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1. De.nnitions

A function f(x), such as e- X or (x-a)-~, y ~ 0, IS said to be completely
monotonic over (a, b), where - 00 ~ a < b ~ +00, if

(1) (-I)"P"'(x) ~ 0, a < x < b, n = 0, 1,2, ....

If, in addition, f(x) is continuous at x = a, then it is called completely monotonic
over [a, b), with similar definitions for (a, b] and [a, b]. A function is absolutely
monotonic if all its derivatives are non-negative. A detailed study of these concepts
can be found, for example, in [11, Chapter IV].

Our chief concern here is for the standard case in which a = 0, b = + 00. For
this, S. N. Bernstein established the following results (cf. [11, Theorems 12a and 12b,
pp. 160-161]).

THEOREM A. A necessary and sufficient condition that f(x) be completely
monotonic in [0, (0) is that there exist a bounded, non-decreasing function ~(t) such
that

(2)

00

f(x) = f e-Xld~(t)
a

and that the integral converge for °~ x < 00.

THEOREM B. For f(x) to be completely monotonic over (0, (0) it is necessary and
sufficient that f(x) be representable in the form (2) with ~(t) non-decreasing and the
in'tegral convergent for °< x < 00.

1. Dubourdieu [4, p. 98] pointed out that strict inequality prevails in (l) for all
non-constant functions completely monotonic over (a, (0); that is, if f(x) satisfies (1)
and is not constant, then

(1 ') (-I)"p"'(x) > 0, a < x < 00, n = 0, 1,2, ....

A completely monotonic sequence {Ila, Ill' ... } is de.fined by the property

(3) ( - 1)" l\" Ilk ~ 0, k, n = 0,1, ... ,
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where
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for k = 0,1, ... , n = 1,2, ....
This concept is intimately associated with the little moment problem and with

Hausdorff summability. A brief survey is found in [11, Chapter III].
F. Hausdorff established (cf. [11, Theorem 4a, p. 108J) the fundamental result for

such sequences, as follows.

THEOREM C. A sequence {Ilk}~ is completely monotonic if and only if there exists
a bounded non-decreasing function P(t), °~ t ~ 1, such that

(4)

I

fl, = ft'd/3(i),

o

k = 0,1, ....

Strict inequality prevails throughout (3) for a completely monotonic sequence
unless III =112 = ... = Iln = ... , that is, unless all terms except possibly its first are
identical [6]. Compare [8J for monotonicity of finite order.

If (1) (respectively (3)) holds for n = 0, 1, ... , N, then f(x) (respectively {Ildo) is
said to be monotonic of order N. If (3) holds when modified by the deletion of the
factor ( -1)", then {/lk}O is said to be absolutely monotonic, as for functions.

Both types of higher monotonicity can be subsumed into the concept of regular
monotonicity introduced by S. N. Bernstein [1, pp. 196-197; 2]. This concept is
surveyed in [3J and examined further in [9]. Regularly monotonic functions
(respectively sequences) are functions (respectively sequences) whose n-th derivative
(respectively difference) is of constant sign over the prescribed domain of definition.
When this domain is (a, 00) for functions (respectively the set of all non-negative
integers for sequences), F. Neuman and 1. Vosmansky [9J have determined all
possible permissible successions of signs of the derivatives (respectively differences) of
order n, for n = 0,1,2, ....

Many of the results below can be stated in terms of these various types, especially
those proved by means of L'Hospital's rule.

A close relationship exists between completely monotonic functions and
completely monotonic sequences. For example, as a major step in a proof of
Bernstein's Theorem A above, the following result is employed [11, Theorem lId,
p.158].

THEOREM D. If f(x) is completely monotonic in [a, 00) and if b is any .fixed
positive number, then the sequence {f(a + kb)}~ is completely monotonic.

2. Composition of completely monotonic functions and sequences

Theorem D can be generalized.

THEOREM 1. If W(x) is completely monotonic on [a, 00) and if {L\Xk}~ is
completely monotonic, with X o ~ a, then so is the sequence {W(xd}~.

Proof From Hausdorff's Theorem C above we note that there exists a bounded
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non-decreasing function P(t), °~ t ~ 1, for which

1

~X, = ft'dP(t),

o
Hence

k = 0,1,2, ....

and so

(5) k = 0,1,2, ....

