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ABSTRACT
“Compressed Sensing” and related L1-minimization methods
for reconstructing sparse magnetic resonance images (MRI)
acquired at sub-Nyquist rates have shown great potential for
dramatically reducing exam duration. Nonetheless, the non-
triviality of numerical implementation and computational in-
tensity of these reconstruction algorithms has thus far pre-
cluded their widespread use in clinical practice. In this work,
we propose a novel MRI reconstruction framework based on
homotopy continuation of the L0 semi-norm using redescend-
ing M-estimator functions. Following analysis of the contin-
uation scheme, the sparsity measure is extended to multiscale
form and a simple numerical solver that can achieve accurate
reconstructions in a matter of seconds on a standard desktop
computer is presented.

Index Terms— Magnetic Resonance Imaging, Sparse Re-
construction, L0-minimization, Homotopy

1. INTRODUCTION

The data-intensive nature of many contemporary MRI appli-
cations inherently prescribes a lengthening of scan duration
which can decrease patient comfort, increase the risk of phys-
iological artifacts within measurements, and reduce clinical
throughput. As many MR images are piecewise smooth and
thus naturally exhibit sparsity in the gradient domain, it is now
accepted that accurate reconstruction of the constituent image
structures can be achieved using only a small subset of their
Fourier or k-space measurement ensemble[1, 2].
Let Φ denote the Fourier undersampling operator aris-

ing from the MRI acquisition process such as a randomized
Cartesian or spiral trajectory. Ideally, one wishes to exactly
reconstruct a image, f , from only a small subset of Fourier
transform samples,Φf̂ . When f is noise-free and |supp(Φ)| >
2 · |supp(f)|, it can be recovered exactly by solving the fol-
lowing combinatorial optimization problem:

min
u
‖∇u‖0 s.t. Φû = Φf̂ . (1)

In the event Φf̂ is noisy, one can instead solve

min
u
‖∇u‖0 s.t. ‖Φû− Φf̂‖22 ≤ ε (2)

to obtain a reconstruction whose error is proportional to the
degree of contamination [3]. Similarly, (2) can be used to
estimate an image that is only approximately sparse. In prac-
tice, L0-minimization is NP-hard and thus computationally
intractable except for very small problems. Recently, Candès
et al. [1] and Donoho [2] have shown in their groundbreaking
work that, at the expense of mild oversampling, exact recon-
struction can still be achieved with overwhellming probability
by solving the L1 analog of both (1) and (2) as the L1-norm is
the closest convex approximation of the L0 semi-norm albeit
a weaker and indirect measure of signal sparsity.
One of the greatest areas of success for “Compressed Sens-

ing” has been in medical imaging, particularly MRI. Quality
reconstructions of clinical MR images with up to 80% under-
sampling have been demonstrated using this theory [4] and
related L1-minimization techniques [5, 6]. Unfortunately, the
computational burden associated with solving the L1 prob-
lems limits their clinical practicality - reconstruction of a sin-
gle 256× 256 image can take several minutes using state-of-
the-art Interior Point methods [7, 1, 8] and up to several hours
using conventional descent approaches [9]. Resultantly, the
extension to 3D or real-time imaging applications with such
techniques is clinically impractical.

2. METHODS

2.1. Robust Error Norms and L0-Continuation

Let the zero semi-norm of a signal, u, be defined as follows:

‖u‖0 =
∑
Ω

1 (|u| > 0) , (3)

where Ω is the image domain and 1 is the indicator function.
Suppose there exists a continuous function, ρ, that is homo-
topic with 1 such that

lim
σ→0

ρ (u, σ) = 1 (|u| > 0) , (4)

where σ is the deformation variable. While both (1) and (2)
are non-convex and thus any non-exhaustive search cannot
guarantee achievement of a global minima, if ρ is at least
quasiconvex then these problems can be practically addressed
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(a)

Fig. 1. A visual comparison of P-norms vs robust error norms.

with a basic continuation scheme similar to that in [10] used
to address the discontinuity of the L1-norm at the origin.
Consider the class of robust error functions known as re-

descending M-estimators [11] which includes the Gauss and
Tukey Biweight error functions, given by

