where the symbol N denotes an AND operation and the symbol
+ denotes a multiplieation operation.

(9) The result of an OR operation with any number of Boolean
variables is the same as the (arithmetic) addition of the x, ¥, 2
integer variables after the following test is made:

(a) If the sum is equal to zero, the result is correct;

(b) If the sum is larger than zero, the answer is a 1; i.c.
z4+y+z=4UBUC fe+y+2=0 -
c+y+e=1 f@+y+zzl

where the symbol U denotes an OR operation and the symbol
-+ denotes an addition operation. ’

(3) The result of a NOT operation with a Boolean variable is
the same as subtracting an integer variable « from 1;i.e.

A=(1—2 @

because if A = 2 = 1,then 4 = 1 — 1 = 0;and if A = x = 0,
then 4 = 1 — 0 = 1.

The Forrran program in Figure 1 illustrates the method pre-
sented. It simulates the logic of a full-adder as described by the
following two Boolean functions:

L = KK» + KiK; + K:K; @)
M = LK, + K + K3) + K,K:K, (5)

i

where K, K» and K; are the two input bits and previous carry
to he added, L is the output carry, and M is the output sum.
Integer variables were chosen for compatibility with the Forrran
language.

< EXAMPLE OF BOOLEAN SIMULATION
C SIMULATION OF A FULL-ADDER
DIMENSTON K(3)
C INITIALIZE THE [NPUT TRUTH TABLE TO ZERQ
DO 10 I=1,3
10 K{l})=0
8 DERIVE THE TRUTH TABLE FOR THE SUM M, AND THE CARRY (.
D110 1=1,48

L= KOLP#KE2D4R1L) oK 3} +K(2) #K(3)
TF{L) 20,30,20

20 L = 1

30 LT=K(1)+K{2)+K(3)
TFLLT) 40,50440

40 LT=1

S0 M o= {(L1-L)®tT + K{Ll)#K(2)wK (3}
[F{M) 60,70460

60 M =]

TO PRINT T5,K(3),K(2),K(1)yMyL

C GENERATE THE NEXT [NPUT COMBINATION

KI3)=K{L)wK{2) o {1~K{3))} + (L-R{1)*K(2)}nK({3)
TE(K(31) 80,90,80

80 K(3})=1

90 K(2) =K{1)e(1=K(2)) + {1-K{L1})»K(2)

IFIK(2}) 1004110,100

100 K(2)=1

110 K(L)={1-K(1})

T5 FORMAT{LOX.I3,13,13,4X,13,13)
PAUSE
END

Fia. 1

The AND and NOT operations are transformed to multiplica-
tion and subtraction operations as described in (1) and (3). The
OR operation needs a control IF statement after the arithmetic
addition is performed in order to restore the value of the variable
to unity. This may be simplified by using & Function subprogram
to caleulate the result of the OR operation, thus eliminating the
need for repetition of the IF statements. It was not done in this
example because of the limitation of the ForrraN compiler in the
1620 Model 1 computer where this program was checked out, and
where the use of subprograms is not permitted.
M. Morris Maxo
California State College at Los Angeles
Los Angeles, California

Receivep Fesruary, 1064

40

Communications of the ACM

FURTHER REMARKS ON
TRUNCATION ERRORS

Recently Jack M. Wolfe (1] proposed the use of Caseadeﬁi5
accumulators to evaluate a sum of the form 8 = oy
when N is large and all the y’s are of roughly the same order o7
magnitude. His intention was to alleviate the accumulation of
rounding or truncation errors which otherwise occurs wWhen § i
evaluated in the straightforward way illustrated by the f()HoWing
ForTRAN program.

REDUCING

1 8 =00

2 DO4I=1,N
3 YI=-..

4 8 =8+ YI
5

The rounding or truncation in statement 4 could contribute to 5
loss of almost logy N significant decimals in 8. This would be

important in those cases where the values of YI computed i .

statement 3 were correct to nearly full machine precision; other.
wise the uncertainty in the YT's would swamp any additions] |

error introduced in statement 4.

Of course, the simplest and fastest way to prevent such figure. |
loss is to accumulate 8 to double-precision. For example, in a
Forrran IV program it would suffice to precede statement 1

above by the TYPE statement DOUBLE PRECISION §.
The convenient aceessibility of double-precision in many Fortrax
and some ALGoL compilers indicates that double-precision will
soon be universally acceptable as a substitute for ingenuity in
the solution of numerical problems.

In the meantime, programmers without easy access to double-
precision arithmetic may be able to simulate it in the program
above by a method far simpler than Wolfe’s, provided they are
using one of the electronic computers which normalize floating
point sums before rounding or truncating them. Among such
machines are, for example, the 1.B.M. 704, 709, 7090, 70094, 7040,
7044 and 360 (short word arithmetic).

The trick to be described below does not work on machines
such as the L.B.M. 650, 1620, Univac 1107 and the Control Data
3600 which round or truncate floating-point sums to single pre-
cision before normalizing them.

In the following program S2 is an estimate of the error causel
when S = T was last rounded or truncated, and is usech in state-
ment 13 to compensate for that error. The parentheses in state-
ment 23 must not be omitted; they cause the difference (8~T)
to be evaluated first and hence, in most cases, without error be-
cause the difference is normalized before it is rounded or truncated.

1 8=0.0
$2 = 0.0

2 DO41=1,N

3 YI = ...

13 82 = 82 + YI

Jntil double-precision arithmetic was made a standard feature
of the Forrran language, the author and his students used this
trick on a 7090 in Forrran II programs to perform quadrature.
solve differential equations and sum infinite series.

REFERENCE:

1. Worrg, J. M. Reducing truncation errors by programming
Coman. ACM 7 (June 1964), 355-355.
W. Kanan
Unaversity of Toronto

Recervep JuLy, 1964 Toronto, Ontario, ('anada

(Pracniques are continued apn page 48)

Volume 8 Number 1 / January, 1965