Now consider the function
1

f1-tk
x(k) = X o + 1- t df3(t),

o

where k is a continuous variable, k ~ 0. Then

(6)

1

J
I (n+1)

(_l)n x<n+l)(k) = (_I)n tk 0~_1 t d{3(t) ~ 0,

o

k > 0, n = 0, 1,2, ... ,

so that x'(k) is a completely monotonic function over 0 < k < 00.

Hence, W(x(k)) is a completely monotonic function over °< k < 00, as may be
inferred from Faa di Bruno's formula for the n-th derivative of a composite function.

From the definition of x(k) it is obvious that

whence

(

0,

f.~~+ [x(k+e)-x(k)] =

{3(0 + )- {3(O) ~ 0,

e> 0,

k > 0,

k = O.

Therefore, x(k+) = x(k), for k > 0, and x(O+) = xo +{3(O+ )-{3(O) ~ X o.
Further,

1

XI = xl!) = Xo + f dP(t) = Xo + P(1) - P(O) '" X o + P(o+ ) - P(O) = x(O +).
o

The sequence {W(x(k+e))}r==o is completely monotonic for each fixed e > 0,
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since the function W(x(k)) is completely monotonic for k > O. Thus,

( -1)"~" W(x(k+ e)) ~ 0,

and so, letting e -+ 0 +,

n, k = 0, 1,2, '" ,

(7) (-I)"~"W(x(k+)) ~ 0, n, k = 0, 1,2, ....

That is, the sequence {W(x(O+ )), W(xd, ... , W(xd, ...} is completely monotonic,
since Xo ~ x(O+) ~ Xt.

If x(O+) = Xt, then f3(0) = f3(0+) = f3(1) and so f3(x) = f3(0), for 0 < x ~ 1. In
this case, ~Xk = 0, for k = 1,2, ... , and the conclusion of Theorem 1 holds trivially;
the sequence {W(Xk)}~ is simply a sequence of constants.

In any case, x(O +) ~ xo, so that

W(xo) ~ W(x(O+)).

Thus, from (7), the sequence {W(xk)}o is completely monotonic, as the theorem
asserts, since increasing the first term in a completely monotonic sequence does not
affect the property of complete monotonicity.

The theorem is proved.

REMARK 1. If X o > a, then it suffices to assume that W(x) is completely
monotonic over (a, (0), and the foregoing proof can be simplified a bit.

REMARK 2. As a preliminary to Corollary 1 we require an analogue of an easy
modification of Theorem 2b of [11, p. 145J. This is Lemma 1 below, the proof of
which is accomplished by the use, again, of the interplay between completely
monotonic functions and sequences, an interplay which makes the lemma a
consequence as well as an analogue of that theo_rem.

LEMMA 1. If ft (x) is absolutely monotonic in [0, (0), and if {Ilk}~ is completely
monotonic, then {Jl (Ilk)} is completely monotonic. In particular, if {log vk} is completely
monotonic (so that Vk ~ 1), then so also is {vn~ for each li > O.

Proof First, assume that {Ilk}~ is minimal. Then, by [11, Theorem 14b, p. 164J,
there exists a function f2(X), completely monotonic over [0, (0), such that

k = 0,1,2, ....

From Theorem 2b of [11, p. 145J, modified trivially, it follows that fl (f2(X)) is
completely monotonic over [0, (0). Hence, the sequence {It (12(k))}~ == {fl (/lk)}~ is
completely monotonic, from [11, Theorem lid, p. 158J; this proves the first part of
the lemma in this case.

If {/lk}O is not minimal, it can be made so by reducing the single term Ilo
appropriately, say to 1l6. The preceding argument establishes that the sequence
{It (1l6), 11 (Ild, ...} is completely monotonic. Hence so also is {It (Ilk))~' since It (x)
increases as x increases; the sequence obtained by increasing the first term of a
completely monotonic sequence is completely monotonic. This proves the first part
of the lemma.
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To establish the remaining part, simply take fl (x) = el1.X, J.lk = log Vk •

REMARK 3. The preceding remarks permit the assertion of a consequence of
Theorem 1, modified as indicated in Remark 1.

COROLLARY 1. If {dXk}~ is completely monotonic, then so is the sequence (i)
{exp ( - AXk)}g' when X o ~ 0; and when X o > 0, so also are the sequences (ii) {XkA}g',
(iii) {log (xk+ I/Xk)}g', and (iv) {(xk+ t!Xk)A}g', for each fixed A > 0.

