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Abstract

This dissertation discusses log-penalized linear regression, given by

blog penalty — argmbin ||y - )(bH2 + A Zln(|b]| + 6)
J

and compares it against the more common methods known as ridge and the lasso

whose respective forms are

Brigge = argmin [y — Xb[[? + A 31
J

B = arg min [ly = XbJ + A 3 Iy
j
In the above minimizations, A is a complexity parameter. The log penalty form has
an additional precision parameter §. The log penalty yields sparser solutions than
the lasso, making it particularly appropriate for overcomplete problems, is tractably
solved for large numbers of predictors, and has a nice motivation via the minimum
description length principle and the concept of asymptotic optimality. Somewhat
surprisingly, the ridge and lasso penalties can be reformulated using these principles
so that they too can be seen to have log-like penalties, leading to the conjecture
that in some sense “all penalties are log penalties”. Experiments with the log penalty
indicate that it performs better than either ridge or the lasso when the true underlying

parameter vector is sparse.
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Chapter 1
Introduction

Regularization penalties are often employed in linear regression as a remedy for the
problem of overfitting associated with the ordinary least squares method. Two very
common forms of penalized linear regression are ridge and the lasso, which use the [?

and ' penalties respectively, and whose minimizations have the forms

N : 2 2

Dridge :argmt}nHy—XbH +)\ij (1.1)
J

~ B . B 9 .

blasso - argmbln ||y Xb” + A Z ‘bY‘ (12)
J

where ) is a free parameter whose value must be estimated using a method such
as cross-validation, or using an information criterion such as Akaike’s information
criterion (AIC) or the Bayesian information criterion (BIC) [1, 8]. This dissertation

motivates the use of another regularization penalty, the log penalty, whose form is

Diog penalty = argmin |y - Xb]|? + A Zln(|bj| +0) (1.3)
J

In all three forms above, A is a free parameter whose value determines the complexity
of the resulting solution, with higher values of )\ yielding lower-complexity solutions.

Complexity will be discussed in detail in later chapters. For the moment, it is sufficient

to think of complexity as more or less synonymous with flexibility. Higher-complexity
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solutions have more flexibility to fit the data, and hence achieve lower residual error.

In the log-penalized form (1.3) above, there is a second free parameter 0 that
essentially determines the precision to which we wish to describe the coefficients of

b. It naturally arises when we discuss d-quantized codes later on.

The log penalty is not new, but it does not seem to have received much attention
in the statistics literature. Those that have mentioned it or touched upon it [7, 11, 12,
15], have not focused on it directly, but rather as ancillary to some other problem or
method, and have not offered a theoretical motivation for its use as a regularization
penalty. As it turns out, the log penalty can be strongly motivated by appealing to
the minimum description length (MDL) principle [15], which interprets penalties as
coding costs, and from which perspective the log penalty emerges as entirely natural.

The analysis makes use of the concept of asymptotic optimality and argues that the
log penalty is theoretically justified from an MDL perspective because it corresponds
to an asymptotically optimal coding cost. This approach also sheds light on the
performance of the ridge and lasso penalties, showing that, although they do not
appear to be asymptotically optimal, they can be reinterpreted as effectively leading
to log-like penalties that are asymptotically optimal when the mechanism for choosing
A is taken into account. While the dissertation proves this only for ridge and the
lasso, it seems a reasonable conjecture that a large class of penalties leads to log-like
penalties in the same fashion, and that it may be more or less true that, in some
sense, “all penalties are log penalties”. To this extent, then, the approach offers a

unifying perspective on penalized linear regression in general.

The log penalty yields sparse solutions. In fact, its solutions are generally sparser
than those of the lasso, which is also known to yield sparse solutions, and therefore,
like the lasso, the log penalty can be used as a continuous subset selection method.
The problem of choosing the best subset of predictors from which to build a linear
model, known as the subset selection problem[8], is inherently intractable, since there
are 2P subsets to consider from among p predictors. While there are many theoreti-
cally sound information criteria for preferring one subset of predictors over another,
including AIC, BIC, and Rissanen’s MDL criterion [1, 8, 15], one cannot tractably
apply any of these methods to all subsets for large p. One possible solution to the



problem is to find a method that somehow considers all possibilities simultaneously
and constitutes a kind of descent method among the space of possible model instances.
Such methods are called continuous subset selection methods. The lasso and the log
penalty both fall into this category. The log penalty is particularly apt for overcom-
plete problems, in which the number of predictors p exceeds the number of data points
n, since in this case ultra-sparse solutions are sought, and this dissertation discusses
a method it calls lasso-winnowing for improving the efficiency of the log penalty on

overcomplete problems.

Regarding efficiency, one of the great virtues of both ridge and the lasso is that
they are convex penalties whose corresponding minimizations can be solved using
standard convex optimization techniques. (In the case of ridge, the solution is actually
closed-form and no descent method is required.) By contrast, the log penalty is not a
convex penalty. In fact, it is concave in the positive orthant, so convex optimization
techniques are not directly applicable. However, despite the fact that it is not convex,
the log penalty minimization can be solved tractably using a method of iterative
linearization [7]. Tterative linearization results in a sequence of convex minimization
problems whose solutions converge to a local minimum of the original non-convex
problem. Each convex minimization is a weighted lasso problem, demonstrating the

close relationship between the lasso and log-penalized regression.

It is important to stress that, unlike ridge and the lasso, the log penalty will in
general have multiple local minima for a given value of A\. This ineluctable feature
should not surprise us, since the subset selection problem is itself non-convex, nor
should it distress us too much vis a vis ridge and the lasso, since these methods,
while convex for a fixed ), also become non-convex when the mechanism for choosing
A is taken into account. Still, the non-convexity of the log penalty means that,
even for a fixed A, there will not be a unique solution in general to the log-penalized
minimization, and the particular solution yielded by iterative linearization will depend
upon the choice of the zeroth iterate. Several obvious choices for the zeroth iterate
suggest themselves, leading to variations that this dissertation refers to as the fized,
forward, and backward methods, the latter two being related in spirit to the greedy

techniques known as forward and backward stepwise regression.
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Later on, we'll apply the log penalty to two different regression problems and
compare its performance to the more standard methods such as ridge and the lasso.
The first regression problem uses simulated data with a known underlying parameter
vector. The experiment indicates that the log penalty does indeed yield sparser
solutions than the lasso and that these solutions will in general have somewhat lower
prediction error than the lasso when the true underlying parameter vector is sparse.
Unsurprisingly, however, the experiment also indicated that, when the true underlying
parameter vector is not sparse, the log penalty performs a little worse than the lasso.
Of course, the lasso itself performs worse than ordinary least squares in this context.
The log penalty method is therefore most apt when one has reason to believe that
the true solution is sparse, or when a sparse solution is desired for practical reasons.

The second problem is a real classification problem using gene micro-array data.
It is an overcomplete problem, which means that the number of predictors exceeds
the number of data points, with 6,088 predictors and only 34 data points. The
experiment illustrates the log penalty’s strong drive toward sparsity. Using the log
penalty, a classifier with very low classification error emerged using just three out of
6,088 genes.



Chapter 2
Preliminaries

This chapter describes the assumed underlying model that provides the context for
linear regression and explains how penalized linear regression can ameliorate the prob-
lem of overfitting. It also describes the standard statistical method of cross-validation,
which is often used to estimate a good value of the free parameter A\ in a penalized

linear regression.

2.1 Linear Regression Context

The underlying context for linear regression is as follows. We are given observations

consisting of pairs of data (x;,v;), x; € RP, y; € R, ¢ = 1,...,n. This data is

h

conveniently represented as (X,y), where X is the n x p matrix whose " row is x;,

" component is y;. We posit a linear relationship between

and y is the vector whose i’
x and y, governed by an underlying but unknown parameter vector by € R”, which

relationship is corrupted by the addition of Gaussian noise. That is, we assume

yi =bIx; + 2, 2~ N(0,02) (2.1)
or, equivalently, in matrix form, that
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" component is z;. The problem addressed

where z € R? is the noise vector whose i’
by regression is simply to make a good guess, b, for the true but unknown parameter

vector by, based on the data (X,y).

The simplest kind of estimate we could make is the ordinary least squares solution,

given by

~ A . 2

b, = arg min lly — Xb|| (2.3)
When X is full rank, with p < n, the solution is

b, = (X"X) X"y (2.4)

Many texts, including [8], discuss ordinary least squares regression. However, the
ordinary least squares estimate owerfits the data, which is to say that the residual
sum of squares error on the data (X, y), given by ||y—X13||2, is not a realistic estimate
of how well b will perform on new data (X', y'). Tt is too low. To see why, note that,
by definition, the ordinary least squares solution chooses the vector b that minimizes
the residual sum of squares over all possible candidate solutions, even the true solution
bg. That is, the least squares solution performs better on (X,y) than even the true
solution. One way to understand this phenomenon is to realize that, in seeking to find
the absolute minimum residual error, the ordinary least squares solution inevitably

fits some of the noise as well as the structure inherent in the data.

A common remedy for the problem of overfitting is to affix a penalty term to (2.3),

resulting in what is called penalized linear regression [8]. The general form is
O argmin |y — Xbl|* + Ag(b) (2.5)

Here g(b) is a penalty function from R? into R and A € R is a free parameter that
controls the complexity of the resulting solution. This dissertation views complexity
from the minimum description length (MDL) perspective. The complexity of a solu-

tion is defined to be its description-length with respect to a particular coding scheme.
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Complexity will be discussed in detail in chapters 3 and 4. Other treatments of com-
plexity in the regression literature use the concept of effective degrees of freedom [8],
which is quite similar. Both perspectives are attempts to quantify the notion that
higher complexity solutions have more flexibility to conform to the data.

The penalty function g essentially describes our preference for one solution over
another when both have the same residual sum of squares. According to (2.5), the
minimization prefers the solution with smaller g value. Since in general we prefer
solutions that are less complex to those that are more complex—other things being
equal ¢ can be interpreted as assigning a complexity to each candidate solution b,
with the resulting minimization preferring solutions that are less complex to those
that are more complex. Consistent with this interpretation, the penalty functions ¢
used in practice, such as ridge regression and the lasso, are monotonic in each of the
components b; and take their minimum at 0, reflecting our preference for solutions
with small component values and our bias to call O the least complex of all possible
solutions. These are desirable, but not necessary, features of a penalty function. In
theory, all that is required of g to make (2.5) useful is that it be bounded below.

In (2.5) above, A is a tuning parameter whose value allows us to control the
complexity of the resulting estimate, B(A) When A is zero, we recover the ordinary
least squares solution, because the penalty is given zero weight. As )\ increases, the
penalty is given more and more weight, causing the minimization to yield less and
less complex solutions, which, for reasonable ¢, results in the components of B(A)
becoming smaller in absolute value, a phenomenon called shrinkage [8]. Ultimately,
a high-enough A value will drive the solution toward ¢’s minimum, which is typically
attained at b = 0. The set of solutions mapped out as A goes from 0 to co will be

called the solution path.

Remark 2.1. Note that penalized linear regression methods such as ridge and the
lasso, when applied to a particular data set (X,y), do not yield a single solution, but
rather a path of solutions. Which solution along the path is chosen depends upon
which value of A is chosen, and the methods themselves offer no advice about how to

select A. Different methods for choosing A lead to different A values, and therefore
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to different points along the solution path. It makes no sense then, to talk about the

ridge or the lasso solution, except with respect to some identified method for choosing

A

2.2 Cross-Validation

As noted, the parameter A is free in Equation (2.5). Somehow, a decision must be
made as to which \ value will yield a good estimate b()), for the true underlying
parameter vector by, given the data at hand (X,y). Cross-validation, described in
[8], is a general purpose method for estimating a good value of A. It is by no means
the only method, and [8] describes several others. However, it is robust, considered to
be a standard method, and hence is the method used throughout this dissertation to
solve for A in all the experiments described in Chapter 6. In particular, the method
used is cross-validation with the one-standard-error rule, as described in this and the

following section.

