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THE PSEUDO-INVERSE OF A PRODUCT* 

RICHARD BOULDINT 

Abstract. Let A and B be bounded linear operators on a complex Hilbert space H, such that the 
range of each is a closed subspace of H. The following three conditions are necessary and sufficient for 
the pseudo-inverse of AB to be the pseudo-inverse of A followed by the pseudo-inverse of B :  (i) the 
range of AB must be closed; (ii) the range of A* must be invariant under BB* ;(iii) the intersection of the 
range of A* and the kernel of B* must be invariant under A*A. We use this basic result to obtain a 
simple technique for computing the pseudo-inverse of a given operator, particularly a given matrix. 

1. Introduction. The notion of the pseudo-inverse is a concept frequently 
used in operator theory which has some practical concrete applications. See [8], 
[9], and the attached bibliographies for material on the applications. A basic 
problem in the operator theory of the pseudo-inverse is to determine when the 
pseudo-inverse of a product is the product of the pseudo-inverses. In this paper 
we give three conditions which are both necessary and sufficient for the pseudo- 
inverse of AB to be the product of the pseudo-inverse of B and that of A. We 
then apply this result to the problem of computing the pseudo-inverse of a given 
operator by applying our main result to  a factorization of the given operator. 
Although we consider the polar factorization which is a standard tool in operator 
theory, we give another very simple factorization which is particularly suited to 
the problem of determining the pseudo-inverse of a given operator. The results 
of [6] show that there is a different factorization of the given operator T for every 
operator B with the property that the range of B contains the range of T. 

The book [4] which appeared subsequent to the initial preparation of this 
manuscript has some results for finite-dimensional matrices similar to our results 
for arbitrary operators; see [4, Thm. 2, p. 131. 

2. Preliminaries. By "operator" we mean a bounded linear transformation 
of the complex Hilbert space H into itself. We shall denote the kernel or null 
space of an operator T by ker T and the orthogonal complement of a subspace 
M is denoted MI .  If M is a subspace of H invariant under T, then TIM denotes 
the restriction of T to M. We shall use, many times in this paper, the elementary 
fact that (T*H)' is ker T for any operator T 

We now recall the definition of the pseudo-inverse. If T is restricted to the 
orthogonal complement of its kernel, then it defines a one-to-one transformation 
into the Hilbert space TH- (the bar means topological closure). Define the pseudo- 
inverse of T ,  denoted T', to be the operator on H which is zero on (TW', and on 
T H  it is the inverse to the above transformation induced by T .  In the following 
theorem we prove several elementary facts about the pseudo-inverse. 

THEOREM2.1. (i) The  range of T is closed ifand only if T +  is bounded. 
(ii) For any operator T the product T t T  is the orthogonal projection onto 

T*H-. 
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(iii) Provided that T has closed range, the product T T +  is the orthogonal 
projection onto TH. 

Proof of (i). The definition of T +  as the inverse of a certain closed linear 
transformation shows that T +  is a closed linear transformation. If T H  is closed, 
then the closed graph theorem implies that T +  is bounded. On the other hand, 
assume that T +  is bounded and let {Tf,) be a convergent sequence. With no loss 
of generality we may assume that { f , ]  is orthogonal to  the kernel of T ; the con- 
tinuity of T +  implies that { f, = TtTf,) converges. Clearly, T carries the limit 
of { f , }  onto the limit of {Tf,) and so T H  is closed. 

Proof of (ii) and (iii). The linear transformation T + T  is defined on every 
vector and it is the identity on the orthogonal complement of ker T.  Since it is 
zero on ker T, it coincides with the orthogonal projection onto the orthogonal 
complement of ker T ,  which is the closure of T*H. The last assertion of the theorem 
is proved similarly. 

Even if T does not have closed range, the pseudo-inverse of T exists as a 
closed densely defined linear transformation. 

The next result is a key lemma in the proof of our main theorem. 
LEMMA2.2. Let P and Q be the orthogonal projections onto the subspaces M 

and N, respectively. The  restriction PQJM is the identity on M if and only if N 
contains M. 