ρ(u, σ) = 1− e−
u2

2σ2
(5)

and

ρ(u, σ) =

{
3u2

σ2 − 3u4

σ4 + u6

σ6 , |u| ≤ σ
1, |u| > σ

, (6)

respectively (see Figure 1). Not only are these functions con-
tinuous when σ > 0 but they readily satisfy (4). We point to
the success of applying non-convexpriors, and specifically re-
descendingM-estimators, to image processing problems such
as denoising [12, 13] and deconvolution [14]. To our knowl-
edge, this is the first application of this class of priors as well
as addition of the continuation scheme to the “compressed
sensing” image reconstruction problem. We do note that the
p < 1 semi-norm [9] has been addressed in this context and
seemingly might be an intuitive choice for ρ; however, this
functional is not continuous and thus would require interme-
diary continuation, limiting its practicality within our pro-
posed approach.

2.2. Multiscale Image Sparsity

Consider the Markovian analog of the L0 variational semi-
norm discussed in Section 2.1. Letting N = dim{Ω} and
uxn

be the partial derivative of u along the n-th dimension,

{1 (|∇u| > 0) = 1} ⇐⇒ {∃n ∈ [1, N ] | |uxn
| > 0} . (7)

Subsequently, a newmeasure of image gradient sparsity which
penalizes the non-zero partial components of the gradient can

(a)

Fig. 2. For a given pixel of interest (blue), gradient estima-
tion is typically performed using the immediate local neigh-
bors (red). In applications such as the bilateral filter, non-
immediate neighbors (green) are also assessed.

be defined by

‖∇u‖0∗ =
∑
Ω

N∑
n=1

1 (|uxn
| > 0) . (8)

While we note that (8) is not rotationally invariant, this for-
mulation allows a trivial extension to multiscale form.
Let η be the set of all immediate neighbors of a point

x ∈ Ω. Discretization of uxn
via finite differences and in-

corporation of (4) yields

‖∇u‖0∗ = lim
σ→0

∑
x∈Ω

∑
n∈η

ρ (u (x + ξn)− u (x) , σ) , (9)

where the vector ξn = n−x. The generalization to multiscale
form can be achieved by simply extending the neighborhood,
η, over which finite differences are computed (see Figure 2).
Neighbor spatial proximity can also be incorporated into (9)
via an auxiliary influence function, φ, to yield

‖∇u‖0∗ = lim
σ→0

∑
x∈Ω

∑
n∈η

ρ (u (x + ξn)− u (x) , σ)φ (|ξn|, κ) ;

(10)
in practice, φ is usually defined as a Gaussian function with
scale κ.

2.3. Practical Numerical Considerations

For a fixed σ,∑
n∈η

ψ (u (x + ξn)− u (x) , σ)φ (|ξn|, κ) = 0, ∀x ∈ Ω

(11)
yields a minima of (10), where ψ = ρ′. Letting g(x) =
ψ(x)/x, (11) resorts to a stable homogeneous operator form
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Fig. 3. Example: (a) standard MRI resolution phantom , (b) simulated K-space trajectory (radial, 78% undersampling), (c)
minimum-energy reconstruction, (d) proposed reconstruction , and (e) reconstruction error (amplified 10x, RMS = 1.14e-4).

and u can be solved for via nonlinear Jacobi or Fixed-Point
iteration to yield

ut+1(x) =
�

n∈η
g(ut(x+ξn)−ut(x),σ)φ(|ξn|,κ)ut(x+ξn)
�

n∈η
g(ut(x+ξn)−ut(x),σ)φ(|ξn|,κ) .

(12)

which can be interpreted as a zero-order or Nadaraya-Watson
type kernel regression estimator, or more familiarly as a bi-
lateral filter [15, 16, 17]. Conveniently, several fast imple-
mentations of the bilateral filter have recently been proposed
including a separable approximation [18] which practically
extends to higher-dimensional data.
As MRI data is inherently complex, gradient sparsity can

be addressed in several different manners. We simply fol-
low the approach described in [5] where sparsity is assessed
in the real and imaginary channels independently such as is
common for many denoising applications. Additionally, note
that the constraints in (1) and (2) can both be enforced via
projection of the Fourier measurements on Φ to lie inside the