In m-fold cross-validation, we partition the data points (x;, y;) into m disjoint sets
Sk, k =1,...,m, of as equal size as possible. Let n; = |Sk| denote the size of the
k™ set. Thus, D", ny = n. The points (x;,y;) are assigned to their sets arbitrarily.
These sets can be designated, in matrix form, as (Xy,yx), £ = 1,..., m, where Xy is
an nyg X p matrix whose rows are made up of the x; in S;. The order in which the
rows are listed in X is unimportant, so long as the components of y;, made up of
the y; in Si, are in the corresponding order.. These will be our m wvalidation sets.
From these sets, we then generate m training sets Tj,, k = 1,...,m. The k' training

set consists of all points not in the k" validation set. That is,
Ty = U5 (2.6)

The sets T}, can be designated, in matrix form, as (X, ¥;), k = 1,..., m, where X,
is an (n — ng) x p matrix. This results in m training/validation pairs (7}, Sy). For

each A and £, we then let Bk(A) be the solution when the penalized linear regression
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is applied to 7T} with parameter A\. That is

br()) 2 arg min ||y — Xyb||” + Ag(b) (2.7)

For a given ), we can estimate how well by()\) is likely to perform on future data

by testing it out on Sj, yielding

2

. 1 N
éx(A) FkHy'“ — Xybr(A)|? (2.8)

Since our partition of the data gives us m such training/validation pairs, we can

perform this estimate m times and average the results, yielding

Al e
() = — e () 2.9
ORFP (2.9)
— I3 Ly X2 (2.10)
ma

A good A value to use, then, in the original regression problem, on the full data set

(X,y), is the one whose associated error estimate is minimal:
. A o
AT = argm/\lne()\) (2.11)

As A increases from 0, the shape of the curve é()) is roughly that of a bowl with a
bumpy bottom, which is to say that at first the error will be monotonically decreasing,
then, after A has passed through some range of interest (the bumpy bottom), é(\)
will be monotonically increasing. It is therefore not too difficult using trial and error
to discover a reasonable range of A values to test under cross-validation in order to

come up with a value close to A\*.

Remark 2.2. Since log-penalized linear regression has two free parameters A and 4,
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equations (2.7) through (2.11) above must be modified in obvious ways to accommo-

date the additional § parameter, yielding the following new equations

Be(0,A) £ argmin [[ye — Xebl” + 2> In(lb;| + ) (2.12)
J

~ A 1 n 2

e(6,0) 2 llye = Xebu(5 )] (2.13)

. 1 w— 1 . ,

0,0 = = —llyi — Xebi(5, M) (2.14)

mel ng
(5%, \) 2 arg min &(5, )) (2.15)

3

2.3 The One-Standard-Error Rule

Rather than using A\* above, the authors in [8] prefer to use a more conservative
method that they call the one-standard-error rule. This dissertation also uses the
one-standard-error rule to calculate optimal A (and 0) values in all the experiments
described in Chapter 6. Among other things, this leads to sparser solutions when the
log penalty is used.

As mentioned in the previous section, the curve é(\) has a bumpy bottom in the
A range of interest, which is to say that in general it has several local minima. This
feature, combined with the vagaries of randomly partitioning the data, selecting a
somewhat arbitrary number of validation sets m ([8] has some advice about choos-
ing m), and the inherent noise in any estimation process, means that A* may itself
be slightly optimistic and may yield an estimate B()\*) that still overfits the data
somewhat. A more conservative approach is to use instead the highest value \ whose
associated estimated prediction error é()) falls within one standard error of é(\*).
That is,

\ 2

A =max ) subject to é(\) < é(N*) + s(\Y) (2.16)

A>0
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where

() 2 \/ﬁ POCIERNE (2.17)

Since higher values of A yield less complex solutions, this method essentially selects the
simplest solution, f)(j\), whose inferiority with respect to the solution f)()\*), in terms
of estimated prediction error, is wholly attributable to noise in the cross-validation

process.

Remark 2.3. As noted in the previous section, when the log penalty is used there are
two free parameters A and ¢, requiring that the one-standard-error rule be modified.
In this case, it does not make sense to maximize both § and A simultaneously; however,
when we reflect that the reason \ is maximized in the single-parameter case is that
this yields the least complex solution, then it seems reasonable in the two parameter
case to prefer the (d,\) pair that yields the sparsest solution. This leads to the
following replacements for equations (2.16) and (2.17)

(S,X)éarggi%||6((s,m||o subject to  &(8,\) < é(6%, ) +s(6*,\")  (2.18)
>

)

where ||b(6, A)||o is the number of nonzero components in b(é, A), and where

s(5,)) 2 \/m > (@8, X) — é(5, 1)) (2.19)

k

The solution to (2.18) need not be unique. One reasonable method of breaking ties
0,

is to prefer the (0, A) pair with lowest residual sum of squares error ||y — Xb(4, \)||2.



Chapter 3
Coding

The log penalty of this dissertation gets its impetus from considerations arising from
algorithmic complexity, pioneered by Kolmogorov [10], Chaitin [3], and Solomonoff
[16]. The central insight of algorithmic complexity is that the complexity of an object
should be defined as the length of the most succinct coding of that object. The objects
of interest for our purposes are integers and vectors of integers. Thus, it is important
to understand some basics of coding on Z and Z¢. This chapter introduces these
basics. Those familiar with the concepts or who wish not to be bogged down by
details may safely skip to Chapter 4, after glancing at Section 3.3 on page 19 and at
the definition of asymptotic optimality for d-quantized codes given in definition 3.10
on page 36.

Ultimately, we will be interested not so much in any particular coding scheme as
in the best achievable asymptotic properties of a code: roughly how many bits does

it take to code a vector of integers as the vector’s components get increasingly large?

3.1 Coding Definitions

This section defines what we mean by a code, and introduces some basic concepts.

Definition 3.1. Let A be a finite or countable set of objects. A prefiz-free code, (also

known as a prefiz code) C'(m), m € A, is a one-to-one mapping between A and the

12
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set of finite-length binary strings {0, 1}*, such that no string in the range of C' is a
prefix of any other string in the range of C.

For example, if C' is a prefix-free code, then 0110 and 0110101 cannot both be
strings in the range of C, since the first is a prefix of the second. See [4] for a longer
discussion of prefix-free codes.

In this dissertation, we will typically take A to be either Z%, the set of d-dimensional
vectors with integer components, or a countable subset of R%. In particular, we will

be interested in the countable subset Q¢, defined in Definition 3.8 on page 35.

Remark 3.1. In this dissertation, all references to codes are really to prefix-free
codes. Sometimes the modifier prefiz-free is added for emphasis, but even when it is

omitted, code still means prefiz-free code.

Definition 3.2. Let s € {0,1}* be a finite-length binary string. Denote by |s| the
length of the string s.

Definition 3.3. Let s,z € {0,1}* be finite-length binary strings. Denote by st the

concatenation of the two strings.

Definition 3.4. Let C(m) be a prefix-free code with domain A. Its associated code-
length function L(m), also with domain A, is the number of bits required to encode
m using code C'. That is

L(m) = |C(m)| (3.1)

A basic result from information theory tells us that the code-length function of any
prefix-free code must satisfy the following inequality, known as the Kraft Inequality.
Conversely, for any function satisfying the Kraft Inequality, there exists a prefix-free

code with the corresponding code-lengths.
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Theorem 3.1 (Kraft Inequality). Let L(m) be an integer-valued function on do-
main A. Then a prefiz-free code C(m) on A exists for which L(m) is the associated

code-length function if and only if

» o2tm < (3.2)

mecA

See [4] for a proof.

3.2 A Prefix-Free Code for the Integers

It is a well-known fact from Kolmogorov complexity theory that any integer m €
Z may be encoded using a prefix-free code requiring no more than log(|m/| + 1) +
O(loglog|m|) bits [4, 15, 18]. This section exhibits the construction of such a code,
following the standard method.

We define the code Cz(m) in several stages, creating intermediary codes C,
through C\, each of whose definitions depends upon the previously defined code.
Finally, we define C'z(m) in terms of C,, and it will have the asymptotic code-length
properties we seek.

We begin with the crudest imaginable code on the non-negative integers:
A
Co(m) =111...1110 (3.3)
—_—
m times

C, is sometimes called a unary code. Figure 3.1 illustrates the C, encoding of the first
few integers. Obviously C,(m) is prefix-free, since we know the code has terminated
as soon as we see a zero. By inspection, one can see that the code-length function

L,(m) corresponding to C,(m) is given by:
L,(m)=m+1 (3.4)

C, does not have the asymptotic code-length property we seek. We want a code that
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The C, Code

Ca(m)
0

10

110
1110
11110

;-lkC»O[\Di—‘DS

Figure 3.1: The C, encoding of the first few integers

takes about log |m/| bits to describe m, whereas C, requires m + 1 bits to describe m.
But we will leverage this simple beginning to create a code that has the property we

seek.

The next stage in the code Cy(m) is a code on the positive integers, as opposed
to the non-negative integers, and we build it using C, to help us. Let s(m) denote
the standard binary representation of the positive integer m, less its leading 1. For
example, the standard binary representation of m = 5 is 101. Dropping the leading
1 gives us s(5) = 01. At the moment we are building a code on just the positive
integers, and their binary representations always begin with the symbol 1. Thus, for
any m > 0, it is sufficient to describe just the symbols following the 1 in its binary
representation. Notice that s(m) by itself does not constitute a prefix-free code, since
it maps onto the entire set {0,1}*. However, if we precede the string s(m) with a
prefix-free encoding of the length of the string s(m), then we achieve a prefix-free code,
because the initial encoding tells us when the remainder of the codeword terminates.
This will be our strategy, and we will use C,, to encode the length of the string s(m).

Our new code is

Ca(ls(m)])s(m) (3:5)

Note that C, must be prefix-free. The codeword Cy(m) = C,(|s(m)|)s(m) cannot
be the prefix of any longer codeword because all codewords beginning with the bit
sequence C,(|s(m)|) have precisely the same length. Note also that |s(m)| could be as

small as zero, when m = 1, but that is okay, because C, is a code on the non-negative
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The C} Code
m | Ca(m) s(m) Cy(m)
0 0 [undefined] | [no code exists]
1 10 | [empty qtrlng] 0
2 110 100
3| 1110 1 101
41 11110 00 11000

Figure 3.2: The Cy encoding of the first few integers.

integers, so it is capable of encoding zero. Table 3.2 illustrates the C} encoding of the

first few integers. Now let’s calculate the associated code-length function L,(m).

Ly(m) = La(ls(m)]) + [s(m)] (3.6)
< Lu(llogm]) + [logm| (3.7
© llogm] + 1+ |logm| (3.8)
= 2|logm|+1 (3.9)

where |z| denotes the greatest integer less than or equal to x. It is easy to verify
that the length of s(m) is [logm|, (note: all logs in this section are base two), which
is used in (a) above. (b) follows from (3.4).

