLLARY. Let

$$(15) F = \sum_{1}^{n} b_{ik} x_i x_k$$

⁶ That is of index p and rank p + q. See Dickson [3], p. 71.

be a non-degenerate real quadratic form of type (p, q). If by means of

$$(3'') (y) = H(x)$$

we have

(16)
$$F = y_1^2 + \dots + y_n^2 - y_{n+1}^2 - \dots - y_n^2,$$

then the columns of the matrix

$$H = \left| \begin{array}{ccc} h_{11} & \cdots & h_{1n} \\ \vdots & & \vdots \\ h_{n1} & \cdots & h_{nn} \end{array} \right|$$

are the y-coördinates in $R_{p,q}$ of n points A_1, \dots, A_n , which together with $A_0 = (0)$ have the property $\overline{A_i A_k^2} = c_{ik}$, where

$$c_{0i} = b_{ii}, \quad c_{ik} = b_{ii} + b_{kk} - 2b_{ik} \quad (i, k > 0).$$

A geometric interpretation of the reduction of (15) to the canonical form (16) by means of an *orthogonal* linear transformation is well known from the theory of quadrics. The above Corollary furnishes a geometric interpretation of this reduction by any linear non-singular transformation.

Probably the most concise description of the result of Theorems 1 and 1' is as follows. If the squares of the edges of a simplex $A_0A_1 \cdots A_n$ are given real numbers, $\overline{A_iA_k^2} = c_{ik}$, then this defines uniquely a (indefinite) space which, if referred to the coördinate unit-vectors A_0A_1 , A_0A_2 , \cdots , A_0A_n , has the line element

$$ds^2 = \frac{1}{2} \sum_{i,k=1}^{n} (c_{0i} + c_{0k} - c_{ik}) x_i x_k.$$

SWARTHMORE COLLEGE, SWARTHMORE, PA.

REFERENCES

- L. M. Blumenthal and G. A. Garrett: Characterization of spherical and pseudospherical sets of points, American J. of Math. vol. 53 (1931), pp. 619-640.
- [2] H. S. M. COXETER AND J. A. Todd: On points with arbitrarily assigned mutual distances, Proc. of the Cambridge Phil. Soc., vol. 30 (1934), pp. 1-3.
- [3] L. E. Dickson: Modern algebraic theories, Sanborn Co., Chicago, 1926.
- [4] K. GÖDEL: Über die metrische Einbettbarkeit der Quadrupel des R₃ in Kugelflächen, Ergebnisse eines math. Kolloquiums, Leipzig und Berlin, Heft 4 (1933), pp. 16-17.
- [5] L. Klanfer: Metrische Charakterisierung der Kugel (Vienna Dissertation), Ergebnisse eines math. Koll., Heft 4 (1933), pp. 43-45.
- [6] K. Menger: Bericht über metrische Geometrie, Jahresber. der deutschen Math.-Ver., vol. 40 (1931), pp. 201-219.
- [7] K. Menger: New foundations of euclidean geometry, American J. of Math., vol. 53 (1931), pp. 721-745.
- [8] A. Wald: Komplexe und indefinite Räume, Ergebnisse eines math. Koll., Heft 5 (1933), pp. 32-42.