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1. Frechet's developments in the last section of his article suggest an elegant
solution of the follo\ving problem.

Let

(i ¢ k ; i, k = 0, 1,. · . ,n)

be !n(n + 1) given positive quantities. What are the necessary and sufficient
conditions that they be the lengths of.the edges of an-simplex AoAl ... An' More
general, what are the conditions that they be the lengths of the edges of a n-"simplex"2
AoA l ••• An lying in a euclidean space R r (1 ~ r ~ n) but not in a R r- l '

This problem is fundamental in K. Menger's metric investigation of euclidean
spaces ([6] and [7], particularly his third fundamental theorem in [7], pp. 737­
743). It was solved by Menger by means of equations and inequalities involv­
ing certain determinants. Theorem 1 below furnishes a complete and inde­
pendent solution of this problem. Theorem 2 solves the similar problem for
spherical spaces previously treated by Menger's methods by L. M. Blumenthal
and G. A. Garrett ([1]) and Laura Klanfer ([5]); it may be conveniently applied
(Theorems 3 and 3') to prove and extend a theorem of K. Godel ([4]). The
method of Theorem 1 is finally applied to solve the corresponding problem for
spaces with indefinite line element recently considered by A. Wald ([8]) and
H. S. M. Coxeter and J. A. Todd ([2]).

Construction of simplexes of given edges in euclidean spaces

2. A complete answer to the questions stated above is given by the following
theorem.

THEOREM 1. A necessary and sufficient condition that the aik be the lengths of
the edges of an n-"simplex" AoAl . · . An lying in Rr, but not in Rr- l , is that the
quadratic form

1 These Annals, vol. 36 (1935), pp. 705-718.
2 The quotation marks should indicate that the configuration may lie in a euclidean spa,ce

of less than n dimensions.
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( 1)
n n

L a~ i x; + L (a~ i + a~ k - a~ k) XiXk
i=l i,k==l

(i <k)

n

! L (a~i + a~k - a~k) XiXk
, ,k=l

(with aik = ° if i = k)

be positive, Le. always ~ 0, and of rank r.
The condition is necessary. Let AnAl' .. An be an n-"simplex" with A iAk =

aik. Let A o = °be the origin of a R n in which A i has the cartesian coordinates
ail, ai2, ... ,ain. The point (in vector space notation)

P = x1A 1 + x 2A 2 + ... + xnA n = (~1, ~2, ... , ~n)

has the coordinates

(v = 1, .... 7 n) ,

,,-hence

n n

op2= II P 11 2 = L (;2 L (Xlab + ... + x na n,,)2~ v
1 51=1

1l rl n

L X~ L 2 +2 L XiXk L1 ail! ai"Ctk" .
i= 1 51=1 i<k ,,=1

Since

n

L a~" = UA ~ = a~ i ,
,,=1

n n n

2 L C(i"C(k" = L C( ~" + L C( %v
v=l 1'=1 51=1

we have

n

L
v=l

(2)

Hence F(Xl' ... ,xn ) is positive. It follows furthernlore fronl our assunlptions
that P = 0, hence F = 0, on a linear manifold of n - r dimensions in the vari­
ables Xl, ••• ,Xn ; hence F is of rank r.

The condition is sufficient. Let us first assunle F to be positive definite, Le.
r = n. By means of a certain linear non-singular transformation

(3)

\ve get the identity

(4)

(y) = H(x)
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Call A o the origin of the cartesian space of the variables (YI' ... , Yn) and

the n points '\vhich in virtue of (3) correspond to

(5) (Xl, X2, ••• ,xn ) = (1, 0, ... ,0), (0, 1, 0, ... ,0), ... , (0, 0, .. · , 0, 1) ,

respectively. Their y-coordinates are readily found by (3). For their mutual
distances we find by (3), (4) and (5),

(i)

AoA ~ = F(G, ... , 1, ... , 0) = a~ i ,

( i) (k)

AiA% = F(O, ... ,1, ... , -1, ... ,0) = a~i +a~k - (a~i + a~·k - a~k)

,,"hich show that AoAl ... An is precisely the n-simplex ,,"e are looking for. It is
indeed an n-simplex because the points (5) are independent and (3) is non­
singular.