Although Cy(m) just codes the positive integers, it is easy to extend this to a code

on the non-negative integers by defining the new code
A
C.(m) = Cy(m + 1) (3.10)
with associated code-length function

L.m) = Ly(m+1) (3.11)
= 2[log(m+1)] +1 (3.12)

Figure 3.3 illustrates the C. encoding of the first few integers. Already we are in the
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The C,. Code
m | Cy(m) Cy(m) C.
0 0 | [no code exists| 0
1 10 0 100
2 110 100 101
3 1110 101 | 11000
41 11110 11000 | 11001

Figure 3.3: The C. encoding of the first few integers.

ballpark of what we hope to achieve. C, takes about 2logm bits to encode m. We
would like to cut that in half. One more application of our inductive code construction
will do the trick. Let us define:

Ce([s(m)])s(m) (3.13)

with associated code-length function

La(m) = Le(|s(m)]) + [s(m)] (3.14)
= L.(|logm]) + [logm| (3.15)
= 2|log(|logm]| +1)] +1+ [logm| (3.16)
= |logm]| + 2|log(|logm]| +1)] +1 (3.17)

As before, we extend this to a code on the non-negative integers by defining the

new code

C.(m) & Cy(m + 1) (3.18)

with associated code-length function

L.(m) = Lg(m+1) (3.19)
= |log(m +1)| 4+ 2|log(|log(m+1)| +1)] +1 (3.20)
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The C, Code
m | Cy(m) Cyp(m) C. Cy C,
0 0 | [no code exists] 0 | [no code exists] 0
1 10 0 100 0] 1000
2 110 100 101 1000 | 1001
3 1110 101 | 11000 1001 | 10100
41 11110 11000 | 11001 10100 | 10101

Figure 3.4: The C. encoding of the first few integers.

Figure 3.4 illustrates the C, encoding of the first few integers.

Finally, C, can be extended to the negative integers by affixing a sign bit to the

code:

Cp(m) 2 { 0C:(m) m 20 (3.21)
1C(—m) m <0
with associated code-length function
Lz(m) = [log(|m| +1)| + 2[log(|log(|m| +1)| +1)| +2 (3.22)
which has the desired asymptotic code-length property:
Lz(m) = log(|m| + 1) + O(loglog |m)|) (3.23)

The reader may wonder why the form log(|m| 4+ 1) was chosen to express the
asymptotic property above, rather than the more compact form log |m|, for, surely,
if L;(m) = log(|m|+ 1) + O(loglog|m|), then also Lz(m) = log |m| + O(loglog |m]|).
The answer is that not only does the term log(|m| + 1) convey the principal asymp-
totic order, it also represents a good approximation of the code-length for all m.
Importantly, at m = 0, it yields an approximate code-length of 0, rather than —oc.

Later, we will drop the lower-order loglog term and use log(|m| + 1) as a reasonably
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good measure of the complexity of any integer.

3.3 Asymptotic Optimality

Important for the justification of the log penalty is the notion of asymptotic optimality.
We wish to make precise the idea that a code achieves—in the limit as m grows large—
the smallest code-lengths that it could hope to achieve. This differs from the standard
analysis of coding optimality in information theory, in which the goodness of a code
is measured by how the code-length grows as the number of symbols to be encoded
goes to infinity. In our case, the number of integers to be encoded d stays fixed, and

we measure the goodness of the code instead by how well it codes ever larger integers.

In the previous section, we exhibited a code Cz(m) on the integers that grows

asymptotically like log|m/|. That is

Lz(m
lim 2(m) =
im|—oc log |m)|

1 (3.24)

It is natural to ask whether L(m) ~ log|m]| is the best one can do, or whether there
possibly exists a code with significantly shorter code-lengths. It turns out that there
is a well-defined sense in which this is the best that can be done. While it is possible
to design a code whose code-length function L(m) is significantly smaller than log |m|
on a particular set of values of m (infinitely often, in fact), there cannot be an integer
M such that Vm, |m| > M = L(m) < log|m|. To see why not, suppose such a
code-length function L(m) and integer M existed. Then we derive a contradiction as

follows:

—
2
~

1> ) 2tm (3.25)
mezZ
> )y 2k (3.26)
m:m|>M
(b)
> ) 2 loelmD (3.27)

m:|m|>M
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= > % (3.28)

= oo (3.29)

where (a) is the Kraft Inequality, Theorem (3.1) on page 14, and (b) follows by
hypothesis. We conclude that L(m) must exceed log |m| infinitely often, and therefore

L(m)/log|m| must exceed 1 infinitely often. If lim‘mHOOm exists, it must be

log |m|
greater than or equal to 1.

Of course, for some codes, the limit might not exist at all, even though the code
were one we’d like to characterize as optimal. For example, the code-length function
L(m) might not be monotonic in |m/|, attaining very short code-lengths infinitely of-
ten, but not so often as to make the worst case code-length grow faster than log |m)|
asymptotically. For example, the Kolmogorov complexity function K (m) of the in-
tegers [4] is a code-length function with this property. Any definition of asymptotic
optimality must account for this possibility, and there are a few approaches, one of
which, taken by Rissanen in [15], is simply to exclude from consideration code-length

functions that are not monotonic. Focusing on worst-case code-lengths also suffices,

leading to the following definition:

Definition 3.5. A code C'(m) on Z¢, with associated code-length function L(m), is

asymptotically optimal in case

: L(m)
lim max
r—oo |m||<r dlogr

=1 (3.30)

where ||ml| = /> mj is the standard Euclidean norm.

Note that for some codes the above limit still might not exist. But, if so, it will
be because the worst case code-length is greater than (d + €) logr infinitely often and
hence we would not want it to qualify as an asymptotically optimal code.

The following theorem justifies the above definition by showing that dlogr is the

best asymptotic code-length one could hope to achieve.
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Theorem 3.2. Let L(m) be the code-length function associated with a prefiz-free code
on Z%. Then

L
lim inf max (m)
r—oo |ml|<r dlogr

> 1 (3.31)

Proof: The essence of the proof is that the number of vectors m in Z¢ satisfying
|m|| < ris approximately c(d)r¢, where ¢(d) is a constant depending only on d. Thus,
the number of bits required to describe each vector in this set must be approximately
log ¢(d)r? = dlogr + O(1). More precisely, let S(r) 2 {m € Z%:|jml| < r}. Then

1> ) 2t (3.32)

me 24
>y 2w (3.33)
[lm|<r
> |S(r)| ”mliln 9~ F(m) (3.34)
m||<r
Taking logs of both sides yields
0 >log|S(r)| + ||mﬁn —L(m) which implies (3.35)
m||<r
0> log|S(r)| — ”mﬁlx L(m) leading to (3.36)
m||<r
max L(m) > log|S(r)| (3.37)

[lm||<r

Furthermore, there clearly exists a constant ¢ and a threshold R such that Vr,r >
R = |S(r)| > c¢-r? Therefore, for r > R,

”mﬁlx L(m) > log|S(r)| (3.38)
m||<r
> dlogr + loge  which implies (3.39)
L(m) _ dlogr +logc ,
> leading t 3.40
||rr£11ﬁ§r dlogr — dlogr cacing 1o ( )
L dl 1
lim inf max 2 S Ji inf L1087 £108C (3.41)

r—oo |m||<r dlogr T—00 dlogr
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Remark 3.2. It should be obvious from (3.24) that the natural code is asymptotically
optimal according to Definition 3.5. A full proof for the generalized natural code on
Z4 is given in Section 3.4. However, there is also a sense in which the natural code as
we’'ve developed it is not asymptotically optimal. The recursive method used to create
the code C; can be iterated to create another code C* with code-length function L*

that is strictly less than L for large m. That is, there exists an integer M, such that
Vm,|m| > M = L*(m) < Lz(m) (3.42)

The code-length function L* is given by
L*(m) St log |m| + log log |m| + logloglog |m| + ... (3.43)

down to the last iterated logarithm of |m| that is still positive, and where ¢ is a
constant. The sum of successive iterated logarithms is known as the log™ function
and is discussed in [4, 15] along with the derivation of the code C*.

Note that L, and L* have the same first-order term log|m/, but that L* is more
efficient in its lower-order terms for large m. The first order term is all that will be

of interest to us in later chapters, so the simpler code C'; suffices for our purposes.

3.4 The Natural Code On Z¢

Having exhibited an asymptotically optimal code C; on the integers, we can now
leverage it to create asymptotically optimal codes on Z?. This section constructs a
natural extension of C'; to Z¢, simply by separately coding each of the components
of m € Z¢ using C. For this reason, we call the resultant code the natural code on
Z4,

Definition 3.6. The natural code on Z¢ is the code given by

Cpa(m) 2 Cy(my)Cy(ms) ... Cy(ma) (3.44)
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Since Cya is the concatenation of a fixed number d of prefix-free codes, it too is
a prefix-free code. The code-length of m € Z¢ is just the sum of the code-lengths of

its components:

Lyi(m ZLy my;) (3.45)
Z log(|m;| 4+ 1)] + 2[log([log(jm;| +1)| +1)] +2 (3.46)
j=1

d
(Z (Imj| +1 ) + 2dlog(log(||m]|| + 1) + 1) + 2d (3.47)
leading to

Lza(m Zlog imj| +1) + O(loglog [|ml|) (3.48)

As in the previous section, the principal asymptotic component of L 4 is described
as Zj:1 log(|m;| + 1), rather than as the more compact Zj:] log(|m;]), in order to
emphasize that this expression is a good approximation of the code-length for all m,
including m = 0. When m = 0, the more compact form yields the unreasonable

value of —o0.

Notation 3.1. Given the close affinity of C';a to the original code C'; on the integers,
we will slightly abuse notation. Thus, for m € Z% we will use the less cumbersome

forms Cz(m) and Lz(m) to refer to C'za(m) and L,a(m) respectively.

Theorem 3.3. The natural code Cy; on Z% is asymptotically optimal.
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Proof: We must show that

. Lz(m) _
11m max =
r—o0 ||m||<r legT

First, we note that if |[m]| < r, then

|m;| <r forall j
which implies that

Zlog(\mﬂ +1) <dlog(r+1)
J

leading to

Ly(m) < dlog(r + 1) + O(loglogr)

(3.49)

(3.50)

(3.51)

(3.52)

The final line above follows from Lz(m) =} . log(|m;|+1) + O(log log [[ml[|), derived

at Equation (3.48). Continuing, since Equation (3.52) holds for all m such that

|lm|| < r, it must hold for the max over this set, yielding

max Lyz(m) < dlog(r + 1) + O(loglogr)

[ml[<r
which implies

i L (m) < dlog(r + 1) + O(loglogr)
|m|<r dlogr dlogr

which implies

L dl 1) + O(logl
lim sup max z(m) < lim sup og(r +1) + O(loglogr)
rooco |m|<r legT 00 legT

=1

(3.53)

(3.54)

(3.55)
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leading to

L
lim max 22 (3.56)
r—o0 ||m||<r legT

where (3.56) follows because we know

L
lim inf max 7(m)
r—oo |m|<r dlogr

> 1 (3.57)

from Theorem 3.2 on page 21.

3.5 Indexed Codes

Suppose we have several coding schemes “on hand”, any of which can be used to
encode m € Z% Then we can describe m in two parts. The first part describes the
index of a particular code and the second part describes m using that code. In effect,
the set of coding schemes must itself be coded using a coding scheme. This is the idea
behind indexed codes. Since in general we are interested in minimal code lengths, we
are free to select from among the available coding schemes the one that yields the
shortest two-part code-length for m. This is the central notion behind the theory of

minimum description-length estimation, covered in Chapter 4.

Definition 3.7. Let D be a finite or countable set of prefix-free codes. Let A be
the union of the domains of the codes in D. Let Cy be a prefix-free code on D with
associated code-length function Ly. Also, denote by |C(m)| the code-length function
associated with C' € D. Then the indezed code or two-part code Cr on A, constructed

from D and Cy, is

Cy(m) £ Cy(C*)C* (m) (3.58)



26 CHAPTER 3. CODING

where C* satisfies
C* = arg min Ly(C) + |C(m)] (3.59)

Here we take |C'(m)| to be oo when m is not in the domain of C. (In case there
are more than one C' attaining the minimum above, we can arbitrarily break ties by

preferring the code whose codeword precedes the others in dictionary order.)