Proof For (i) and (ii) it suffices to take W(x) = e- Ax and W(x) = x-A,
respectively, in Theorem 1. From (ii) the complete monotonicity of (iii) can be
inferred via L'Hospital's rule, since for A > 0,

as A -. °+ , for k, n = 0, 1, .... This settles case (iii).
The special case when A = 1 of (iv) can be handled especially simply, since

This establishes the complete monotonicity of the sequence {x k + dXk}~' since its k-th
term is the product and sum of the k-th terms of completely monotonic sequences.

The general case when A > °of (iv) follows from (iii) and the final sentence of
Lemma 1 on putting

k = 0,1,2, ....

This completes the proof of Corollary 1.

REMARK 4. To the second part of Lemma 1 there is a valid converse, as follows.

LEMMA 2. If {vn~ is completely monotonic for each A > 0, then so is {log vdO',
provided that Vk ~ l,for k = 0,1,2, ....

Proof For Vk > 0,

as A -.0+ for n = 1,2, ... , k = 0,1,2, .... Moreover (since Vk ~ 1),

k = 0, 1,2, ... ;

this completes the proof.

REMARK 5. A similar argument shows the following.



36 LEE LORCH AND DONALD J. NEWMAN

LEMMA 3. If {Ili}o is completely monotonic for each }. > 0, °< Ilk'
k = 0,1,2, ... , then {log (IlJllk+ l)}O is completely monotonic.

Proof For}. > 0, and n = 1,2, ... , k = 0,1,2, ... ,

as }. ~ 0+.

From this result, it follows that the complete monotomclty result stated as
[7, (iv), p. 1255] is more precise than indicated previously. The assertion in question
states that the sequence {exp ( - }.c vk )}~ is 'completely monotonic for each }. > 0,
where Cvk is the k-th positive zero of the general real Bessel function rc,,(x), when

Ivl ~ t. In view of the new result, it follows that whenever {exp (-lc\.~J}~ is
completely monotonic, the sequence {~Cvk}~ must also be completely monotonic.
But this is the case when and only when Ivl ~ t. Thus the earlier result does not hold
for a larger range of v than the one already stated there.

REMARK 6. Lemma 3 and Corollary 1(i) are converse to one another. Together
they constitute an analogue for completely monotonic sequences of Schoenberg's
Theorem 9 [10, p. 835] for completely monotonic functions.

To parallel his phrasing, the results may be combined as follows.

The sequence {Ilno, Ilo = 1, Ilk > 0, k = 1,2, ... , is completely monotonic for all
}. > °if and only if Ilk = exp ( - vk) with {~vdo completely monotonic and Vo = 0.

REMARK 7. Theorem 1 generalizes not only Theorem 0, but also the case when
N = 00 of [7, Corollary 3.1], itself a substantial generalization of Theorem D. The
previous extension, however, assumes that xo, Xl' ... , X k , ... are the zeros of a solution
of a certain type of differential equation, which is the case when x k = a + kb.

3. Another composition of completely monotonic functions and sequences

Still another result of [7], namely the case when N = 00 of Corollary 3.2, can be
freed of dependence on differential equations and thus generalized. The extension is
the following.

THEOREM 2. Suppose that V'(x) is completely monotonic over (0, (0), that xk is in
the domain of V(x) and that {~Xk}O is completely monotonic. Then the sequence
{~V(Xk)}O is also completely monotonic.

Proof As in the proof of Theorem 1, the sequence {xk } can be extended to a
function x(k) such that x'(k) is a completely monotonic function of the continuous
variable k, for k > 0. Similarly it follows again from Faa di Bruno's formula that
V'(x(k)) is also a completely monotonic function of k. Hence the same is true of the
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product x'(k) V'(x(k)) and we may write

1

dV~(k)) = x'(k) V'(x(k)) = ft'dy(t),

°

37

where dy(t) is a positive measure obtained from Bernstein's Theorem B on replacing
e- t by t.

Integration from k to k + 1 gives

(8)

1

f
t - 1

V(x(k+ 1))- V(x(k)) = - tkdy(t) ,
log t

o
k+l

f t-l
since t r dr = -- t k

•
logt

k

Now, (t -1)jlog t is non-negative and continuous in [0, 1], which shows that
V(x(k + 1)) - V(x(k)) is completely monotonic, so that the sequence {dV(xk)} is also
completely monotonic, as claimed.