If r < n, then (4) has to be replaced by

(6)

The above procedure gives an n-simples AoAl ... An, however the quantities

F(l, 0, ... ,0) = a~ 1 , F(l, -1,0, ... ,0) = ai2' ...

are no more the squared lengths of the edges AoA i, AlA i, ... , but, viewing (6),
the squared lengths of their projections on the sub-space (YI' , Yr), i.e., on
the manifold Yr+l = ... = Yn = 0. Hence the projection A ~A ~ A ~ on this
manifold of the n-simplex AoA I ••• An is an n-"simplex" of the type we are look­
ing for, i.e. with A ~A~ = aik. This n-"·simplex" A~A~ ... A~ is by con­
struction contained in a Rr but not in a Rr- 1, as readily seen.

Remark. If the matrix H of (3) is H = II hik II , then the y-coordinates of the
vertices A i and A: are

A ~ = (/1 iI, h2 i, . . . , hri, 0, . . . ,0) .

The actual construction (i.e. determination of the coordinates of its vertices) of an
n-"simplex" of edges aik is therefore carried out by a reduction of the quadratic
form (1) to its canonical f01"1n (6). This is a problem of the second degree, for
the transformation (3) is by no means required to be orthogonal.

As an illustration of this method let us construct a regular n-simplex ,,"ith
ail, = 1. By (1) we have

n

F(XI, ... ,xn ) = L x7
i=l
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The identity

F(Xl, ... ,XII) = t i +.1 (Xi + ~i+l + .Xi+2 + .Xi+3 + ... )2,
i = 1 2~ ~ + 1 ~ + 1 ~ + 1

727

(Xi = 0, if i > n) ,

shows that F is positive definite, hence the existence of our regular n-simplex
is insured. The coordinates of the vertices of one such simplex may be read off
from this last identity: one vertex is Ao = (0, ... , 0) while the coordinates of
;1, (v = 1, .. · , n) are

n-v
1 1 1 1 ~/+l~

V2.1.2' vIT3' V2·3·4' 'V2(" - 1),,' 'V T' 0,··· ,0.

Construction of simplexes of given edges in spherical spaces

3. Denote by 8~ the r-dimensional spherical space

xi + x~ + ... + X;+l = p2

immersed in a Rr+l • The problem is as follows.

Given (;) positive quantities Ctik (i .= k; i, k = 1, 2, · · · , n) and a positive p, to

decide whether there exist, on S01ne S~, n points AI, A 2, ••• ,An, such that their
,,-....

spherical distances A iA k = a ike

According to a remark of J. von Neumann this problem may be reduced to
the preceding one regarding the construction of simplexes in euclidean spaces.3

Combining his remark with Theorem 1 we get the following theorem which solves
completely the problem stated above.

THEOREM 2. Let Ctik = Ctki (i .= k; i, k = 1, 2, · · · ,n) be (;) given positive

quantities. Necessary and sufficient conditions that there be, on some spherical
manifold of radius p, n points A l , A 2, • • • , An, of mutual spherical distances equal

,-....
to the aik, i.e. A iA k = aik, are the inequalities.

(7)

together with the condition that the quadratic form

(8)
n

<I>(Xh X2, · . · , xn ) = 2: cos (aiklp) XiXk (a;k = 0, if i = k)
i, k--l

be positive. If r (~ 1) is the rank of <1>, then we can find such points in S~-l' but
not in 8:-2 (which is undefined if r = 1).

3 After Prof. von Neumann's verbal communication I noticed that the same reduction
has already been used by Laura Klanfer «(5]) to carryover Menger's results from euclidean
spaces to spherical spaces.
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The meaning of the inequalities (7) is obvious viewing the fact that no distance
on a sphere of radius P can exceed 1rp. Suppose there are required points AI,
... ,AnonsomeS~(m~ 1). CallAo the sphere's center. Then AoAI··· Am
is an n-"simplex" in R m+h the lengths of its edges being

(i, k = 1, ... , n; i ;;= k) .(9) AA 2 · aik
i k= psm-=aik

2p

From Theorem 1 we kno,,,"' that the construction of such a "simplex" amounts to
the investigation of the quadratic form

n

= p2 L cos (aik/p) XiXk = p2 <I> •
i ,k==1

Its positiyity is necessary and sufficient for the existence of AoAI ... An with the
properties (9). Its rank r indicates that AoA 1 ••• An is contained in Rr but

,,-......
not in R r- h hence ...4 1A 2 ••• An ,vith the desired properties, Le. A iA k = a ik, is
contained in S~-1 but not in S~-2.