By construction, the code-length function of Cf is

Ly(m) = axgmin Lo(C) +|C(m), (3.60)

Remark 3.3. Note that C* is the code that attains the shortest total description
length for m from among all codes in D, taking into account the fact that C* itself
must be described using Lo(C*) bits. Therefore it is not necessarily the case that
C* = argming |C(m)|. This important fact is at the heart of the MDL principle.
When in Chapter 4 we interpret codes as models and code-lengths as their associated
complexity, Lo(C) acts as a regularizer on the estimation process, forcing us to pay

a price for choosing more complex models.

3.6 The [? Code On Z*

This section describes a code Cy(m) whose associated code-length function depends
upon the /2 norm of m, so we’ll call it the [*code.

We begin by describing a code C’L(I")(m) just on those vectors m € Z? in the
positive orthant whose norm is less than the integer n. To that end, let S(n) 2
{m e Z%: ||m|| < n; Vj,m; > 0}. Note that, at the moment, we are excluding from
consideration any vectors m with zero components. Hence, S(n) = §) for n < V/d.
Further, we’ll impose an order on the elements of S(n), numbering them from 0 to
|S(n)|—1. Any ordering will do, but for the sake of specificity, let’s impose dictionary

order: we compare two vectors m; and m, componentwise from left to right until
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S(4) and the ctY Code

p=2
IS

110
111

~— | — | — | — | — | — | — [ — |~
—_
—_
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WIW I NN N =
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Figure 3.5: The above table shows the first few elements of S(n) in increasing dictio-
nary order and their cim encoding forn =4, d = 2.

the first component j in which they disagree. Then m; precedes m, just in case
m,(j) < my(j). C{" uses the same number of bits k = [log|S(n)|] (where [z]
denotes the smallest integer greater than or equal to x) to describe all m € S(n),
assigning to m the k-bit binary representation of its index in the set, using leading
zeros if necessary. Obviously, the associated code-length function is Lg,n)(m) = k.
Figure 3.5 illustrates the first few elements of S(n), in increasing dictionary order,
and their C{™ encoding, for n = 4, d = 2.

We then leverage O™ to create a code on the entire positive orthant by recognizing
that any m in the positive orthant belongs to S(n) for some n. (In fact, it belongs to
S(n) for infinitely many n: those satisfying n > ||m||.) We can therefore describe m
using a two-part code: first we describe some n > ||m|| using the natural code Cz(n)
and then we describe m € S(n) using C’((Ln)(m). We'll call this code Cy(m).

Cy has not yet been precisely defined, since we haven’t specified which of the in-
finitely many n values compatible with m to encode. It might seem as though we
should choose the smallest compatible value n = [||m]||] in order to obtain the small-
est code-length for m, but this turns out to be incorrect, because it requires about
log [|m|| bits to describe this number, and it will turn out to take about dlog ||m)||
bits to describe m € S(||m]|), leading to a total code-length of about (d+ 1) log||m]],
which is not asymptotically optimal. Had we defined S(n) to be the set of vectors
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in the positive orthant whose norms were within a tolerance of 1/2 of n, then this
would have worked, but, as it stands, the choice of n = [||m||] describes ||m|| more

accurately than we really need.

Interestingly, we only need to describe ||m|| to within a factor of 2. That is, we
need only describe a number n such that |{m|| < n < 2|jm||. This means that we can
choose n to be a power of 2, i.e. n = 27 for some ¢ € Z, which in turn means that
we can describe n merely by describing ¢, and that takes only about loglog ||m]|| bits,
which is asymptotically negligible. In so doing, we may be describing a set S(n) that
is up to 2% times as large as it ideally would need to be, but this potential enlarging
of the set size induces a cost of at most d bits over the ideal code-length, which is

also asymptotically negligible.

As mentioned above, we seek a number n = 279, ¢ € Z, such that |m| < n =

29 < 2||m]||. Taking logs, we have log ||m| < ¢ < log|/m| + 1, which means that

q = [log||ml|]. If we define ¢(m) 2 [log |[m]||] and n(m) 2 94(m) then we can define
Cp(m) as

Ciy(m) = Cr(q(m)C"e™ (m) (3.61)

a

whose associated code-length function is

Ly(m) = Lz([log|lm|[T) + log S (2™IT)| (3.62)

Let 1 be the vector of all ones. It is easy to extend C} from a code on the positive

orthant to a code on the non-negative orthant by defining the new code
C.(m) = Cy(m+ 1) (3.63)
with associated code-length function
Lc(m) = Lz([log|jm + 1][1) + log [5 (28 m+11T)) (3.64)

It is also easy to extend this code to the entire space Z% by affixing a d-bit sign string
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to the code. Let s(m) € {0,1}? be the d-bit string satisfying

0 m; > 0
s; = : (3.65)

In effect, s; tells us whether the j component of m should be interpreted as positive
or negative. Now let m € Z¢ and let |m| denote the vector in the non-negative

orthant whose j component is |m;|. With this addition, the final code is given by
Cy(m) = s(m)C.(|m]|) (3.66)
with associated code-length function

Ly(m) = L(/m) + |s(m)| (3.67)
= Lz([log || [m| +1][7) + log|s(28! 2Ty 4 q (3.68)

We wish to understand the asymptotic properties of Ly as expressed in Equation (3.68)
above. The first and third terms are asymptotically negligible, since Lz([log |||m|+
1||]) = O(loglog ||jm]|), and d = O(1). To get a handle on the middle term, notice
that the set S(n) is completely contained in the cube of side n in the positive orthant
of Z4. To be precise, let T'(n) = {m e Z%:Vj,0 <m; <n}. Then clearly

S(n) C T(n) which implies |S(n)| < |T(n)| = n* (3.69)
which implies log [S(n)| < dlogn leading to (3.70)
Ly(m) = dlog || |m|+ 1|| + O(loglog ||m|) (3.71)

where the last line above follows from (3.70) and (3.68).
Theorem 3.4. The code Cy on Z¢ is asymptotically optimal.

Proof: The proof follows identical lines to the proof of Theorem 3.3. We must
show that

L
lim max 220 4 (3.72)
r—oo||m|<r dlogr




30 CHAPTER 3. CODING

First, we note that if |[m]| < r then

| lm|+ 1] <r+Vd (3.73)
which implies
log || lm| + 1| < log(r + V) (3.74)
leading to
Ly(m) < dlog(r + Vd) + O(loglog ) (3.75)

where the line above follows from Ls(m) = dlog|| |m|+ 1|+ O(loglog|/m]||), derived
at Equation (3.71).

Continuing, since Equation (3.75) holds for all m such that ||m|| < r, it must hold

for the max over this set, yielding

max Ly(m) < dlog(r + Vd) + O(loglogr) (3.76)

[ml|<r
which implies

Ly(m) < dlog(r +/d) + O(loglogr)

3.77
menﬁ;(r dlogr — dlogr ( )
leading to
L dl d) + O(logl
lim sup max 2(m) < lim sup 0g(r +vd) + O(loglogr) =1 (3.78)
r—oo |m|<r dlogr 00 dlogr
from which we conclude
L

lim max 2(m) = (3.79)

r—o0 ||m||<r dlogr
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since we know that, for all L,

lim inf max L(m)
r—oo [m||<r dlogr

> 1 (3.80)

from Theorem 3.2 on page 21.

3.7 The ! Code On Z*

This section describes a code C(m), whose associated code-length function depends
upon the I' norm of m, so we’ll call it the I'code. Its development parallels exactly
the construction of the [? code of the previous section.

As before, we begin by describing a code C’,Sn)(m), just on those vectors m € Z%in
the positive orthant whose ' norm is less than the integer n, and we let S(n) 2 {m €
Z%: |m|; < n; Vj,m; > 0}, where |[|m]|; 2 >, Imj|. As before, note that, at the
moment, we are excluding from consideration any vectors m with zero components,
and, hence, that S(n) = ) for n < d. As before, we impose dictionary order on the
elements of S(n), numbering them from 0 to |S(n)| — 1. C{™ uses the same number
of bits, £k = [log|S(n)|], to describe all m € S(n), assigning to m the k-bit binary
representation of its index in the set, using leading zeros if necessary. Obviously,
the associated code-length function is Lg,,n)(m) = k. Figure 3.6 illustrates S(n), in
increasing dictionary order, and its C,g") encoding, for n =4, d = 2.

As before, we then leverage C’,E,n) to create a code on the entire positive orthant via a
two-part code that first describes n satisfying [|ml[; < n < 2||m||; and then describes
A
=

m using C\", where n = 27 and ¢ = [log ||m]|;]. If we define ¢(m) = [log||m||,] and

n(m) 2 2¢m)) then we can define Cy(m) as

Cy(m) £ Cy(q(m))C"™) (m) (3.81)

a

whose associated code-length function is

Ly(m) = Lz([log|[ml};]) + log |5 (2"# /)| (3.82)
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S(4) and the ctY Code

O (m)
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Figure 3.6: The above table shows the first few elements of S(n) in increasing dictio-
nary order and their C,Sn) encoding forn =4, d = 2.

We then extend C} to a code on the non-negative orthant by defining the new
code

C.(m) = Cy(m + 1) (3.83)

with associated code-length function
Lq(m) = Ly([log|[m + 1||,]) + log [ S (28 [m+1T) (3.84)

and then further extend the code to the entire space Z¢ by affixing a d-bit sign string
to the code. As before, let s(m) € {0,1}¢ be the d-bit string satisfying

0 m; > 0
s; = - (3.85)

and let |m| denote the vector in the non-negative orthant whose j component is

|m;|. The final code is then given by
Ci(m) = s(m)C.(|m]|) (3.86)
with associated code-length function

Li(m) = L(|m])+ |s(m)] (3.87)
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= Lz([log]| [m] +1[1]) + log [S2M Iy +-d - (3.88)

In order to understand the asymptotic properties of L; as expressed in Equation (3.88)
above, we note, as before, that the first and third terms are asymptotically negligible,
since Lz([log|m + 1]j;]) = O(loglog|ml;), and d = O(1). For the middle term,
we notice, as before, that S(n) is completely contained in the cube of side n in the

positive orthant of Z¢. To be precise, let T'(n) 2 {me€ 2¢:Vj,0 <mj <n}. Then

clearly
S(n) € T(n) which implies |S(n)| < |T'(n)| = n* (3.89)
which implies log|S(n)| < dlogn leading to (3.90)
Ly(m) =dlog|| /m|+ 1||; + O(loglog ||mJj;)  (3.91)

where the last line above follows from (3.90) and (3.88).

Theorem 3.5. The code C, on Z¢ is asymptotically optimal.

Proof: The proof follows identical lines to the proof of Theorem 3.3. We must
show that

L
lim max 2 (3.92)
r—oo||m|<r dlogr
First, we note that if |[m]| < r then
| |m|+ 1]y < rVd+d (3.93)
which implies
log || |m| + 1|}, < log(rv/d + d) (3.94)

leading to

Ly(m) < dlog(rVd + d) + O(loglog r) (3.95)
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where the line above follows from L; (m) = dlog|| |m|+1||;+O(loglog |m||;), derived
at Equation (3.91).
Continuing, since Equation (3.95) holds for all m such that ||m|| < r, it must hold

for the max over this set, yielding

max L;(m) < dlog(rvd + d) + O(loglogr) (3.96)

[lm|<r

which implies

Ly(m) < dlog(rv/d + d) + O(loglogr)

3.97
IIIEIPIL%(T dlogr — dlogr (3.97)

Noting that log 7v/d above grows asymptotically in r like log 7, since log rv/d = log r+
1/2logd, this leads to

L dl d-+d logl
lim sup max 1(m) < lim sup 0g(rv/d +d) + Ofloglog ) =1 (3.98)
r—oo |mll<r dlogr 00 dlogr
from which we conclude
L
lim max 20 _ (3.99)
r—oc ||m||<r dlogr
since we know that, for all L,
L
lim inf max —2) 5 (3.100)

r—oo |m||<r dlogr

from Theorem 3.2 on page 21.

