
where the symbol n denotes an AND operation and the symbol
* denotes a multiplication operation.

(2) The result of an OR operation with any number of Boolean
v>triables is the same !LS the (arithmetic:) rtddition of the x, y, z
integer variables after the following test is made:

(1;) If the sum is equal to zero, the result is correet;
(b) If the sum is larger than zero, the answer is a 1; i.e.

x+y+z=AUBUC

x+y+z=

if X+ y + Z = 0

if (x + y + z) ~ 1
(2)

wlwre the symbol U denotes an OR operation and the symbol
+ denotes an addition operation.

(:J) The result of fl NOT operation with a Booloan variable is
the stune as subtraeting an integer variable x from 1; i.e.

A= (1 x) (:1)

bc(:ause if A = x = 1, then A = 1 = 0; find if A = x = 0,
then !l = 1 0 = 1.

1'he Fo~t"t'rtAN program in Figure 1 illustrates the method pre
sented. It simulates the logic of a full-adder as described by the
following two Bool!Jfln functions:

ICK2 + KtK 3 + K2Ka

L(I(, + Kz + fc.) + K 1K2K3

(4)

(5)

where K1 , K2 and Ka are the two input bits and previous carry
to be added, L is the output carry, and M is the output sum.
Integer Vltriables were dwscn for eornpatibility with the .FoRTRAN
l:mgnage.

10
t

20
30

'•0
'iO

60
70

RO
qo

100
110

'75

EXAMPLE OF ~OOLtAN ~IMULftTION
SIMULATION OF A FULL-ADDER
lll"ENSllJ~ Kl31
IN! TIAL!H HiE INPUT TRUTH TIIBLE TO lERO
on 1 o 1 ::! 1 ~ .~
K II I "0
lltf\!Vl: !Ht TfHJHl TAllLE FOR THE SUM M, AN() THE CARRY L,
lHl 110 I::: 1, d
1 .. "Kl1l•KU)tKill•KI3)tK12l•KI31
IfiLl 20,10,20
L " 1
I.I"Kil)tKI2JtK1'3)
IttLfl 't0t50t40
Ll" [
~." ll-Ll•Ll t Klll•KI21•KI3)
IFI~.) 60,70,60
~. " I
P!{lNT ·rs,K(3),K(2) ,K(ll ,M,L
GENERATE THE NEXT INPUT COMDINATION
KIJI"Kili•KI21•1l-K13ll t ll-KI1l•KI2ll•KIIJ
IFIK1311 80,90,80
K13)•l
K121 •Kill•ll-KI2)) t ll-Killl•KIZI
IFIK121) 100,110,100
Ki21=l
Klll•ll-Killl
FORMAT I l OK, 13, 13, I 3, 4X, I J, I J I
PAUSE
END

J<'IG. 1

The AND and NOT operations are transformed to multiplica
tion aud subtraction operations as described in (1) and (3). The
OR operation needs a control IF statement. afte1· the arithmetic
addition is performed in order to restore the value of the variable
to unity. This may be simplified by using u Function subpmgmm
to calculate the result of the OR opcrat,ion, t.lms eliminating the
need for repetition of the IF statements. It was not done in this
example because of the limitation of the l''ott'l'UAN compiler in the
Hi20 Model 1 computer where this program was checked out, and
where the use of subprograms is not permitted.

Hgcr-;rvico FlJBRUARY, HJG4

M. MoRRIS MANO
California State College at Los Angeles
Los .Angeles, Cal·ijornia

40 Communications of the ACM

FURTHER REMARKS ON
TRUNCATION ERRORS

REDUCING

Recently Jack J\i[. Wolfe [1] proposed the use of <:ascaded
accumulators to evaluate a sum of the form S = 2::>~1 y,
when N is large and all the y's are of roughly the sarne order o[

magnitude. His intention was to alleviate the accumulation of
rounding or truncation errors which otherwise occurs when Sis
evaluated in the straightforward way illustrated by the following
:FOI\TRAN program. ,

1 s = 0·0
2 DO 4 I= 1, N

YI = · .. 3
4 S = S + YI
5

The rounding or truncation in statement '1 could contribute to a
loss of almost log10 N significant decimflls in S. This would be
important in those cases where the values of YI computed in
statement 3 were correct to nearly full machine precision; other.
wise the uncertainty in the YI's would swamp any additional
error introduced in statement 4.

Of course, the simplest and fastest way to prevent such figur€·
loss is to aceumulate S to double-precision. For example, irt a
FOI\'l'£\AN IV program it would suffice to precede sta ternent 1
above by the TYPE statement DOUBLE PRECISION S ·
The convenient accessibility of double-precision in many FottTHAX

and some ALGOL compilers indicates that double-pree is ion will
soon be universally acceptable as a substitute for ingenuity in
the solution of numerical problems.

In the meantime, programmers without mtsy access to double.
precision arithmetic may be able to simulate it in the program
above by a method far simpler than Wolfe's, provided they ftre
using one of the electronic computers which normalize floating.
point ;,ums before rounding or truncating them. Among such
machines are, for example, the I.B.lV£. 704, 709, 7090, 7094, 70,\il,
7044 and auo (short. word arithmetic).

The trick to be described below does not work on rnaehines
such tts the I.B.M. (i50, 1620, Univac ll07 and the Contr·ol Dat:l
3600 which round or truncate floating-point sums to single pre·
cision before normalizing them.

In the following program S2 is an estimate of the error eau,;cd
when S Twas last rounded or truncated, and is used in state,
ment 13 to compensate for that error. The parentheses in st.ate·
ment 28 must not be omitted; they cause the differenee (S- T)
to be evaluated first and hence, in most cases, without, error be·
cause the difference is normalized before it is rounded or tnmca.ted.

s = 0.0
S2 = 0.0

2 DO 4 I= 1, N
3 YI = ...

13 S2 = S2 + YI
T = S + S2

23 S2 = (S-'1') + S2
4 S = T
5

Until double-precision arithmetic was made a standard feature
of the FmnHAN l:111guage, the author and his students: used this
trick on a 7000 in Fon'I'RAN II programs to perforrn quttdraturc,
solve differentinl equations and sum infinite serie>.

H.l<Wl:RENCE:
1. WoL~'E, J. !VI. Reducing truncation errors by prog1·amming.

Comm. "1CM 7 (June 1064), 355-~35~i.

W. KAHAN
University of Toronto

R~;CElVED JULY, 10(i1 Toronto, Ontario, Canada

(Pmcniques are continued on]Jage 48)

Volume 3 Number· 1 /January, 1965