REMARK. Theorems 1 and 2 show that Corollaries 3.1 and 3.2 of [7J can be
freed from their dependence on differential equations wh~n N = 00 and are general
properties of completely monotonic functions and sequences. However, a similar
result of [7], namely Theorem 3.2, cannot be extended in this way. To see this, we
note that there exist sequences {xd, {tk}, with {dxk}, {dtk} both completely
monotonic, with

Xo > to, k = 1,2, ... ,

and such that the sequence {w(xk)- w(tk)}o need not be monotonic, much less
completely monotonic, although W(x) = w'(x) is a completely monotonic function.

It suffices to let

W(x) = x,
a

tk = k + (k+l)2'

with a any fixed value, i < a < 1.
For {x k }, {tk } the zeros of solutions of a certain type of Sturm-Liouville

differential equation the sequence {W(Xk) - w(tk)}o would be completely monotonic,
according to Theorem 3.2 of [7], whenever w'(x) is completely monotonic.

4. A partial converse to Theorem 1

A partial converse to Theorem 1 holds. It is analogous to one of the two
directions of a necessary and sufficient condition established by I. J. Schoenberg
[10, Theorem 8, p. 833] for the superposition of one completely monotonic function
upon the derivative of another. Theorem 1 is the corresponding analogue to the
opposite direction of Schoenberg's theorem. The formulation below imposes a milder
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hypothesis, restricting itself to the family generated by a single positive, decreasing,
differentiable function, rather than covering the totality of all completely monotonic
functions. Examples of a suitable W(x) are e- X or 1j(x+ 1).

THEOREM 3. Let W(x) > 0, for °~ x < 00, with W'(x) < 0, for °< x < 00,

and suppose that W'(O +)exists as a finite value. If {W(AXk)}O is completely monotonic
for all small A > 0, and if Xo ~ 0, then {L\xk} is completely monotonic.

Proof Obviously, - 00 < W'(O +) ~ 0. For A> °and n = 1,2, ... , we have,
using L'Hospital's rule,

as A~ 0+ .
Hence,

n=1,2,3, ... , k=0,1,2, ... ,

and the proof is complete.

REMARK 1. If, instead of supposing that W'(x) < 0, it is assumed that
W'(x) > 0, as, say, when W(x) = eX, then the theorem holds when absolute
monotonicity replaces complete monotonicity in both hypothesis and conclusion. In
both cases, the theorem would remain valid in finite form. With the appropriate
hypothesis assumed for n = 0, 1, ... , N, the corresponding conclusion would hold for
n = 0, 1, ... , N -1.

It is easy to formulate the corresponding statement for regular monotonicity. The
same proof works, once ( _1)n is replaced by 8n, where 8n is ±1 as appropriate.

These comments apply, mutatis mutandis, to Corollary 1 ((ii) implies (iii)),
Lemma 2 and Lemma 3, above.

REMARK 2. A fun converse to Theorem 1 does not hold. Below we shan show
this by establishing Theorem 4.

5. Some counterexamples

We have already mentioned, in the remark following Theorem 2, a
counterexample to a possible extension of a result having an origin similar to
Theorems 1 and 2.

(1) Next we show that the Schoenberg result mentioned in §4 cannot be
improved by weakening the hypotheses so as to require only the complete
monotonicity of f( ¢(t)) for a single completely monotonic f(t). The result follows.

THEOREM 4. For each function f(t) completely monotonic over [0, (0) there exists
a function ¢(t) such that ¢(o) = 0, f( ¢(t)) is completely monotonic over [0, (0) and
¢'(t) is not completely monotonic on (0, (0).
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Proof For f(t) constant the conclusion is obvious, and so we consider hereafter
the non-constant case. Obviously, f( 00) exists and is non-negative. By subtracting
this value, we may as well assume that f( 00) = 0. Further, f(O) > 0, since any
complete monotonic function is non-negative and non-increasing. Hence we may
assume without loss of generality that f(O) = 1.

This done, we note also that f(t) is strictly decreasing, since (I') holds.
Next, given f(t), we construct 4>(t) with 4>(0) = °such that

f( (jJ(x)) = e- x
.