3.8 0J-Quantized Codes

We now turn to the problem of describing an arbitrary x € R? to some specified
precision §/2. Since R? is uncountable, no prefix-free code can exist on it. However,

by quantizing it into d-sized cubes whose centers we take as reproduction points, we
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create a countable subset of R? that is d-close to any arbitrary x € R? we care to
name. Since this quantized subset is countable, a prefix-free code exists on it, and,
in fact, we can easily extend any of the prefix-free codes on Z“ constructed in the

previous sections to a code on the reproduction points.

Definition 3.8. Let § > 0 be given. Then the set of reproduction points in RY
induced by quantization width ¢ is

Q42 {6m:me 29} (3.101)

Further, let x € R be an arbitrary vector. Then the reproduction point associated

with the quantization cube into which x falls is

L

Q4(x) = %, where &; = §|2,/6 + 1/2] (3.102)

Remark 3.4. Note that if X € Q¢, then the index of the quantization cube for which

% is the reproduction point is the integer vector m = X/4.

Since every reproduction point * € Q¢ is indexed by an integer vector m = %/,
any code C' on Z¢ can be used to induce a code Cs on the reproduction points, leading

to the following definition:

Definition 3.9. A §-quantized code Cjs is a code on Q% If C is a code on Z¢, then
the §-quantized code on Q% induced by C is

1>

Cs5(%) = C(%/6) (3.103)

and, conversely, if Cy is a d-quantized code on Q, then the integer code on Z% induced

by C(g is

C(m) £ C5(5m) (3.104)
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Definition 3.10. A d-quantized code-length function, Ls on Q%, is asymptotically

optimal in case

y Ls(%)
1m max =
r—oo Q¢ ||xl|<r dlogr

(3.105)

The justification for the above definition is the same as for the integer case.
Asymptotically, dlog|/X]| is the best one can hope to achieve in encoding %. The
proof follows identical lines as in the integer case and will be omitted. When deal-
ing with d-quantized codes, there is no essential difference than when dealing with
integers: we have a countable set of reproduction points, evenly spaced on R%. The
fact that they happen to be spaced ¢ apart instead of 1 apart does not substantively
change the coding properties.

A §-quantized code-length function Ls is defined only on Q¢, rather than on R%. In
Chapter 4, it will become important to find appropriate extensions of such code-length
functions to R¢. That is, given Ls on Q¢, we will want to find an appropriate relaxed
function l; on RY, so that descent methods can be used to solve the minimization.

To that end, we make the following definition.

Definition 3.11. Let l5(x) be a function from R? to R. I is a §-approzimate code-
length function in case there exists a code C; on Q¢ with associated code-length

function Ls, and a constant «, satisfying
l5(%) — Ls(%)| <, VX €Qf (3.106)
and

min Ls(%) < ls5(x) < max Ls (%) (3.107)
£EQY: |[R—x]lo0 <5 €QY: |R—x[loo <8



3.8. 0-QUANTIZED CODES 37

Formally, we extend the notion of asymptotic optimality to include d-approximate

code-length functions.

Definition 3.12. A §-approximate code-length function, I; on RY, is asymptotically

optimal in case
lg(X)

lim max

= 3.108
r—oo |x||<r dlogr ( )

The §-quantized code on Q¢ induced by the natural code C; on Z% is the natural
code on Q%, which we’ll denote Cj z(X). Its code-length function L (%), according

to equations (3.45), (3.46) on page 23, and remark 3.4 on page 35, is given by
d
Lsz(%) =Y Ly(i;/0) (3.109)
j=1

— S log((is1/6 + 1)) + 2log(llog(la;1/5 + D] + 1)) +2  (3.110)

j=1

That L; »(X) is asymptotically optimal according to Definition 3.12 follows directly
from the asymptotic optimality of L; on Z9.
Similarly, the §-quantized codes on Q¢ induced by the [ and I' codes described

in sections 3.6 and 3.7, have respectively the code-length functions

Ls2(%) = ([log || [%|/6 + 1]|]) + log |S(2Mesll%/5+1y | 4 g and (3.111)
L1 (%) = ([log || 1%/6 + 1][1]) + log |S(2MellIK/o+1ITY| 4 ¢ (3.112)

according to equations (3.68) on page 29 and (3.88) on page 33, as well as remark 3.4
on page 35. That these code-length functions are asymptotically optimal according
to Definition 3.12 follows directly from the asymptotic optimality of Ly and L; on
Z4,

The development of d-quantized codes assumed that § > 0 was an arbitrary real
number, specified in advance, and available, “for free”, as it were, to both the encoding

and decoding process. By specifying § as part of the coding process, we can obtain
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a code on a dense countable subset of R? allowing us to approximately encode any
real vector to any desired degree of precision. We do this using the indexed coding

scheme described in Section 3.5. We begin with a definition.

Definition 3.13. Let Q7 denote the set of diadic reproduction points:

Q22 m:qge Z,me 2% (3.113)
= J @ (3.114)

0: 0=279, qeZ

Q¢ is countable and contains reproduction points to any arbitrary finite precision.

That is, given an arbitrary vector x € R?, Q% contains points arbitrarily close to it.

Now we proceed with the construction of an indexed code on Q¢. Let C be a fixed
code on Z% and, for each § > 0, let C; denote the §-quantized code on Q¢ induced
by C' as described in Definition 3.9. Let D 2 {Cs:0 =279g € Z} be the countable
subset of such codes corresponding to quantization widths 6 = 277 for some integer
q, and, for all Cs € D, let Cy(Cy) 2 C7(q). We observe that the union of the domains
of the codes in D is Q?. Let C; be the resulting indexed code on Q¢ constructed from
D and C,.

If X € Q7 , then it has more than one candidate representation of the form
% = 27%m. In fact, it has infinitely many, for if £ = 2 %m, then also * = 279" 1(2m).
The indexed code chooses the representation with the shortest code-length, so, if

% € Q% its codeword will be
Cr(x) =Cy(q")C(m") (3.115)
where ¢* and m* satisfy

(¢*,m*) =arg min Ly(q)+ L(m) (3.116)

qg,m:279m=x%
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By construction, the code-length function of C; is

L;(X)=arg min Lyz(¢)+ L(m) (3.117)

g,m:2-9m=x

Definition 3.14. When the code C above is the natural code C; on Z%, then we’ll
call the code C; constructed from it the natural code on Q% writing C,(%), and

writing L (X) to indicate its associated code-length function.

Remark 3.5. If % is a reproduction point in %, then it codeword under the natural

code is
where ¢* and m* satisfy

(¢*, m*) =arg min Ly(q) + Ly(m) (3.119)

¢,m:2-9m=x

In other words, the codeword for X under C'y really is the natural code on an integer

vector (¢*, m*) € Z4" that determines it, and its code-length function is

Lz(x)=arg min Lz(q)+ Lz(m) (3.120)

q,m:2-9m=x

3.9 Codes Derived From Probability Mass Func-

tions

The previous sections exhibited the explicit construction of some codes on Z%. It is
also possible to derive a code from a probability distribution, and, more importantly,

from a parametric family of probability distributions.
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Definition 3.15. If p(m) is a probability mass function on 2", then the Kraft In-
equality, Theorem 3.1 on page 14, guarantees the existence of a code C, with code-

lengths L,(m) = [—logp(m)]|. C, is referred to as a Shannon code associated with

p(m).

Remark 3.6. We will often write about the Shannon code C,, associated with p(m).
Although such a code is never unique, the code-lengths L, are, which is all we really

care about.

Now suppose P = {pp(m)} is a family of probability mass functions on Z",
indexed by a real-vector b € R?, and, for each py, € P, let C}, and Ly, be the associated
Shannon code and code-length function respectively. Let D = {C}, : b € Q?}, where
Q“ is the set of diadic reproduction points defined in Definition 3.13. Then D is a
countable collection of codes indexed by the elements of ¢, so we can build from it
an indexed code C(m) on Z". Following the construction in Section 3.5, let Cy(b)

be a code on b € Q?. Then the indexed code is

C(m) £ Cy(h)C; (m) (3.121)
where b satisfies
b = arg min Ly(b) + Ly, (m) (3.122)
beQd

The preceding construction plays a crucial role in the theory of minimum description-
length (MDL) estimation, which will be discussed in Chapter 4. In fact, for the given
parametric family, P, and the particular quantization set Q? and coding scheme Cj,
b above is the MDL estimator, because it yields the shortest two-part description

(code-length) of the data m.
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3.10 ¢-Quantized Codes Derived From Probability
Density Functions

Let F = {fu(x)} be a family of probability density functions on R", indexed by a
real-valued vector b € R?. We can combine the methods of the last several sections
to create d-quantized codes on R" based on F. Let § > 0 be fixed. We begin by
quantizing R" into d-sized cubes whose centers are reproduction points in Q)§. For a
given b, each of these cubes has an associated probability mass, which is the cube’s
probability under f;,. The quantization therefore allows us to convert the family
F = {fo(x)} of pdfs on R" into a family Ps; = {psp(X)} of pmfs on QF. In more
detail, if Vj(x) denotes the quantization cube whose reproduction point is X € QF,

then psp(X) is given by
A

Pob(X) = / fo(x)dx (3.123)
JVs(%)

Now that we have a family of pmfs, we can follow the methods of the previous section
to create an indexed code Cs5 on @Qf. For each psp € Ps, let Cspn and Lsp be the
associated Shannon code and code-length function respectively. Let D = {Csp : b €
Q?}, where Q¢ is the set of diadic reproduction points defined in Definition 3.13.
Then D is a countable collection of codes indexed by the elements of Q% so we can
build from it an indexed code Cs(%) on Q. Following the construction in Section 3.5

on page 25, let Cy(b) be a code on b € Q¢. Then the indexed code is

C5(%) = Co(B)Cy5(%) (3.124)

where b satisfies

~

b = arg min Ly(b) + Lsp(X) (3.125)
beQ?



Chapter 4
Log-Penalized Linear Regression

This chapter discusses the theoretical motivation for the log penalty as well as prac-
tical methods for solving the log-penalized linear regression minimization. When
one takes a complexity-based approach to estimation, as embodied by the minimum

description length principle, the log penalty emerges quite naturally.

4.1 The Minimum Description-Length Principle

The minimum description-length (MDL) principle was developed by Rissanen [15],
based on the pioneering work in algorithmic complexity by Kolmogorov [10], Chaitin
[3], and Solomonoff [16]. The principle relates parametric estimation theory to coding
theory by asserting that the estimate be associated with a minimum-length code on
the data. Using ideas that parallel those of algorithmic complexity, Rissanen defines
the complexity of a data set to be the code-length of the data with respect to an
indexed code induced by a parametric family of probability distributions. From this
perspective, complexity is just a synonym for code-length with respect to an identified
code.

Let {p,(m)} be a family of pmfs on 2", indexed by a real vector b € R%. Suppose
that we are given data m generated from the probability distribution whose index is
by that is, m ~ pp,(m) and that by is unknown. We would like to find a good

estimate b of the true but unknown underlying parameter vector by.

42
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To that end, let C}, and Lj be the Shannon code and code-length function as-
sociated with py, let Q% be the set of diadic reproduction points on R? as defined
in Definition 3.13, and let C'(b) be a code (any code, for the moment) on Q? with
associated code-length function L(b). As illustrated in Equation (3.121) on page 40,

m € Z" can then be encoded with an indexed code C; as

Cy(m) = C(b)Cy(m) (4.1)
where b satisfies
b = arg tr)rég}[ L(b) + Ly(m) (4.2)
= arg min L(b) + [— logpp(m)] (4.3)
beQ?