Proof. This is immediate from [ l o ,Thm. 2, p. 481. 
In [3] we introduced the notion of angle between two subspaces and we proved 

some results that we shall use in this paper. If M and N are subspaces of H then 
we define the angle between M and N by analogy to finite-dimensional Euclidean 
space. The angle is between 0 and nJ2 and its cosine is the following supremum : 

sup{l ( f ,g ) / : f  ~ M > g ~ N a n d  l f l l  = 1 = llgll).I 

If either M or N is trivial, then the angle is 7112. 
We conclude the preliminaries by noting the following straightforward facts 

which will be used in the proof of our main theorem. 
LEMMA2.3. Assume that each of the operators A, B and AB has a bounded 

pseudo-inverse. If H, = (ker AB)', then BH, is a closed subspace o f H .  Furthermore, 
if P is the orthogonal projection onto (ker A)', then PBH, is a closed subspace of 
H. 

Proof. This lemma is based on the well-known fact that TH is closed if and 
only if inf ( 1 1 Tf 1 1  :f E (ker T)', 1 1  f 1 1  = I )  is positive ;see [ l  1, p. 23 11. 

Since ker AB contains ker B, we know that H, is contained in (ker B)'. 
If BH, were not closed there would be a sequence of unit vectors in H,, say 
{ f , ) ,  such that {lIBfnll}would converge to zero. Since such a sequence would be 
contained in (ker 'B)', its existence would contradict that B H  is closed. The last 
sentence above has a similar proof which leads to a contradiction of the fact that 
ABH, is closed. 

3. Main results. 
THEOREM3.1. Let A and B be operators with bounded pseudo-inverses. For 

(AB)' to be bounded it is necessary and suficient that the angle between B H  and 
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ker A fl (ker A fl BH)' be positive. Furthermore, the equation 

holds ifand only ifthefollowing three conditions hold: 

(2)  (AB)' is bounded, 

(3) A*H is invariant under BB*, 

(4) A*H n ker B* is invariant under A*A 

Proof. By Theorem 2.1, both A and B have closed range, and by the main 
theorem of [3] the angle condition is equivalent to (AB)having closed range. 
Again by Theorem 2.1, (AB)  having closed range is equivalent to (AB)' being 
bounded. Thus it suffices to prove the last sentence of the theorem. 

First we shall assume that ( 1 )  holds and we shall deduce (2 ) ,(3) and (4 ) .  
Because B+ and A+ are both bounded, we see that (2)holds. Let H,  = (ker AB)' 
and define B' to  be the restriction of B to H ,  considered as a transformation into 
BH,. Let P 'be the transformation from BH, into PBH,, where P i s  the orthogonal 
projection onto A*H = (ker A)' and P' is the restriction of P to BH,. Finally 
let A' be the transformation from PBH, into ABH, defined by restricting A to 
PBH, while noting that 

(5  AB = A[P + ( I  - P)]B= APB + A(I - P)B = APB. 

Clearly, for any f E H ,  we have 

(6)  A'P'B'f = ABf 

and since AB restricted to H ,  is one-to-one, it must be that each of the transfor- 
mations A', P', and B' is one-to-one. Clearly each of these transformations is onto 
by construction and thus 

In view of (6 )and the definition of the pseudo-inverse, for g E ABH we have 

A moment of reflection on the definition of A' and B' will show that (7)implies that 

Recall that Theorem 2.1 showed BB+ to  be the orthogonal projection onto BH 
which contains BH,. We substitute from ( 1 ) into (8) and then we apply B to both 
sides of the resulting equation 

where Q is the orthogonal projection onto BH. Since g belongs to ABH,, we have 
g = ABf with f E H ,  and this substituted in (9) results in equation 

(10) QPBf = P'- 'PBf  = PI-'P'Bf = Bf 
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Let Q, be the orthogonal projection onto BH, and note that Q,Q = Q,; 
apply Q, to both sides of ( l o )to get 

QoPBg = B f .  