Then f'(c/>(x))c/>'(x) = -e- X and

c/>"( ) = e- X
- f"(c/>(x))[c/>'(x)] 2

x f'( c/>(x))

e- X
_ f"(C/>(x))[f'(c/>(x))]-2 e-2x

f'( c/>(x))

x " [!'(c/>(x))] 2
- f"(c/>(x))e- X

e c/> (x) = [f'( c/>(x))] 3

[f'( c/>(x))] 2
- [f( c/>(x))] [f"( c/>(x))]
[f'( c/>(x))] 3

x> 0,

since f(C/>(x)) = e- X
•

The last numerator is non-positive [11, comment after proof of Theorem 16,
p. 167J, while the denominator is negative from (I'). Hence

c/>"(x) ~ 0, x> 0.

If c/>"(x) > °for some x, then c/>'(x) is clearly not decreasing for all x > 0, as
would be required for complete monotonicity, and the proof would be complete.

If, on the other hand, c/>"(x) = °for all x > 0, then c/>(x) = cx for all x, where
c > 0, since c/>(o) = °and c/>'(x) > 0.

In this case, we have f(cx) = e- x, which can be written

1
where °< ex = -.

c

That is, the theorem has been established for all completely monotonic functions
over [0,00) except when f(x) = e- ax, ex > 0.

To prove it for this case, an ad hoc construction is available. Define

11 1+2e- X

c/>(x) = - - og---
ex 3

so that c/>(o) = °and f( c/>(x)) = 1e-x+t, which is completely monotonic over
[0, 00).

Now,

,,1,.') 1 2o/(x = ---
ex eX +2
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and, with y = eX, so that y ~ 1,

tj>"(x) =
1 2
lXy+4+(4/y)'

The denominator decreases for 1 ~ y ~ 2 (that is, 0 ~ x < log 2) and increases for
y > 2 (that is, x > log2), since its derivative with respect to y is 1-4y-2. Thus,
tj>"'(x) is not of constant sign for °< x < 00 and tj>'(x) cannot be convex, much less
completely monotonic on (0, (0).

The proof is now complete.

(2) A function completely monotonic in [0,(0), although necessarily analytic in
(0, (0), need not be analytic at the end-point x = 0, even ifall derivatives f(k)(O +)are
.finite,for k = 0,1,2, .... An example of such a function is

(9)

<0

f(x) = f e-X'da(t),

o

a(t) = 1-exp(-t1
/
2
).

The abscissa of convergence of this transform is x = 0 [11, Theorem 2Ad, p. 43].
Hence x = °is a singular point of f(x), from the Laplace-Stieltjes analogue [11,
Theorem 5b, p. 58] of the Pringsheim-Vivanti theorem for power series, since a{t) is
monotonic.

On the other hand, /(0+ ) exists, since oc(t) is bounded, from Bernstein's Theorem

A. To examine the derivatives at the origin, we write first

<0 <0

(_1)kj<kl(X) = f e-X'tkda(t) == f e-X'dcxk(t) ,

o 0

where

(10)

I ,fykdcx(y) = fk y k-l[CX(t)-cx(y)Jdy,

o 0

lX(t),

k = 1,2, ... ,

k = O.

Appealing again to Bernstein's Theorem A, since (_1)kj<kl(X) is completely
monotonic in (0, (0) for each k = 0,1,2, ... , we note that j<kl(O+) exists if and only
if lXk( (0) < 00. Here

t t ../1

lXk(t) = fykdlX(Y) = t fyk-O/2l exp (_yl/2)dy = f r2ke-'dr,

000

and so

k=0,1,2, ... ,

a finite value.
This establishes the assertion.
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The function f(x) can be expressed in terms of tabulated functions [5, 3.322 (2),
p. 307, 8.250 (1), p. 930]

f(x) = t(n/x)1/2[exp {1/(4x)}][1-<D(tx- 1/2)],

where <D(t) is the probability integral

t

o1>(t) = 27£ - 1/2 fexp ( - r2 )dr .

o

(3) For a function f(x) completely monotonic over [0, 00), the derivatives
f(n)(o +) can exist for n = 0, 1, ... , N -1, while f(N)(O +) fails to exist. We illustrate
this solely for the case when N = 1. In this instance, define

a( t) = 1- (1 + t) - 1 ,

a bounded increasing function, so that f(O +) exists and the function - f'(x) is
completely monotonic over (0, 00). But

00 00

- f'(x) = fe-X<t(1 +t)-2dt = f e-X<dp(t)

o 0

with f3(t) = 10g(1+t)+(1+t)-1, an unbounded function as t --+ 00, so that f'(O+)
does not exist.

In other words, f(x) is completely monotonic over [0, 00) while - f'(x) is
completely monotonic only over (0, 00).