In Equation (4.2) above, b is the MDL estimate. Note that, for any b € Q? whatever,
m can be described as C(b)Cp(m), but that the b selected above is the one that
attains the minimum code-length from among all possible choices of b. The complexity
of m is defined to be its code-length under this coding scheme, L(b) + [~ log pg (m)],
and the complexity of b is defined to be L(f)) (Rissanen actually uses a more involved
definition to define what he calls the stochastic complexity of m, but our definition
captures the spirit and is sufficient for our purposes.) The structure of the two-part
code reflects our competing desires to both choose a b that fits the data m well and
to choose a b of low complexity.

Note also that there is nothing particular about Q. Any dense countable subset of

R would do. We focus on Q7 because it is convenient. Finally, note that b depends

upon the code C chosen.

Definition 4.1. Let P = {pp(m)} be a family of pmfs on Z", indexed by a real
vector b € R?, and let Q be a dense countable subset of R on which a prefix-free
code C' with code-length function L is defined. Then the MDL estimator determined
by P,Q, and L is

b = argmin L(b) + [~ log py(m)]
beQ
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As noted above, the MDL estimator depends upon the choice of C'. The code C
embodies our inherent preference for certain kinds of models. Different choices lead
to different MDL estimates. Rissanen comments on this in [15]. He notes that while
this may be formally equivalent to a Bayesian approach, and therefore just as ad hoc,
the coding perspective naturally causes one to focus on succinct codes rather than
on prior probability distributions, which can be a liberating viewpoint. From the
Bayesian perspective, one may question whether the chosen prior distribution truly
reflects an underlying generation mechanism for the data. However, from the coding
perspective, any code that yields a succinct coding of the data is perfectly acceptable.
Further, when the coding perspective is adopted, this dissertation observes that it
makes sense to consider only asymptotically optimal codes. The naturalness with
which this conclusion follows from the coding perspective also reinforces Rissanen’s
observation that the coding perspective can lead to a different choice of equivalent
prior, since it leads to what we have been calling the natural code, which does not

belong to any standardly recognized parametric family of probability densities.

4.2 MDL On Continuous Data

The MDL method can be extended to handle continuous rather than discrete data.
Let F = {fuv(x)} be a parametric family of probability density functions on R”"
indexed by b € R? and let C(b) be a code on Q¢ with code-length function L(b).
We assume that the data x is generated from the pdf whose index is by that is,
X ~ fp,(x)—and we seek a good estimate b for the true underlying parameter vector
by.

We begin by observing that the problem can be reduced to that of discrete estima-
tion by quantizing the domain. Let ¢ > 0 be given. We use the construction detailed
in Section 3.10 on page 41 to convert F into a family P = {p.} of pmfs defined on
Q". We can then use the MDL method described in the previous section to find an
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estimate b of the quantized data Q"(x) under the parametric family P, yielding

~

b, = arg min L(b) + [~ 10g p.(Q7 (x))] (4.4)

We can go a step further. In theory, we'd like € to be arbitrarily small. For
increasingly smaller €, the approximations Q7 (x) ~ x and p.p(X) ~ fp(X)e” become

increasingly accurate, which means that the approximation
~logpen(%) & — log fu(%) — nloge (4.5)

becomes increasingly accurate, leading to the following chain of approximations

~

be = arg min L(b) + [~ log pen(Q¢ (x))] (4.6)

~ arg min L(b) + [ log fi(x) — nloge] (4.7)
beQd

~ arg min L(b) + —log fu(x) — nloge (4.8)
beQd

= arg &HQ% L(b) — log fun(x) (4.9)

and to the following definition.

Definition 4.2. Let F = {fy(x)} be a family of pmfs on R", indexed by a real
vector b € R?, and let Q be a dense countable subset of R on which a prefix-free
code C' with code-length function L is defined. Then the MDL estimator determined
by F,Q, and L is

~

() = arg min L(b) ~ log fo(x)

4.3 MDL And Regression

In the regression setting, we are given n pairs of data {(x;,4;)}, x € R?, y; € R,

and we assume a relationship between x and y governed by a deterministic function
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hy, : RP — R belonging to a parametric family % = {hy,(x)} indexed by b € R4
and then corrupted by zero-mean additive Gaussian noise z with known variance o%.
That is,

Yi = h’bo (X7) + Zi, Zj %1 N(O, O-%) (410)

Let y € R" be the vector whose i component is y;. Let X be the n x p matrix whose

b component is hp(x;). Then an

i" row is x;. Let hy(X) denote the vector whose i’
alternate formulation of the above, assuming X to be fixed and given, is that y is a
random variable drawn according to a Gaussian distribution with mean hy,(X) and
variance o5 1,. If we let F = {fp(y)} be the parametric family of such distributions,

indexed by b € R?, and given by

Al 1) v
fb(Y)_< ) e ¥z (4.11)

\/ 271'()’%

then we can apply the methods of the previous section to obtain an MDL estimate b

of the true underlying parameter vector by.

Remark 4.1. It will be convenient in the following derivation, and in many of the
subsequent, derivations, to use the natural logarithm, rather than the log base 2.
When the natural logarithm is used, the code-length function L must be thought
of as expressing code-lengths in nats, rather than in bits, so that the units remain
comparable. Formally, a nat is log, e bits. So if i(b) is a code-length function
expressed in bits, then L(b) = L(b)/log, e is the equivalent code-length function in

nats.

Proceeding with the derivation of the MDL estimate:
b = arg min L(b) — log fu(y) (4.12)
beQd

= arg min L(b) + nlog4/2m0% + y — hp(X)]]? (4.13)

1
gyl
beQ4 207,

_ 1
= arg min L(b) + Elly — I (X)||? (4.14)
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= arg min ||y — hp(X)||* + 207 L(b) (4.15)
beQ@“

The linear regression form of MDL estimation occurs when the family H = {hy,(x)}

is the family of linear functions on x given by hy(x) = b”x, yielding
b = arg min ||y — Xb|® + 203 L(b) (4.16)
beQ?

At this stage, there are a couple of impediments to solving (4.15) or its linear form
(4.16) to actually yield an estimate for a particular data set (X,y). One problem is
philosophical; the other is practical. The philosophical problem is that we don’t
necessarily know what constitutes a good code-length function L to use in the above
minimization. The practical problem is that, given a particular code-length function
L there may not exist efficient computational methods to solve the minimization.

Regarding the first problem, this dissertation argues that the natural code-length
function on ¢ is an obvious choice for L, both because it is natural and because it
is asymptotically optimal. The philosophical reasons behind this choice are discussed
in greater length in Section 4.4.

Regarding the problem of computational efficiency, various relaxations can be
made to yield a computationally tractable solution in the linear case. While the
natural code-length function represents a theoretically sound choice regarding the
MDL solution to the general regression problem (4.15), this dissertation focuses only

on tractable methods for the linear case (4.16).

4.4 Motivation For Asymptotically Optimal Codes

Using the MDL method is nearly equivalent to performing Bayesian maximum a pos-
teriori (MAP) estimation, although there are some differences induced by the integer
constraints of coding. The MDL method uses code-lengths to assess whether one can-
didate model instance is less complex than another, and therefore inherently prefer-
able, while the Bayesian method uses a prior probability distribution to assess whether

one candidate model instance is more probable than another, and therefore inherently
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preferable. In the discrete case, there is a direct correspondence between probabil-
ity distributions and code-length functions, and the equivalence between MDL and
Bayesian MAP is quite tight. Moreover, MAP estimation with a Bayesian prior is, in
turn, mathematically equivalent to penalized regression, as demonstrated in Section
5.2 on page 75. All three methods require the pulling out of thin air, as it were,
of a function—be it a code-length function, a probability distribution, or a penalty
function—whose selection determines a preference for some model instances over some
others, with seemingly no rationale for so doing. Why use this code-length function,

this probability distribution, this penalty, and not some other?

The situation is reminiscent of that in algorithmic complexity, in which the com-
plexity of a bit string depends upon the choice of general-purpose computer used to
describe it. There is seemingly no objective way to compare the complexity of two
objects without first making a subjective selection of the machinery used to describe
them. In algorithmic complexity, we can take heart from a kind of weak universal-
ity: any two specific general-purpose machines differ by at most a constant in their
complexity assignments [4, 18]. Unfortunately, this constant can be arbitrarily large,
depending on the two machines. In statistics, we can take heart from a similar kind
of universality: as the amount of data n goes to infinity, the regression method used,
be it MDL, Bayesian, or penalized, converges to the correct estimate, regardless of
the code-length function, prior probability distribution, or penalty function chosen.
As in the case of algorithmic complexity, however, the amount of data N required to
achieve a certain level of estimation accuracy can be arbitrarily large, depending on

the choice made.

Although MDL, Bayesian MAP, and penalized regression are roughly equivalent
mathematically, they offer different perspectives on the regression problem, which
may lead to different insights. Taking the MDL approach and thinking about the
problem in terms of code-lengths, it is not too difficult to see why asymptotically
optimal codes might be preferable. In a well-defined sense, an asymptotically optimal
code achieves in the limit the shortest possible code-lengths. This is not so much a
matter of being efficient as it is a matter of allocating short codewords judiciously. In

fact, asymptotically optimal codes need not be efficient and efficient codes need not
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be asymptotically optimal (loosely speaking, a code is efficient if no other code exists
that assigns as short or shorter code-lengths to all objects). While all codes must
make arbitrary decisions about which objects get shorter codewords than others, an
asymptotically optimal code is not allowed to lavish exceedingly short code-lengths
on a particular subset of objects to the detriment of achieving asymptotic optimality.
There must always be enough short codes to go around such that the worst case
code-length length is optimal to first order. Put another way, if a code puts so much
emphasis on its short codewords that the rest have to become much longer, then this
code is biasing the estimation too much.

In the absence of any a priori knowledge about the true underlying parameter
vector by, it seems wise to choose a robust code that distributes the code-length pain
as evenly as possible over the domain. Such codes are in some sense universal, because
they do as well in the limit as any code possibly could. Conversely, to use instead a
code that forsakes asymptotic optimality in order to favor a particular subset of the
parameter domain with particularly short code-lengths would be to implicitly assert
that one knew something a priori about where in the domain the true underlying
parameter vector by fell. Unless such is known to be the case, it is imprudent to use
such a code. This fact is intuitively understood by those applying Bayesian methods.
No one would seriously propose a specific prior, such as i.i.d. standard normal, on
b, since it would hopelessly bias the regression toward solutions with [|[b[2 = p.
Instead, if an i.i.d. zero-mean Gaussian prior were desired, the entire family of zero-
mean Gaussian distributions on b would be considered, with the unknown variance
op treated as a hyper-parameter whose value must be estimated. But this method
effectively leads to an asymptotically optimal code, as demonstrated in sections 5.2

and 5.3 beginning on page 75.

4.5 The Log Penalty

Having motivated above the use of an asymptotically optimal code-length function
for MDL regression, there are several we might use, for example, the /2 or I' codes,

or the natural code. Using the natural code L, on Q¢, as the code-length function in
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Equation (4.15) leads to what this dissertation calls log-penalized regression. While
the log penalty could be used in any kind of penalized regression, this dissertation
focuses on the linear regression form of Equation (4.16), showing how it can be relaxed

to yield an approximate solution in a computationally efficient manner.

Remark 4.2. In the linear regression setting, the dimensionality of b must be the
same as the dimensionality of x; € RP. Henceforth, the dimensionality of b will
be denoted by p rather than d. Note also that code-lengths in this section will be

expressed in nats, rather than bits.