4. The set of quantities aik in Theorem 2 could be thought of as the edges of an
abstractly defined (n - I)-simplex (in Menger's terminology it is a semi-metric
space composed of n - 1 points). Theoren1 2 answers the question whether or
not this abstract simplex can be immersed isometrically, Le. by congruence, in a
spherical space of given radius. .

An interesting consequence of Theorem 2 is the follo\ving the<;>rem.

THEOREM 3. Let O"n-l be a (n - I)-simplex of a S:~l; there exists a radius

PI ~ Po such that O"n-l can be imrnersed isometrically in 8::'2.
Thus for n = 3 we get the following geometrically obvious statement: Any

ordinary spherical triangle of a S;o can be placed isometrically on a circumference
of suitable radius PJ ~ Po.

We note first that if O"n-l can be imn1ersed in S~~2' which happens "rhen the
rank of

(10)
n

<I>(x; p) = L cos (aik/p) XiXk
i ,k==l

is ~ n - 1 for p = Ph our theorem is proyed with PI = Po. Let us now assun1e
4> (x ; po) to be of rank n, hence

4> (x ; po) positive definite and a ik ~ Po,
7r

by Theorem 2. Note that <I>(x; p) can not be positive definite for all p with
o < p ~ Po, for it fails to be so if e.g. p = (XJ2/7r sinc~ the first principal minor of
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order 2 of the discriminant of <I> (X ; aI2/1r) vanishes. Call PI the greatest lower
bound of the values U with the property that q, (x; p) is positive definite if
U ~ P ~ Po. By a previous remark necessarily

(11)

Now <I>(x; p) can not be positive definite if P = PI for it would still be so (by
continuity) for all values P sufficiently close to PI in contradiction to the definition
of Pl. But <I>(x ; PI) is necessarily positive, as the limit of positive definite forms
<I>(x ; p), for P~ PI + o. Hence <I>(x; PI) is positive and of rank < n. No\v the
proof is completed by (11) and Theorem 2.4

5. W e shall now extend Theorenl 3 to cover the case when Po =:0, that is
when Un-l is in R n - I . We assume Un-I, of edges aik, to be a (n - I)-simplex of
R"'-h Le.

(12)
n

! L (ai i + ai k - a~ k) XiXk positive definite.
i,k-2

Let us prove that Un-l can be int'mersd isometrically in S:-1, provided p is suffi­
ciently large. This is proved if \ve can sho\v that

n

<I> (x ; p) = L cos (aik/p) XiXk
i,k=l

is positive definite if p is sufficiently large. A well known criterion states that a
quadratic form is positive definite if and only if all the n principal minors of its
discriminant chosen as follows

=:=UI__...J

are positive (see Dickson (3], §40). If in the matrix of coefficients

1 cos alk

p
(i, k = 2, ... , n)

cos ail COS aik
p p

of <I>(x ; p) we subtract the first line from all the other lines and then the first
column from all the other colunlils \ve get the symmetric matrix

(la)
1

ailcos - - 1
p

cos alk - 1
p

aik ail alk 1cos - - cos - - cos - +
p p p

4 Note that P = Pi is the first value < Po ,,-hich is a root of the transcendental equation
det II cos (aik/p) II = o. It would be interesting to decide whether IJ = Pi is necessarily a
simple root of this equation.
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which, as a result of the above criterion, will be the matrix of a positive definite
form if and only if <P (x; p) is positive definite itself. Noting that (13) can be
written as follo\vs

1

, (p ~ ~),

we see that the vth (v > 1) principal minor of (13) is = to p-2(v-l) times the (v - 1)8t
principal minor of the discriminant of (12), plus a remainder O(p-2v). By (12)
all these minors are positive if p is sufficiently large, hence <P(x; p) is positive
definite and U n-l can be immersed in S~-I' For any such p = Po. Theorem 3

proves the existence of S:~2' with PI < Po, in which U n-l can be immersed. We
have thus proved the following

THEOREM 3' (of Godel). If Un is a n-simplex of R n , then there always exists a
8:- 1 in u'hich Un can be immersed isometrically.6

The case of indefinite spaces

6. Consider the space of real variables (YI, ... ,Ym) with the property that
the square of the distance PP' of two points is given by the formula

PP'2 = :t E. (Y. _ y:)2 ,
)/-1

with Ev = +1 for v = 1, ... ,p, E, = -1 for v = p + 1, ... , p + q (= m).
We denote this space by Rp,q; thus R m = Rm,o. The linear geometry of
R p,q is obviously the same as that of Rp+q = R m •

Let now !n(n + 1) real numbers Cik(Cii = 0, Cik = Cki; i, k = 0, ... , n). be
given. Are there n + 1 points A o, AI, ... ,An in sonle space Rp,q such that
AiAi = Cik, and what is the space R p , q of the least number of dimensions in
which there are such points? A complete ans\ver is furnished by the following
theorem.