Since this holds for any f E H ,  we invoke Lemma 2.2 to  conclude that BH, is 
contained in A*H. Since (ker AB)' = (AB)*H = B*A*H, we have 

This condition is clearly equivalent to  the invariance of A*H under BB*, so (3)  
holds. 

Now we shall show that (4 )follows from (1 ) .Since A*H is clearly invariant 
under A*A, we have 

A*A(A*H n ker B*) c A*H 

and it suffices to show that 

( 1 1 )  A*A(A*H n ker B*) c ker B* = (BH)'. 

This is equivalent to showing that for each f E A*H fl ker B* and each g~ H 
we have 

Thus ( I  I )  is equivalent to the equation 

(12) A(A*H fl ker B*) c (ABH)' . 

Since ( 1 ) holds, we know that the kernel of B + A +is exactly (ABH)', and in order 
to  prove (12)it suffices to show that 

(13) B+ A+ A(A*H n ker B*) = 10) 

Since the orthogonal projection P = A + A  is the identity on A*H which contains 
(A*H n ker B*), (13) follows from 

Bt(A*H flker B*) = 101, 

which is clearly a consequence of the definition of B+ and the fact that 

ker B* = (BH)' = ker Bt . 

This establishes condition (4) .  
We assume that the conditions ( 2 ) ,  (3 )  and (4 )hold. In order to show that ( 1 )  

holds, we take f E (ker AB)', g E (ABH)' and we show that 

and 

From (3 )it follows that (ker A)' 2 B(ker AB)' since (ker A)' = A*H and 
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It follows that (A+A)Bf= Bfand(14)will be establishedifwe show that B+B f  = f. 
This last equation is a straightforward consequence of the observation that 
(ker B)' 2 (ker AB)'. 

In order to show that (15)holds, we note that AH 2 ABH and so (AH)' 
c (ABH)'; therefore (ABH)' is the orthogonal direct sum of (AH)' and 
AH n (ABH)'. Of course, B+A+is identically zero on (AH)' since it is the kernel 
of A+.Thus it suffices to show that 

B+A+[AHn (ABH)'] = 10) 
or 

(16) A+[AHn ( A B H ) ~ ]  ( B H ) ~ .  
For f E A +[AH n ker (B* A*)] ,  we know that A f  E ker (B* A*) or B* A* A f  = 0 
or  A*Af E ker B*. Consequently, A*Af E [A*H n ker B*].  By (4 ) and the fact 
that A*A is self-adjoint, we deduce that A*H n ker B* reduces A*A. It is a straight- 
forward consequence of this fact that 

(A*A)-  ' [A*H n ker B*] c A*H n ker B* . 
We now have established that f E A*H n ker B*. It is apparent that (16)holds 
and consequently we have proved that 

B+At[(ABH)'] = (0) 
as desired. 

Since (2)holds, ABH is closed and H can be written as the orthogonal direct 
sum of ABH and (ABH)'. We have shown that (AB)' and B + A t  agree on both 
of the direct summands. The equation ( 1 ) follows. 

Remark 3.2. The reader will note that the conditions (2),(3 ) ,and (4)could not 
readily be simplified. Condition (3 )is equivalent to the agreement of (AB)' and 
B+A+on ABH;  condition (4 )is equivalent to the agreement of (AB)' and B+A+ 
on (ABH)'; condition (2) is a crude necessary condition which is essential in 
showing that (3)and (4)suffice. A communication with W. S. Loud led the author 
to discover that Theorem 3.1 remained true when conditions (3) and (4)were 
replaced with the following two conditions: 

(3') A+ A commutes with BB*, 

(4') BB+ commutes with A*A. 

4. Applications. Our primary application of Theorem 3.1 is to give a very 
simple technique for computing the pseudo-inverse of a bounded operator with 
closed range. The technique is based on a factorization formula for the given 
operator and the observation that one can easily compute the pseudo-inverse 
for a normal operator. 

