
Sensor Network Localization Using Least
Squares Kernel Regression

Anthony Kuh1, Chaopin Zhu1, and Danilo Mandic2

1 University of Hawaii
2 Imperial College London

Abstract. This paper considers the sensor network localization prob-
lem using signal strength. Unlike range-based methods signal strength
information is stored in a kernel matrix. Least squares regression meth-
ods are then used to get an estimate of the location of unknown sensors.
Locations are represented as complex numbers with the estimate func-
tion consisting of a linear weighted sum of kernel entries. The regression
estimates have similar performance to previous localization methods us-
ing kernel classification methods, but at reduced complexity. Simulations
are conducted to test the performance of the least squares kernel regres-
sion algorithm. Finally, the paper discusses on-line implementations of
the algorithm, methods to improve the performance of the regression al-
gorithm, and using kernels to extract other information from distributed
sensor networks.

1 Introduction

Information gathering is relying more on distributed communication and distrib-
uted networking systems. Ad hoc sensor networks are being deployed in a variety
of applications from environmental sensing to security and intrusion detection to
medical monitoring [1]. These sensor networks are becoming increasingly more
complex with sensors responsible for different tasks. We will consider a sensor
network consisting of two different types of sensors: base sensors where the lo-
cations are known (the base sensors could have GPS) and simple sensors called
motes where the locations of the motes are unknown. Assuming all sensors are ca-
pable of transmitting information via signal strength we use kernel least squares
regression methods to estimate the location of the motes. The kernel regression
method performs similarly to kernel classification methods [9] at much reduced
complexity. We also discuss an on-line implementation of the algorithm to per-
form tracking of mobile sensors and ways of extracting other information from
sensors using kernel regression methods.

When signal strength is available a common method to perform sensor local-
ization is using ranging information as discussed in [2,6]. Range-based methods
commonly use a two step approach when performing localization: first signal
distance is estimated between pairs of devices from signal strength and then a
localization algorithm is used based on these estimated distances. In wireless
radio in ideal space, the signal attenuation s satisfies,
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s ∝ Pd−η, (1)

where d is the distance between transmitter and receiver η > 2 is a constant
and P is the transmitting power [13]. Because of rich scattering in the real
world, the received signal strength is quite noisy. This makes it more difficult
for range-based methods such as [2,6] to get accurate readings of the distance
between different devices. Statistical methods such as Maximum Likelihood Es-
timation (MLE) [10], EM algorithm [12], and Bayesian networks [3] were used
to alleviate the scattering effect. These methods usually have high computing
complexity.

We use an alternative approach first established in [9] where signal strength
information is stored in a kernel matrix. In [9,16] a classification problem is solved
to determine whether a sensor lies in a given region A or not. The classification
problem uses training data from base sensors (whose location is known) to learn
the parameters α(i) and threshold value b given by the following equation

f(x) = sgn(
l∑

i=1

α(i)yiK(x, xi) + b) (2)

where f(x) is the decision function to determine whether x ∈ A or not and xi

are input locations and yi = 1 if xi ∈ A otherwise yi = −1. In [9] the classifi-
cation problem is solved using the Support Vector Machine (SVM) (with hinge
loss function) [8,15]. In [16] the classification problem is solved using the Least
Squares SVM (LS-SVM) (with quadratic loss function with equality constraints)
[14,7]. Fine localization is achieved by performing the classification problem sev-
eral times with different overlapping regions. A mote’s location is estimated from
the average of the centroids of each region it belongs to.

This method gives reasonably accurate estimates of locations of motes, but is
computationally expensive as the classification problem must be solved for each
region considered. This paper estimate locations of motes using one complex
least squares kernel regression problem. Sensors are located on a two-dimensional
grid with their location represented by a complex number. The parameters
α(i) are also complex and the kernels are real. The regression method saves
computational costs while giving similar performance to the fine localization
algorithm.

