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Abstract 
We apply certain recent results pertaining to the rank 

minimization problem under LMI constraints to determine 
non-trivial lower and upper bounds for the minimal order 
dynamic output feedback which stabilizes a given linear 
time invariant plant, via Semi-Definite Programs. 

1. Introduction 
l.1. 

We consider the problem of minimizing the rank of a 
positive semi-definite matrix, subject the constraint that a 
particular affine transformation of it is also positive semi- 
definite. We shall refer to this problem as the Rank Mini- 
inization Problem (RMP). Since at the present time we do 
not know of a satisfactory characterization of the solution 
!jet to the general RMP (which leads to an efficient algo- 
rithm), we restrict our attention to particular instances of 
it, i.e., those with affine transformations of a particular 
form. 

The RMP is defined as follows: Given a symmetry 
preserving linear map M on the space of symmetric ma- 
trices, and a particular symmetric matrix &, solve 

minrank X (1) 

(2) 
x 2 0, (3) 

X 

Q + M ( X )  2 0, 

where the inequality ”2” is interpreted in the sense of 
Lowner, i.e., A >_ B signifies that the matrix A - B is 
positive semi-definite. For a given affine map C, or a lin- 
ear map M on the space of symmetric matrices and a 

symmetric matrix Q ,  the corresponding instances of the 
rank minimization problem are denoted by RMP(L) or 
RMP(Q, M ) ,  respectively. 

1.2. 
It is now recognized that what Lyapunov pioneered 

in his seminal 1849 paper [ll] has flourished into one the 
most fruitful techniques for system analysis and synthesis, 
namely the Linear Matrix Inequality (LMI) approach [6]. 
The LMI which arises from a system or control prob- 
lem could be originated from what Lyapunov technique 
is all about, i.e., finding a Lyapunov function; or it could 
have been obtained from the frequency domain or the in- 
put/output framework specifications (positivity, passitiv- 
ity, positive realness, etc.), and turned into a LMI with 
the use of PR Lemma (when transition to time domain 
framework is least expected!). The most important is- 
sue however is that LMIs are computationally tractable, 
although there are still some very interesting issues that 
need to be resolved regarding their computational com- 
plexity. 

When LMIs arise in the synthesis contexts, it turns 
out that imposing particular structure or order constraints 
on the controller becomes extremely important. For exam- 
ple one might be interested in the minimal order dynamic 
output feedback which stabilizes a given linear time invari- 
ant (LTI) plant (this problem is considered to be among 
the most important “open” problems in control [4], [5]). 
Decentralization is another “structure” that one might im- 
pose on the designed controller (in addition to other con- 
straint, e.g., decentralized Ifm). Control researchers have 
now recognized that these “structural” constraints can in 
fact be formulated as rank constraints on the solution of 
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a LMI [7], [8]. 

1.3. 
Before presenting the main results we briefly go over 

some background material. C a p h  letters are used for 
matrices, as well as for the linear maps acting on them. 
For two symmetric matrices A and B ,  A 2 B indicates 
that  A - B is positive semi-definite; sirnilarly A > B ex- 
presses the positive definiteness of A - B. The trace of 
AB is denoted by A e B;  A‘ denotes the transpose of the 
matrix A, At its pseudo-inverse. For two symmetric posi- 
tive semi-definite matrices A and B ,  the parallel addition 
of A and B is denoted by A : B and is defined by: 

A : B := A(A + B)tB. 

It is known that 0 5 A : B = B : A 5 A , B  [ l ] ,  a result 
which will be used in the sequel. For a square symmetric 
matrix A, Xj(A) denotes the i-th eigenjalue of the matrix 
A, when they are arranged in an increasing order; it is 
known that, 

A 5 B 3 Xi(A) 5 Xi(B) ( V i )  

and 
A 5 B e.- MAM‘ 5 MBM’, 

for all matrices M of appropriate dimensions [9].  We use 
the term Semi-Definite Programming (SDP) to refer to an 
optimization problem which has either (symmetric) ma- 
trices or scalar values as variables, and the objective is a 
linear functional on the product space of the spaces of the 
variables, and the constraint set is defined by linear equal- 
ities using components wise ordering, or matrix ordering 
” >” or ” 2” defined above. 

The outline of the paper is as follows. Section 2 starts 
with the introduction of certain classes of matrices. We 
then proceed to state the results that we employ to prove 
the main result of the paper which pertains to determin- 
ing the minimum order dynamic output feedback which 
stabilizes a given LTI plant. 

2.  
As we pointed out previously, at the present time very 

little is known about the RMP, partly because the impor- 
tance of this problem has only been recently recognized. 
The lack of an efficient algorithm for solving the RMP 
however, is due to more fundamental reasons, in particu- 
lar the lack of convexity and the notion on NP-hardness. 