We begin with the linear regression form of MDL estimation expressed in Equation

(4.16), using the natural code-length function Ly,
b = arg min ||y — Xb||> 4+ 202 L(b) (4.17)
beQp

Formally, this is an integer programming problem over the (g, m) pairs that represent
the points of the form 27%m in QQ*. We'd like to relax it to a problem on R? so that
descent methods can be used on it. If we could find a function I(b), b € RP?, that
were a good approximation of Lz(b), b € @7, then we could substitute the relaxed

problem
- : . 2 2
b = arg i ly — Xb||” + 203((b) (4.18)

This is the approach we’ll take. Unfortunately, L, is not continuous on (J?, so there

is no immediate continuous extension to RP. In fact, for any by € R”, we have

b_)gg{)ler Lz(b) = o0 (4.19)

But what if we separate Equation (4.17) as follows:

b=arg min Ly(q)+ |y — Xbl|>+20%Ls (b) (4.20)
6=2-9, beQ}

where L; 7 is defined in definition 3.9 on page 35, and where, by the admittedly

awkward notation arg ming_o—q, beqQ? above, we mean that if (§*,b*) is a minimizing
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pair of (4.20), then b = b*. Now for fixed § the minimization can be relaxed to R”
easily, because the natural code Ls 7 on ()5 has a natural extension to R?. According

to Equation (3.110) on page 37, Ls » is given by
d
Lsz(b) = [log(lb;|/0 + 1)] + 2[log([log(lb;| /6 + 1)] + 1)) +2 (4.21)
7=1
for b € Q¢. Defining a relaxed function I5(b) on b € R? by

b) 2 Zlog(|bj|/6 + 1) + 2log(log(|b;|/6 +1) +1) + 2 (4.22)

j=1

we obtain an asymptotically optimal d-approximate code-length function, as defined
by definitions 3.11 and 3.12 on page 36. However, we don’t really require all the bag-
gage of the lower-order terms, since they won’t much affect minimizations involving

l,~5. By dropping the lower order terms, we arrive at the further relaxed approximation
A

= In(fp;]/6+ 1) (4.23)
Jj=1

referred to in this dissertation as the log penalty. [5 retains the asymptotic properties

of l,~5, so, in a loose sense, it can still be thought of as an asymptotically optimal

approximate coding-length function, to first order.

Note also that 377, In([b;|/d + 1) can be expressed as

> tn(lylf+ 1) = Zl <|b |+‘5> (4.24)

= Zln(\bj| +0) + pIn(1/6) (4.25)

Jj=1

so, for minimizations in which § is a constant, we can drop the term pln(1/4) and
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use the more succinct form

ly(b) = > In(lby] + 6) (4.26)

Plugging our relaxed version [5 of Ls 7 in to Equation (4.20) leads to

A~

b=arg min Ly(q) + |y — Xb|]* + 205 Ls »(b) (4.27)
6=2-9, beQ}
~arg min_ Lz(In1/8) + |y — Xbl|]* + 2055(b) (4.28)
0ER, bERP
p
_ : - 2 2 )
—arg min Lz(In1/6) + |ly — Xbl[]" + 207, z;ln(b]|/6 +1) (4.29)
]:

P

o . 2 _ 2 2 .

=arg_min Lz(In1/8) + 2poy; In(1/8) + ||y — Xb||* + 207, 5 1 In(|b;| + 0)
J:

(4.30)

p
~ in_ 2poy,Inl/s — Xb|]*+20% ) In(|bj| + 6 4.31
arg min_ 2poyInl/d+|ly I”+ Uzz; n([b;] +9) (4.31)

]:
In (4.28), we relax the domain from quantized to continuous. In (4.31), we drop
the term Lz(In1/0) = O(Inln1/0), since it is dominated by the higher-order term
2po%1In1/5. The relaxed minimization problem (4.31) is now in a form where it

can be solved efficiently. Note that for fixed § the first term is a constant and the

minimization reduces to

P

b= arggggg||yXb||2+20§jz]1n(|bj +0) (4.32)
Section 4.8 discusses a method for solving the above minimization. With such a
method in hand, it is then straightforward to plug a handful of reasonable § values
into (4.31), say for ¢ = 1,...,10, solving (4.32) in each case, and to select the b
value yielding the minimum over all. Since (4.31) is an approximation to the total
code-length in nats required to express the data y, the value b that minimizes (4.31)

is approximately the MDL estimator.
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But this is not the only way to solve the problem. Strange as it may seem, having
used the MDL principle to motivate the penalty Y 7_, In(|b;|+0), we can now abandon
that view and give the problem a conventional statistical treatment as a penalized
linear regression problem. That is, rather than using minimum code-length as the
criterion for establishing an optimal guess 13, we can treat (4.32) simply as a penalized
linear regression problem and consider it from the perspective outlined in Chapter
2 on page 5. To that end, we'll replace 20% in (4.31) with the free variable A (in
practice we would have needed to estimate 0% anyway). Then, for each (6, \) pair,
we have the following minimization problem

~

p
b(3, \) :arggggp||y—Xb||2+A21n(\bj| + ) (4.33)

J=1

and we can use standard methods such as cross-validation to estimate the (J, A) pair
that will yield the estimator b with lowest expected prediction error. Note that (4.33)
is just a generalization of (4.32) with o% replaced by the free parameter )\, so any

computational method that solves the latter also solves the former.

4.6 Relaxations of the [? and [' Codes

We'll digress for a moment to re-emphasize that the log penalty, while natural, is
not the only asymptotically optimal code. For example, the §-quantized code-length
functions, Ls; and L;;, described in Section 3.8 on page 34, are also asymptotically
optimal, and they can be similarly relaxed to yield approximate code-length functions
on RP. We'll illustrate using the Lso code, with the derivation for the Ls; code being

virtually identical.

We’ll take the inner minimization of Equation (4.20) as our starting point, replac-
iIlg L5,Z with L,;’Q
b= arg min ||y — Xb||* + 207 Ls»(b) (4.34)
beQy
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According to Equation (3.111) on page 37, Lss is given by
Ls2(b) = Lz ([log | [B]/0 + 1|[]) + log [S(2Me N BI/H41IT) 4 g (4.35)
Defining a relaxed function, i5(b) on R? by
l2(b) 2 17 (l0g | |b|/8 + 1[]) + log |S(21P/5+11) | 4 g (4.36)
where [ is the natural relaxation of L, to R, given by
Ly (x) 2 log(|z| + 1) + 2log(log(|z| + 1) + 1) + 2 (4.37)

yields an asymptotically optimal d-approximate code-length function, as defined by
definitions 3.11 and 3.12 on page 36. As with the log penalty, we don’t really require all
the baggage of the lower-order terms. Their presence or absence will not much affect
the resulting minimization, so we can simplify things by removing them. According to
Equation (3.71) on page 29, the principal order of (4.36) above is simply pIn || |b|/d +

1||, allowing for a relaxation to principal order of
A
ls2(b) = pln|| [b|/0 + 1] (4.38)

As with the log penalty, note also that pln|||b|/d + 1|| can be expressed as

b; ?
pln||[b|/§ + 1| =pln Z(%H) (4.39)
J
_p bl + 6
:g Z b;| + 6)? (4.41)
J
1
=pln|| |b|+51||+plng (4.42)

so, for minimizations in which ¢§ is constant, we can drop the term pln1/6 and use



4.6. RELAXATIONS OF THE L? AND L' CODES 55

the more succinct form
ls(b) = pIn | [b] + 61| (4.43)

A similar process applied to the Ls; code yields the respective relaxed forms

ls:(b) £ pln|| [b|/§ + 1|, and (4.44)
AN
51(b) = pln|||b| + 41| (4.45)

Substituting the relaxed forms [, and [, for the log penalty in Equation (4.32) yields
what might be called the MDL forms of ridge and lasso regression

Bugeaos, = argmin |y — Xbl? + 203 In | |b| + 51 and (440
BlaSSO’MDL = argmbin lly — Xb||2 + 2pa% In|| |b|+ 01| (4.47)

For non-zero §, the solutions to the above forms are not precisely ridge and lasso
solutions. For example, there will be no A such that byigee()) is the solution to (4.46)
above. However, as § — 0, the solution converges to a ridge solution. At 6 = 0, the
minimizations above have spurious non-local minima at b = 0 (which stems directly
from using a quantization width of 0), but their local minima are still well-defined
and will lie precisely on the ridge and lasso solution paths respectively. This is due
primarily to the fact that (4.46) and (4.47) have the same level curves when § = 0

and is straightforward to show by taking derivatives.

For example, consider (4.46). At 6 = 0, it reduces to the simpler, unquantized

form
b= arg min [[y — Xb|[* + 2po% In [b]| (4.48)

If b is a local minimum of the above equation, then, taking derivatives, it must satisfy

- Apo2
0 = 2XTXb — 2XTy + i °%b,  which implies (4.49)
b
W0 .
(XTX + Pz I)b = X"y, leading to (4.50)

b2
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2pa%

b=(X"X+
[b]}?

I)'X"y (4.51)

The ridge solution path is shown in [8] to be b()\) = (X”X + AI)"'X"y, so, if b is
a local minimum of (4.48) then, via comparison with (4.51), it obviously lies on the

ridge solution path for A = 2pa%/||b||?.

More generally now, suppose f is a convex objective function and ¢ is a convex
penalty function. Suppose further that ¢ has the same level curves as g. That is,
suppose §(b) = h(g(b)) for some monotonic increasing function A from R to R. (If
h were not monotonic, it would map two level curves of g onto the same level curve
of g. If h were monotonic decreasing, it would invert the nesting order of the level

curves.) Then any local minimum to the penalized regression
f(b) + ah(g(b)) (4.52)
for a particular a > 0, is also a local minimum to

f(b) + Ag(b) (4.53)

for some A > 0. To see this, suppose that b were a local minimum of both (4.52) and

(4.53) above for some a > 0 and A > 0. Then, taking derivatives, we have

0=V f(b)+ AVg(b) and (4.54)
0 = Vf(b) + ah(g(b))Vg(b) (4.55)

from which we conclude, comparing the above two forms, that

A= ah(g(b)) (4.56)

Obviously (4.56) is a necessary condition for b to be a local minimum of both (4.52)
and (4.53), but it is easy to see that it is also a sufficient condition. If b is a local

minimum of (4.52) for a particular o > 0, then it is also a local minimum of (4.53)
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for A = ah(g(b)). The converse does not quite hold. If b is a local minimum of
(4.53), then it is a critical point of (4.52) for & = A/h(g(b), but not necessarily a
local minimum. The implication works in the first direction because all the critical

points of (4.53) must be local minima, under the assumption that f and ¢ are convex.

Note also that, since h is monotonic increasing, h(g(b)) is positive for all b and

hence A = ah(g(b) is positive whenever « is positive.

4.7 Sparsity

It has been mentioned that the log penalty leads to sparse solutions, an assertion that
is corroborated by the experiments in Chapter 6. From a philosophical point of view,
it should be unsurprising that a penalty based upon an asymptotically optimal coding
cost and the MDL principle should yield sparse solutions, since the MDL principle is
primarily about finding low complexity solutions, and a sparse solution is one kind
of low complexity solution. We can get a more solid grasp on why the log penalty in
particular should yield sparse solutions when we consider the shape of its level curves.
Figure 4.1 illustrates one of the level curves of the log penalty in two dimensions. The
curve is quite pointy, and it is essentially this pointiness that leads to sparse solutions.
A local minimum of the log-penalized linear regression must occur at a point b at
which the level curve of the log penalty going through b is tangent to the level curve

of the residual sum of squares term going through b. In particular, at b = b, we have

Vb{lly — Xb|]*} = —AVb{Zlﬂ(lbjl +0)} (4.57)

J

Other things being equal, the point of tangency is more likely to occur at the pointy
end of the log penalty’s level curve, which represents a sparse solution, than at the
interior of the curve, which represents a non-sparse solution. In p dimensions, the log

penalty’s level surfaces have k-dimensional pointy edges for all £ < p.
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A Log Penalty Level-Curve

Figure 4.1: This graph shows a level curve in two dimensions of the log penalty.
The pointiness of the curve is essentially what causes log-penalized regression to yield
sparse solutions
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4.8 Tterative Linearization

The main impediment to efficiently solving the log penalty minimization (4.33) is that
the objective is not convex; specifically, the log penalty term is not convex, and, in
fact, it is concave on the positive orthant. This means that, in general, there will be
multiple local minima, and the machinery of convex optimization cannot be directly
applied. However, a method called iterative linearization, described in [7], allows one
to efficiently find a local minimum of the log penalty minimization through solving
a sequence of convex minimization problems, each of which locally approximates the

log penalized minimization about the current iterate.