The paper is organized as follows. In Section 2 we discuss the ad hoc sensor
network model. Section 3 gives a discussion of the least squares kernel regression
algorithm, an on-line recursive version of the algorithm, and how signal strength
is incorporated into the kernels. Section 4 simulates a sensor network model
where sensors are randomly place on a two-dimensional grid. Finally, Section 5
discusses extensions of this work including and on-line implementation of the al-
gorithm so mobile sensors can be tracked, improvements to the kernel regression
algorithm, and references to how kernel regression methods are used to extract
other sensor information. We also discuss learning in a distributed environment
subject to communication and power constraints.
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2 Sensor Network Model

Assume that an ad hoc network of size N is deployed in a two-dimensional
geographical area T . An integer from 1 to N represents each node (sensor) as
its ID. Denote the set of all nodes in the network by N = (1, · · · , N). The
location of node i ∈ N is denoted by xi. Assume that the first m nodes are base
sensors. These nodes have more computational capabilities than other nodes and
their location is known (i.e. xi, 1 ≤ i ≤ M are known) as these nodes may be
positioned or the nodes may have GPS. A goal is to determine the location of
the other N − M nodes called motes (i.e. estimate xM+1, · · · , xN ).

Each node is capable of transmitting signal strength to each of the other
nodes. As mentioned in the previous section signal strength is often related to
distance by equation (1). The signal strength is also contaminated by additive
noise and may be affected by terrain conditions. For this paper we assume the
same signal strength model as [9,16] given by

s(xi, xj) = exp{−‖xi − xj‖2

Σ
+ V } (3)

where V is a zero mean Gaussian random variable with standard deviation τ .
The information about all signal strengths is stored in a kernel matrix K.

Kernel entries are a function of signal strength and are constructed so that K is
symmetric and positive semi-definite.

3 Least Squares Subspace Kernel Regression Algorithm

This algorithm is described in more detail in [7]. We describe the basic algorithm
followed by a discussion of implementing a recursive on-line version of the al-
gorithm. This section concludes by discussing the kernel regression localization
algorithm.

3.1 Least Squares Kernel Subspace Algorithm

We are given m training examples or observations drawn from input X ∈ Rn

and output Y ∈ R. The observations at each time (xi, yi), 1 ≤ i ≤ m are
independent and can be represented compactly as (x,y) where x = [x1| . . . |xm]
and y = [y1, . . . , ym]T . The inputs are transformed from input space to feature
space via kernel functions φ(x) that map inputs from Rn to feature space Rd.
Let Φ(x) = [φ(x1)| . . . |φ(xm)]. The estimate is given by Ŷ (x) = wT φ(x) + 1b
where w ∈ Rd is the weight vector, 1 is an m vector of 1s, and b is the scalar
threshold value.

The weight vector can be expressed as a linear combination of each of the
feature vectors. For the standard LS-SVM, [14] the weight vector depends on all
training feature vectors. This can be expressed as w = Φ(x)α where α is an m
vector. Each of the training examples xi associated with a nonzero α(i) is called
a support vector. For the standard SVM only a fraction of the training examples
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are support vectors as an ε - insensitive cost function is used that removes train-
ing inputs as support vectors that are close to the zero error solution. For the
LS-SVM an external procedure needs to be established to reduce the number
of training examples. Methods to intelligently choose training examples are dis-
cussed briefly in the next subsection with more detail in [7]. Here we assume that
the subset is chosen and we will denote it by xS which is a matrix containing
l ≤ m columns from x. Denote the intelligent feature vectors by Φ(xS).

The optimization problem is a quadratic programming problem with equality
constraints and is shown below:

min J(w, b) = min
w,b

1
2
||w||2 +

γ

2
||e||2 (4)

subject to
e = y − Φ(x)w − 1b. (5)

and
w = Φ(xS)α (6)

where now α is an l vector describing the weighting of the training feature
vectors. Defining KSS = ΦT (xS)Φ(xS) and KS = ΦT (xS)Φ(x) and substituting
equation (5,6) into (4) we have that

min Q(α, b) = min
1
2
αT KSSα +

γ

2
||Y − KS

T α − 1b||2. (7)

This problem is optimized by finding the solution to the following set of linear
equations.

[
l 1

¯
T KS

T

KS1 KSS/γ + KSKS
T

] [
b
α

]
=

[
1T Y
KSY

]
. (8)

Assuming A = KSS/γ + KSKS
T is invertible, then by elimination we get that

b =
1T Y − 1T KS

T A−1KSY

l − 1T KS
T A−1KS1

(9)

and
α = A−1KS(Y − 1b) (10)

3.2 Recursive Kernel Subspace Least Squares Algorithm

Here we discuss a recursive on-line procedure for updating the algorithm pre-
sented in the last subsection. At each update we update the estimate using
a windowed recursive least squares algorithm. The basic algorithm can be de-
scribed as follows:

1. Train parameters on initial set of data using batch or online methods.
2. Get new training data and add to information set.
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3. If new data satisfies specified criteria add as a support vector.
4. Selectively prune support vectors.
5. Selectively prune information data.
6. If there is more data go to 2.