L2 error ball, namely

Φv̂t =

{
Φv̂t, E(v̂t) ≤ ε

Φ ·
[
f̂ +

√
ε v̂t−f̂

‖Φv̂t−Φf̂‖2

]
, E(v̂t) > ε

, (13)

where E(v̂t) = ‖Φv̂t − Φf̂‖22; for (1), ε = 0. Given (12) and
(13), complexmultiscale L0-minimization can be achieved by
the following iterative algorithm:

Let û0 = Φf̂ ; σ >> 0
(1) �vt+1 = BilateralFilter[�ut; σ]
(2) �vt+1 = BilateralFilter[�ut; σ]
(3) Project vt+1 into the L2-error ball
(4) if ‖vt+1 − ut‖2 < tol, σ = σ × β; else ut+1 = vt+1; go
to Step 1

In the above algorithm, � and � denotes the real and imagi-
nary operators, respectively, tol is an error tolerance threshold
and β ∈ (0, 1) controls the reduction rate of σ in the contin-
uation procedure. The number of iterations can be specified
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Fig. 4. Example: Sagittal view of T2-weighted MRI of the brain (a), simulated K-space trajectory (Cartesian radial, 77%
undersampling), minimum-energy reconstruction (c), proposed reconstruction (d), reconstruction error (amplified 10x, RMS =
9.91e-4).

a priori or an intelligent termination scheme may be used; at
this preliminary stage, we have simply fixed the number of
iterations in advance. We also note that, during the numerical
continuation process, σ = 0 is never truly reached; however,
the ability to get arbitrarily close to this state is conjectured to
have no discernable difference in practice.

3. EXAMPLES

For both presented examples, tol = 1e− 4, β = 0.5, σ|t=0 =
2 ·max(|u0|), ε = 1e− 4, iter = 80. A C++ implementation
of the algorithm in Section 2.3 with the FFTW library and
Intel compiler (v9.1) was used and seperable bilateral filters
were employed as defined in [18]. Additionally, all images
were normalized to unity prior to computation. On a single-
processor 3.4 GHz Pentium IV machine, the reconstruction
runs at roughly 80ms/iteration, yielding a total execution time
of 7s; additionally, when a 16-node parallel cluster dedicated
for real-time MRI processing is used, sub-second reconstruc-

tions were obtained.
Figure 3 shows the reconstruction of a 256×256 standard

resolution phantom after 78% undersampling using a simu-
lated random phase encoding K-space trajectory - encoding
lines were chosen from a Gaussian random distribution. Us-
ing a simple region of interest (ROI) placed in the image back-
ground, ε was estimated to be rougly 0.005. While the min-
imum energy reconstruction obtained by zero-filling clearly
has aliasing artifacts, note that our reconstruction has com-
pletely removed these components and at no loss of morpho-
logical detail. In particular, note the crisp recovery of the
comb object and General Electric logo in Figure 3d. Addi-
tionally, the root mean square (RMS) error between the fully
sampled and reconstructed image was only 1.14e-4 per pixel,
indicating a very accurate recovery.
Figure 4 shows the reconstruction of a 256× 256 sagittal

view of a T2-weightedMRI of the brain after 77% undersam-
pling using a simulated Cartesian radial K-space trajectory.
For this example, ε = 0.02. While the reconstructed image
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in Figure 4d exhibits a loss of texture from the original fully
sampled image in Figure 4a, note the suppression of aliasing
artifacts in areas such as the spinal canal and occipital lobe.
For the example in Figure 4, the RMS error of the reconstruc-
tion was only 9.91e-4 per pixel.

4. SUMMARY

In this work, we have presented a novel approach to the L0-
minimization problem and shown its applicability to sparse
MRI reconstruction from highly-undersampled Fourier mea-
surements. As the proposed technique not only directly at-
tacks the L0 semi-norm problem but also incorporates mul-
tiscale information, we are able to achieve rapid image re-
constructions with minimal implementation overhead, espe-
cially compared to many of the contemporary L1-norm based
method found in practice. Consequently, we hope the pre-
sented method will bring sparse MRI reconstruction one step
closer to clinical practicality, especially when considering the
drive towards 3D and dynamic imaging.
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