Another, analytically simpler, example is obtained by making an obvious
modification of a function exhibited in [11, Example 7, p. 145] for a similar purpose.
Widder's modified example is arc sin e- X

• In our case, f(x) can again be found in
tables [5, 3.353 (3), p. 311]

00

f(x) = 1-xex f t- I e-'dt,

x

x > 0, f(O) = 1 .

6. On the superposition of compLeteLy and absoLuteLy monotonic functions

Here we provide something of an analogue to the Schoenberg result cited in §4.
There the outer function ranged over a family of functions while the inner function
remained fixed. The reverse is the case below.

THEOREM 5. If </>(f(x)) is completely monotonic over (0, oo)for allfunctions f(x)
which are completely monotonic over (0, 00), then </>(x) is absolutely monotonic over
(0, 00).

Proof First we show that </>(z) is an entire function, and then that its power
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series expansion has exclusively non-negative coefficients. This will prove the
theorem, in view of the uniqueness theorem for Laplace-Stieltjes transforms [11,
Theorem 6.3, p. 63].

The function c + pe - x is completely monotonic for p > 0, and any constant
c ~ 0, so that ¢(c+pe- X

) is also completely monotonic. Hence, ¢(c+pe- X
)

is analytic for gfx > °[11, p. 146]. But c + pe -x fills the punctured disk°< Iz - cl < p as x fills gfx > 0. Thus, ¢(z) is analytic throughout °< Iz - cl < p
for any positive p. Taking any two values of c, say c = °and c = 1, we see that ¢(z)
is entire, since p is arbitrary.

00

Now let ¢(z) = L akzk. By hypothesis
k=O

(11)
00

¢(e- X
) = L ake- kx

k=O

is completely monotonic, since e- X is. But (11) is the (unique) Laplace-Stieltjes
transform of masses {ak}o placed at k and so each ak ~ 0, k = 0, 1,2, ... , as
required.

REMARK 1. The converse of Theorem 5 also holds (cf. [11, Theorem 2b, p. 145J).

REMARK 2. Theorem 5 has the following special case.

COROLLARY 2. [f(x)]i., A ~ 0, cannot be completely monotonic for all completely
monotonic functions f(x) unless A = 0, 1, 2, ....

7. Remarks on Schoenberg's Theorems 8 and 9

These Schoenberg theorems deal solely with the properties of completely
monotonic functions, rather than the interplay between such functions and metric
spaces. Schoenberg's proofs utilize the interplay, but this is not necessary. Those
results can be verified in more or less the same spirit as the proofs of the theorems in
this paper. Where limits are taken, however, complications arise now, since this
requires interchange of limit and derivative (or evasion of this interchange). In results
on sequences, only the interchange of limit and finite sums arose.

One direction of Schoenberg's Theorem 8 [10, p. 833J is really contained in the
same direction of his Theorem 9 [10, p. 835]. (The converse direction of his
Theorems 8 and 9 can be established by Faa di Bruno's formula for the higher
derivatives of composite functions.) The Schoenberg result for which we otTer an
alternative proof follows.

THEOREM E. If exp {- A¢(t)} is completely monotonic over [0, 00 )for each A > 0,
where ¢(t) ~ 0, ¢(O) = ¢(O + ) = 0, then ¢'(t) is completely monotonic over (0, 00).

Proof Clearly, all derivatives of

¢(t) = -log exp {- ¢(t)}

exist over (0, 00). Moreover, ¢'(t) ~ 0, since e -x is a decreasing function of x and
exp { - ¢(t)} is non-increasing, being completely monotonic.
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Further, the hypothesis implies that, for n = 1,2, ... , and A> 0,

43

o~ (_1)ndnexp{ -A4>(t)} = (_1)n-1 d
n
-

1
[4>'(t) exp{ -A4>(t)}]

-...;;: Adtn dtn- 1 '
O<t<oo.

Hence, the function 4>'(t) exp { -A4>(t)} is completely monotonic for °< t < 00 and
A > 0. As the pointwise limit of completely monotonic functions, 4>'(t) is also
completely monotonic over (0, (0).

Alternatively, the proof may be concluded by applying Leibniz's rule [5, p. 19]
for the n-th derivative of a product. This implies that

where [ ...J, which can be given explicitly, approaches a finite value as A --+ °+. Thus,

I
, dn-l {4>'(t) exp ( - A4>(t))} = A,(n)( )
1m n 1 'f' t,

i, _ 0+ dt

Therefore,

O<t<00,n=I,2, ....

n = 1,2, ... , 0 < t < 00,

so that 4>'(t) is completely monotonic over (0, (0), as claimed.