Here we consider a fixed window size where If we decide to add a support vec-
tor from training data we must also delete a support vector. A simple criteria
is used to add and delete support vectors. To add a support vector, the new
feature data is tested to see if it can reduce the training error data. The vector
is added as a support vector when the training error can be reduced by a pre-
scribed amount. This can be implemented as follows: evaluate the kernel vector
between the newest data point and all other lW data points. Compare to the
training error vector e. We normalize each of the vectors to having magnitude
one and compute the inner product between the two vector which is the same
as computing the cosine of the angle between the two vectors. If the magnitude
of the inner products is above a specified threshold value, then the new training
data is added as a support vector. This criteria is also used in [4]. During the
deletion process we delete the support vector that makes the least contribution
to the weight vector.

3.3 Kernel Localization Algorithm

In order to implement the algorithms described in the previous subsections we
need to form a kernel matrix from signal strength information. Signal strength
information is not symmetric due to additive noise and other impairments. In
[9] several different kernel functions are formed. Here we use the following kernel
function described by

K(xi, xj) = exp{−
∑M

t=1(s(xi, xt) − s(xj , xt))2

2σ2 } (11)

Here the targets Y are complex numbers representing the locations of the base
sensors. We pick the base sensor locations i1, . . . il that we want as support
vectors and then use equation (8) to solve for α and b which are complex valued.
We then can estimate the location of mote j by using the following estimate

f(xj) =
l∑

n=1

α(in)K(xj , xin) + b, M + 1 ≤ j ≤ N. (12)

There is considerable savings by using the complex kernel regression algorithm as
only one regression algorithm is performed to get estimates of the mote locations
as opposed to the many kernel classification algorithms necessary to get fine
localization in [9,16].

4 Simulations

Several simulations were conducted to test the performance of the kernel regres-
sion localization algorithm. Sensors were placed on a 10 by 10 grid. There were
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M = k2 base sensors placed on a grid and then the locations were perturbed
by additive Gaussian noise. There were 400 motes placed randomly on the grid.
Signal strength had additive noise with deviation τ = 0.2. The subspace algo-
rithm was used with l = 3k support vectors. The algorithm worked well with the
regularization parameter set at γ = 60 and the width of the Gaussian kernels
was set at σ = 2.7. Fig. 1 shows how the mean localization error varies as the
number of base sensors increases and Σ is varied. Simulations were conducted
100 times for each setting with average curves and standard deviations shown.
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Fig. 1. Mean localization error versus number of base sensors

The plots show that the localization estimation error goes down as the number
of base sensors increases. The results are similar to the results for fine localization
shown in [9,16]. When Σ = 3, 5 signal strength decreases rapidly as distance and
the error rate remains roughly constant at a little below .5 when more than 100
base sensors are used.

5 Discussion and Extensions

This paper shows that sensor localization can be successfully performed using
a least squares kernel subspace regression algorithm. This algorithm has good
performance and has computational savings over kernel classification algorithms.
There are several further directions to this work.

The sensor localization error is dependent on the number of base sensors. If
there are too few base sensors the localization error will be high. In real sensor
applications the number of base sensor may be limited. Additional information
needs to be considered for the sensor localization algorithm. Note that signal
strength information is not used between base sensors and motes in determin-
ing the regression estimates. If this information could be incorporated into the
kernels this could improve estimation error. In practical applications the exact
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location of motes may not be known, but the location may be modelled by a
random distribution. This knowledge could be combined with signal strength
information to get more accurate estimates of location using kernel methods.

Another consideration are power and communication constraints placed on
sensors. If there are constraints on transmission of signal strength information
how does this affect localization estimation. If signal strength is weak only nearby
base sensors may receive the signal strength. Can good estimation procedures
be established when sensors have power and communication constraints.

In Section 3.2 we discussed a recursive on-line least squares kernel subspace
algorithm. The kernel localization algorithm can be modified to perform tracking
capabilities when sensors are mobile. This is discussed in more detail in [17].

Finally, other information can be gathered from sensors networks using kernel
regression algorithms. In [5,11] distributed kernel regression algorithms are used
to approximate sensor information such as temperature information. Distributed
kernel learning algorithms are proposed to learn this information. Distributed
learning could also be applied to develop computationally efficient learning al-
gorithms for sensor localization.
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