LEMMA4.1. I f  T  is an operator with closed range, then T = (T* )+(T*T) .  
Proof. Let P be the orthogonal projection onto T H  = (ker T*)'. We note that 

By the closed range theorem of Banach, the fact that T H  is closed implies that 
T*H is closed. Thus (T*)' is bounded and the factorization involves only bounded 
operators. 
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THEOREM4.2. I f  T is an operator with closed range, then T +  = (T*T)+T*. 
Proof. In order to apply Theorem 3.1 we must show that;  
(i) ((T*)+)*H is invariant under (T* T)', 

(ii) ((T*)+)*Hfl ker (T*T) is invariant under ((T*)+)*(T*)+. 
It is clear from the definition of the pseudo-inverse that the kernel of (T*)' is 
(T*H)', and since the range of ((T*)+)* is closed by the closed range theorem, we 
see that it is T*H. Thus condition (i) above is trivial. 

Because ker T* = (TH)', we know that T*H = T*(TH) = (T*T)H and 
since (T*T) is self-adjoint we have 

ker (T*T) = ((T*T)ML= (T*H)'. 

By the preceding paragraph, it is clear that the subspace mentioned in (ii) above is 
trivial. Thus condition (ii) is trivially satisfied, and we may invoke Theorem 3.1 
in order to get the desired conclusion. 

In order to understand why the preceding theorem gives a simple scheme for 
computing the pseudo-inverse of any operator T with closed range, the reader 
should recall the following facts. 

PROPOSITION4.3. Let T be any operator with closed range. The  closed subspace 
T*H reduces (T*T) t o  an invertible operator A, and on the orthogonal colnplelnent 
(T*T) is the zero operator, which we shall call B.  Then we have 

and so we need only compute the inverse of A in order to get the pseudo-inverse of 
(T* T). 

In the most frequent applications of the pseudo-inverse, the operator T 
is defined on a finite-dimensional vector space. In that situation, it is entirely 
straightforward to calculate A - ' given A. Thus in order to give a complete tech- 
nique for computing the pseudo-inverse in that situation, we need only describe 
how to obtain a matrix for A.  Such a problem is clearly equivalent to finding an 
orthonormal basis for T*H. If one takes any convenient basis for H and writes 
the corresponding matrix for T* so that the matrix acts on a column vector written 
to the right of the matrix, then the row vectors of the matrix span T*H. If one 
applies the Gram-Schmidt orthonormalization process to those row vectors, 
and if one denotes by { e l ,. . . , e j }the orthonormal set obtained from { a , ,  . . . , a , ] ,  
then it is easy to determine if a,+ , is linearly dependent on the set { e l ,. . . , e j ) .  
If the linear combination c ,e ,  + . . . + cjej  with c, = ( a i + ,,e k )  equals ai+,, 
then it is linearly dependent on the set, and otherwise it is not. Thus the Gram- 
Schmidt process results in a maximal orthonormal set for T*H, and obtaining 
the matrix for (T*T) in that basis is routine. Hence, we have given a complete 
straightforward procedure for computing the pseudo-inverse, and our procedure 
seems simpler and easier than the previously known procedures. 

A useful tool in operator theory is the polar factorization (see [7, pp. 1245- 
12501). Consequently the following theorem, which is almost immediate from 
Theorem 3.1, may prove useful in general operator theory. 

THEOREM4.4. Let UR be the polar factorization of the operator T. If R has 
closed range, then T t  is the composite operator R+U*. 
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Proof. By the usuai construction of the polar factorization, U is a partial 
isometry carrying RH isometrically onto T H .  Thus if RH is closed, then T H  is 
closed and so R +  and T t  are both bounded. Any partial isometry has closed 
range and so U + is bounded; moreover, it is well known that U +  = U*. 

One quickly sees that U*H is R H  which is obviously invariant under the self- 
adjoint operator R. Since the kernel of R is (RH)', the subspace U*H fl ker R 
is certainly trivial. It is now clear that the conditions (2),(3),and (4) of our Theorem 
3.1 are satisfied. 
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