We shall therefore consider only a particular class of 
RMPs, namely those with linear maps expressible as: 

X ++ CXC’ - MiXM,’, 
i 

where the matrix C is invertible. We shall refer to these 
linear maps as maps of the type generalized 2, and denote 

them by ZG. These maps are a generalization of the type 
Z maps in [12] (and hence the prefix “generalized”). The 
motivation for calling the maps of the form 

I 

type 2 in [la] is due to their analogy with the Z ma- 
trices, i.e. , matrices which have non-positive off-diagonal 
elements. 

An affine map C on the space of symmetric matrices 
is called pconcave (concave with respect to the parallel 
addition operation), if 

q x  : Y )  >_ C ( X )  : L(Y) .  

We make use of the following results reported in [13]. 

Theorem 1 ([13]) The RMP(Q,M) with Q 5 0 and 
M E ZG can be solved as a SDP. 

Our objective is to show how these results are appli- 
cable to the problem of output feedback synthesis. 

Theorem 3 Non-trivial upper and lower bounds for the 
order of the minimal order dynamic output feedback which 
stabilizes a given LTI plant can be obtained via a SDP. 

3. 
Prior to presenting the proof of Theorem 5, we make 

the following observation. 
Although the linear maps of type 2 and ZG appear 

naturally in the context of discrete time systems via the 
Lyapunov equation, they are also useful in the context of 
continuous time analysis. 

Proposition 4 The matrix inequalities of the form 

AX + XA’ + Q 5 0 

can be written as 
- cxc’ - BxBi + Q 2 0, 

for - appropriate choices of matrices 
Q.  
Proof: 
invertible. Then, 

(invertible), G, and 

Let a > 0 be large enough such that c r l -  A is 

AX+XA’+Q<O e - A ’ X - X A - Q > O  
2a(-A’X - X A  - Q )  2 0 
-2aQ + ( & I  - A)X(aI  -A)’ e 
-(a1 + A ) X ( a I  + A)’ 2 0 

0 Let a = -2aQI = crl - A, and = aI  + A. 

Remark 5 It should be clear that we could choose the 
parameter a > 0 such that is singular. 
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Consider the problem of stabilizing the LTI system, 

X=Ax+Bu (4) 
y = cx (5) 

where A E Rnxn, B E Rnx" and C E R p x n .  

For a given k n ,  we would like to examine the exis- 
tence of a stabilizing control law, 

where AK E R k x k .  

In [7] it was shown that this problem can be solved by 
considering a rank minimization problem. 

Theorem 6 ([7]) The minimal order dynamic output 
feedback which stabilizes a given plant can be determined 
b y  solving, 

s.t . :  AR + RA' < BB', 
A'S + SA < C'C, 

(9) 
(10) 

How would one go about solving this problem? Well, 
it seems that the least we can do is to consider a convex 
relaxation of it: 

s.t.: AR+ RA' < BB', 
A'S + SA < C'C, 

(13) 
(14) 

('I" ;s)201 

hoping that a feasible point which has a minimum trace 
tiurns out to be of minimal rank as well. But this is of 
course not the case in general. One condition the guaran- 
tees that these two optimization problems are equivalent 
is the machinery which was introduced in [12], namely 
making sure that the feasible set is a hyper semi-lattice. 
Elut this condition might not hold in general either. 

Let us denote by pt the rank of the minimum trace 
solution of (12)-(15). Clearly one has 

Pmin 5 Pt. 

We are interested in obtaining a nontrivial lower bound 
for pmin. 

Let W := ( ;s ) . By rewriting (8)-(11) in 

terms of W one obtains: 

min r ank  W 
w,r>o 

W is of the form: ( ?  k3)7 
where, 

and 

( A+A' yC'C-c21 Qr := 

for small €1 > 0 and €2 > 0. 
Using Proposition 6 rewrite (16)-(19) as, 

min rank  W 
w9-00 

W is of the form: ( ?  ; 3 ) 1  
(23) 

- 
where, Qr = 2aQ,, := a l  + A; 
the parameter a > 0 is chosen such that c is singular. 
Now suppose that y > 0 is fixed, in which case we use the 
notation instead of the more accurate Gr. Consider the 
following problem, 

:= aI - A, and 

- -  
where E L  is such that CIC = 0, and clcy = I .  Accord- 
ing to Theorem 4, the latter RMP can be solved as a SDP. 
Let the rank of the optimal solution of the corresponding 
SDP be denoted 29. Observe that 

29 5 Pmin L Ptl 

and that both lower and upper bounds are computable via 
SDPs; we have thus proved the statement of Theorem 5. 

4. Conclusion 
We considered the fixed order dynamic output feed- 

back synthesis in the framework of finding a minimal rank 
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matrix in the feasible set of an LMI. We showed that non- 
trivial upper and lower bounds for this synthesis problem 
can be found by solving two semi-definite programs. 
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