THEOREM 1'. Consider the quadratic form

(14)
n

F(Xl, X2, • •• ,xn ) =! 2: (COi + COk - Cil') XiXk.
i ,k-l

6 A heuristic proof of this theorem for n = 3 is as follows. Think of the edges of (13 to be
made of flexible strings; place in the interior of (13 a small sphere which is gradually inflated.
This sphere will reach a certain definite size when it will become tightly packed within the
6 strings (edges) of 0'3. Note that in the rigorous proof a,hove a very large sphere ,,?as used
'which was gradually deflated to its proper size.
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Let it be of type (p, q).6 The necessary and sufficient conditions that there be n + 1
p01~nts A o, AI, ... ,An in R p " q' with AiA~ = Cik, are the inequalities

p' ~ p, q' ~ q.

Thus R p , q is the least space in u,hich there are such points.
The condition is necessary. Let the points A o = 0, AI, ... ,An in Rp',q' have

the required property and let R p , q be the least linear subspace containing these
points. We kno"\\T that p ~ p', q ~ q', p + q ~ n. Let p + q = m and let
Ai = (ail, ... ,aim) be the coordinates of A; in Rp,q with respect to an orthog­
onal coordinate system. For the point

P = x1A 1+ ... + xnA n = (~l, ... , tm)

of coordinates ~v = Xlab + ... + XnO'nv '\ve find as in section 2 the identity
m m

OfYl = L Ev~; = L Ev(xlalv + ... + Xna nv)2 = F(Xl, ... , xn) ·
v= 1 v= 1

Viewing our assumption that the matrix of the a,.,.v is of rank m and the law of
inertia (Dickson, [3], p. 72), we see that F(x) is of type (p, q).

The condition is sufficient. Assume first p + q = n. By a non-singular trans­
formation

(3') (y) = H(x)

we get the identity

F(Xl, ... ,xn ) = yi + ... + y; - Y;+l - '" - Y~ ·

Consider in the space R p , q of the variables (Yl., ... ,Yn) the points whose
x-coordinates are given by (5). We find as in section 2 AiA~ = Cik and the
theorem is proved, for R p , q can be considered as a subspace of R p " q', if p' ~ p,
q' ~ q.

If p + q = m < n, then we get

F(Xl, ... ,xn ) = yi + ... + Y; - Y;+l - ... - y;.
To get the desired points we have to project the points A o, ••• ,An on the mani­
fold Ym+l = ... = Yn = 0, which is a R p , q.

7. It should be remarked that F defined by (14) is the most general real
quadratic form in n variables. We thus have the follo\ving

COROLLARY. Let

(15)
n

F = L b;k XiXk
1

I That is of index p and rank p + q. See Dickson [3], p. 71.
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be a non-degenerate real quadratic form of type (p, q). If by means of

(3")

we have

(16)

(y) = H(x)

then the columns of the matrix

hll • .. hln

H=

are the y-coordinates in R p • q of n points AI, ... ,An, which together 'with A o = (0)
have the property AiA% = Cik, 'where

(i, k > 0) .

A geometric interpretation of the reduction of (15) to the canonical fonn (16)
by nleans of an orthogonal linear transformation is well known from the theory of
quadrics. The above Corollary furnishes a geometric interpretation of this
reduction by any linear non-singular transformation. '

I

Probably the most concise description of the result of Theorems 1 and l' is as
follows. If the squares of the edges of a simplex AoAl ... An are given real
numbers, AiA% = Cik, then this defines uniquely a (indefinite) space which, if
referred to the coordinate unit-vectors AnAl, ~4.oA2, ... ,AoAn, has the line
element

n

ds! =! L (COi + COk - Cik) XiXk •
i .k-t

SWARTHMORE COLLEGE, SW.\RTHMORE, PA.
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