The converse direction of Theorems 8 and 9 [10, pp. 833-835] can be
formulated as follows.

THEOREM E'. If 4>(t) is a continuous, non-negative function with 4>(0+) = °and
4>'(t) compLeteLy monotonic over (0, (0), then f( 4>(t)) is compLeteLy monotonic on
[0, (0) whenever f(t) is compLeteLy monotonic over [0, (0).

A proof can be achieved again by Leibniz's rule [5, p. 19J on writing

Details are omitted.

REMARK 1. The foregoing proofs are applicable to monotonicity of finite order,
unlike those in [10]. Assuming monotonicity of order N in the hypotheses would
lead to monotonicity of order N -1 in the conclusions. Moreover, this method of
proof permits the establishment of analogous theorems for absolute and regular
monotonicity.

REMARK 2. In Theorem E, the function e-''C may be replaced by any function
W(x) completely monotonic over [0, (0), provided that - W'(x) is completely
monotonic over [0, (0) as well, that is, provided that W'(O +) exists as a finite value.
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8. Some comments on monotonicity of.finite order

We have pointed out that various of the foregoing proofs hold for monotonicity
of finite order (those of Theorems 1 and 2 are among the exceptions). Typically,
monotonicity of order N in the hypotheses would imply monotonicity of order N - 1
in a number of the conclusions.

Here we present some miscellaneous results somewhat related to this.

THEOREM 6. If f(t) and g(t) are convex and non-negative, and if k ~ 1, then
{[f(t)Jk + [g(t)Jk}l/k is also convex.

Proof The function g(u, v) = (uk+ Vk)l/k is an increasing and convex function of
the vector (u, v), from the triangle inequality for the k-norm. Further, the
composition of an increasing convex function with a vector whose components are
both convex is clearly convex, directly from the definition, and so the theorem is
proved.

We shall make use of the following consequence.

COROLLARY 3. For k ~ 1, any convex combination of functions [f(t)Jk, where
each f(t) is convex and non-negative, is itself of the form [F(t)]k, where F(t) is convex.

This in turn yields the following result.

THEOREM 7. If f(t) is monotonic of order N, for N ~ 2, then [f(t)JI/(N-11 is
convex. In particuLar, if f(t) is monotonic of order 3, then [f(t)]1/2 is convex.

Proof For functions monotonic of order N, the extreme points are the
functions (1-ax)~-I, where, as usual, (t)+ = t when t ~ 0 and (t)+ = 0 when t < O.
This is shown in [12]. Each of these functions and (1 - ax) + are convex and so our
assertion follows from the foregoing corollary.

The special case specified will be of use in that part of the proof of the next
theorem which is given in detail.

THEOREM 8. If f(t) is monotonic of order N, and it > 1, then [f(t)]/ is aLso
monotonic of order N provided that N = 1, 2, 3, 4. The result is false for N = 5.

Proof The assertion is trivial when N = 1 and straightforward when N = 2.
We give the details for N = 3, but omit the far more complicated calculations for
N = 4. A counter-example establishes the assertion for N = 5.

First, let N = 3. Here

Our' assertion amounts to showing that this is non-positive. To do so, it will
clearly suffice to establish that

3ff'f" + (J.. - 2)(f')3 = f'[3ff" + (J.. - 2)(f')2] ~ 0,

since J.. > 1 and f'" < O. But f' ~ 0, making this the same as

3ff" + (J.. - 2)(f')2 ~ O.
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The left side increases with Aand so it is enough to consider the case when A = 1,
that is, to prove that 3ff" ~ (1')2. But, in fact, 2ff" ~ (1')2, since f 1/2 has been
shown to be convex by Theorem 7.

As mentioned, we do not provide the tedious calculations ~or the case when
N = 4.

An example shows that monotonicity of order 5 for f(t) does not imply
monotonicity of order 5 for [f(t)J)' for all A > 1: take

f(t) = 1+2(1-t)~ .

It can be shown that F(S)(O) > 0, where F(t) = [f(t)J3/2, thus establishing our claim.

Finally, we record the following without proof. It should be compared with
Corollary 2.

THEOREM 9. If f(t) is completely monotonic, and if A > 1, then [f(t)]). is
monotonic of order 5.
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