(Current iterate is a concept from descent method techniques, all of which are
iterative. One begins at some arbitrary point in the solution space, the zeroth iterate,
calculates a descent direction, takes a small step in that direction, leading to a new
point, the first iterate. One then repeats the process, calculating a new descent
direction, takes a small step, leading to the next iterate, and so on. This results in a
sequence of iterates that converges to a minimum.)

The linearization trick is to take a first-order Taylor series expansion of the log
penalty about the current iterate and to solve the resulting linearized minimization

problem to get the next iterate, leading to the following iterative method:

: k 1 B}
kD) — argmin ly — Xbl|* + )\Zln(|b_§. )\ +0) + T(‘bj‘ _ |b§ )D (4.58)
J |b_7‘ |+5
k J k
’ AT R o+
(4.59)
: b
= argmin |y — Xb|]> + ) : (4.60)
: 24

Equation (4.58) is derived from Equation (4.33) by substituting for the log penalty its
first-order Taylor series expansion about the k' iterate. (Actually, the substitution
made is not quite a first-order Taylor series expansion, because of the absolute-value

signs. This makes the substituted penalty function a cone with hyperplanar faces
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rather than simply a hyperplane, while still corresponding locally to the first-order
Taylor series expansion in the region of the k' iterate. It also makes the substituted
penalty have a finite minimum and mirrors the symmetry of the original log penalty.)
Equation (4.59) merely re-arranges the terms in (4.59) so that constants not affecting
the minimization are collected together. Equation (4.60) then drops those constants,

since they don’t affect the result of the minimization.

The method works as follows: we begin at £ = 0 with an arbitrary zeroth iterate,
say b(® = 0. Plugging this in to Equation (4.60), we solve the resulting minimization,
which is convex, leading to the first iterate b('). We then plug b(!) into (4.60), leading
to a new convex minimization problem whose solution gives us b®, and so on. This
results in a sequence of convex minimization problems whose solutions lead to a
sequence {b*)} of iterates that converges to a local minimum of the original log

penalized regression problem (4.33).

Note that, for each b(¥)| the minimization (4.60) is a weighted lasso minimization.
That is, it has the form

R b.
b:argminHy—XbHQ—l—)\ZM (4.61)
— W,
J

where w; > 0 are arbitrary weights. Thus, the relationship between log-penalized
linear regression and the lasso is a close one, with the log penalty solution being the
limit of a succession of iteratively re-weighted lasso minimizations. Equation (4.60)
can be solved efficiently using standard quadratic programming methods or by the
least-angle-regression (LARS) method of [6]. The LARS method is straightforward
but somewhat intricate and will not be discussed here. An excellent reference on

convex optimization methods in general is [2].

One thing that needs to be mentioned, though, is a stopping criterion for the above
iterative linearization method. The stopping criterion tells us when the current iterate
b(¥) is sufficiently close to the actual local minimum for us to stop the iteration. To
obtain a stopping criterion, we note that if b is a local minimum of (4.33), then the

gradient of the objective function at b must be the p-dimensional zero-vector, leading
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to
b,
0=V ||ly —Xb|P+ 1Y —I— (4.62)
25 5
sign(b)
_ 9XTXDb — oX"y 4 Jen(b) 1.63
YA B+t (4.63)
where
sign(b)
|b| + 01

denotes the vector whose j* component is

sign(b;)
|| + 0

The iteration can then be stopped when (4.63) becomes sufficiently small, say when

sign(b(*))

Txp*) _ oxXTy 4 \SembT)
12X"Xb*) — 2X y+)\‘b(k)|+51|| <

(4.64)
where 7 is some small positive threshold, say v = .001.
Putting together all the pieces just described, we have the following iterative

solution method for obtaining a local minimum to (4.33)

Algorithm 4.1 (Iterative Solution To The Log Penalty Minimization). Let
data (X,y) and parameters (6, ) be given, as well as a starting iterate b(® and a
tolerance v > 0. Then a local minimum of (4.33), to within a tolerance determined

by 7, is given by the following algorithm:

1. b+ b,
2. Repeat
(a) if ‘
[2X7Xb — 2XTy + Aﬁf”%ﬂ <

then stop, returning b as the solution.
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(b) Otherwise, assign
w <+ b+41

(c¢) and assign

bl
b« argmin |y — Xb|2+ A3 2l
argmin [y I*+ Zj:wj

Line 2¢ above can be computed using the LARS algorithm [6] or any standard

convex problem solver.

Remark 4.3. As is standard with any linear regression method, we assume in algo-
rithm 4.1 above that the X matrix includes a column of all 1s as its initial column,
to capture the intercept of the model. If it does not, the X matrix should be so
augmented and the dimension of the b vector increased by one to accommodate this.

As with the lasso and ridge models, it is also important to standardize the data
before performing the above algorithm. This means at the very least that each column
of the X matrix should have squared norm equal to n. The reason for normalization
is simple. Consider scaling all the values in the j* column by some large number
«. Then the corresponding coefficient values b; could reasonably take on would be
reduced by a factor of a, meaning that its contribution to the penalty In(|b;|+d) would
be very small, essentially encouraging introduction of this predictor into the model.
In order not to bias the process toward one predictor over the other, we normalize
the columns. It is less crucial to normalize y, though this is also standard practice.
It is also less crucial to subtract out the mean p; of each column of X (except the
first column of all ones) from each element in the column, resulting in a matrix each
of whose columns has mean zero, though this is also standard practice and results in

a solution that is translation independent.

Remark 4.4. It is important to remember that (4.33) is non-convex and therefore
has multiple local minima in general, and that algorithm 4.1 only leads to one of these

local minima, not necessarily the best. The local minimum found depends entirely
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upon the initial choice for the zeroth iterate b("). (In practice the solution will also
depend upon the tolerance +.)

Neither ridge nor the lasso has this deficiency. For a particular A value, the ridge
and lasso minimizations are convex, leading to a global minimum. However, it should
be pointed out that finding the solution for a particular A value is not the end of
the problem. One must still use some method, such as cross-validation, the Akaike
criterion [1], etc., to estimate which A value leads to a model with minimum prediction
error, and when this aspect is factored into the equation, the problem again becomes
non-convex, even for ridge and the lasso.

Finally, the log penalty leads to sparser models than the lasso, and Chapter 6
demonstrates examples in which these sparser models have comparable or better
prediction error than the lasso. So, in cases in which sparsity is desired, or believed
to be a property of the solution, the log penalty may be preferable to the lasso. After
all, there is no reason a priori why the local minimum of one method might not be
sparser and even have lower prediction error than the global minimum of another
method. This is seen readily when one compares the performance of ridge, whose
solutions are global minima, against the log penalty in the simulated example whose

results are tabulated in Figure 6.1 on page 89.

4.9 Obtaining Different Solution Paths

A good way to think about the problem of solving for b(, \) in (4.33) is to think of
0 as being fixed first, and then to think of the resulting minimization as having just
the single free parameter A, for which we desire to obtain the solution path bgs(\)
as A progresses through a finite set of values Ay,..., Ay, ranging from A\; = 0 to
AN = Amax- At A\ = 0, the solution 55(0) is the ordinary least squares solution. As \
grows, increasing from 0 to Ay, the solution path 55()\) shrinks toward the origin.
Finally, at Ay = Amax, Ds(Amax) = 0.

For a fixed 6 and particular range of A values, it is possible to obtain different

solution paths, depending on whether one increases A from zero or decreases it from
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Amax; and depending on how one selects the zeroth iterate to begin the iterative
solution process. One reasonable approach to selecting the zeroth iterate for Ay is to
use the solution value 6(5, Ar_1). That is, the starting point is taken to be the solution
for the previous A-value. If successive A-values Ay, ..., Ay are close to each other, the
solution to the current A-value should be close to the solution for the previous -
value, so starting there makes sense and is more likely to ensure continuity in the
solution path. Another reasonable approach is simply to choose b(® = 0 for all \;, in
which case the solution path is independent of whether one increases or decreases A,
since the zeroth iterate in each case does not depend on the solution to the previous
A-value.

Assigning the zeroth iterate to be Bg(Ak,1) as Aincreases from Ay = 0t0 Ay = Amax
results in what we’ll call the backward method. Assigning the zeroth iterate to be
}35()\k+1) as A\ decreases from Ay = Anax down to A\; = 0 results in what we’ll call
the forward method. These methods are so-named because they have something in
common with the traditional greedy statistical techniques for subset selection termed
forward and backward stepwise regression respectively. Descriptions of forward and
backward stepwise regression abound, and can be found in [5, 6, 8].

Assigning the zeroth iterate to be 0 for all A results in what we’ll call the fized
method. The fixed method is obviously less sensitive to initial conditions, and also
has the nice theoretical property that its first iterate is always the lasso solution. The

forward and backward methods are greedier, but exploit continuity assumptions.

Algorithm 4.2 (Forward Method). Let standardized data (X,y), a fixed 6 > 0,
a sequence-length N > 1, and a tolerance v > 0 be given. Then the forward-method
solution path l:)(g()\k), k=1,...,N,is given by the following algorithm:

1. b® 0
2. Amax < 201Xyl s
3. A\ A /(N — 1)

4. )\N < )\max
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5. Repeat for k < N down to 1

(a) Bs(M)  Algd.1(X.y, 8, A\, b®, )
(b) b = by(As)
(€) A1 4= A — dA

Amax in 2 is calculated to be the smallest A value that will yield a solution of
0 as a local minimum of (4.33). (Therefore the first iteration of the above loop is
irrelevant, since its solution is known to be 0, and could be optimized out.) The value

is obtained by considering that at a local minimum b the gradient must be 0. This

leads to
bj]
0=V ||y - XbJP+2Y 2 — (4.65)
= M+
en(b)
9XTXb — 2XTy + A S8 4.66
TN (4.66)

where |b| and sign(b) are the vectors whose j™ components are sign(b;) and |b;|
respectively. We run into a slight problem when we try to solve (4.66) for A by
plugging in b = 0, because the sign function is discontinuous at 0, or, in other words,
|b;| is non-differentiable at 0. A non-differentiable point is a local minimum if 0
belongs to the subgradient at that point. Let us extend the definition of sign(b) so
that it represents the subgradient of |b|. To be precise, we'll define

{1} b, > 0
sign(b) ={v:v; € {-1} b < 0 (4.67)
[ila 1] bj = 0

Generalizing(4.66) and using our extended definition of sign, we have that b is a

local minimum in case

sign(b)

0c2X™Xb — 2XTy + N\ -2 L
YA B+

(4.68)
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which at b = 0 implies that

A
2X"y € gsign(b) (4.69)

leading to

A= 201X yl|oc (4.70)

Algorithm 4.3 (Backward Method). Let standardized data (X,y), a fixed § > 0,
a finite, monotonically increasing sequence {\, }*=V satisfying \; = 0, and a tolerance
v > 0 be given. Then the backward-method solution path Bé()\k), k=1,...,N,is
given by the following algorithm:

1. b® —o0
2. Repeat for k< 1to N

(a) bs(A\p) < Algd 1(X,y,8, A\, b® )

(b) b « by(Ag)

Remark 4.5. Note that the value A\, as calculated in algorithm 4.2 cannot be used
for the backward method. Because of the non-convexity of the problem, nonzero
minima with associated A\ values higher than the 0-solution’s A,.x can and do occur.
Some ad hoc method must be used to determine a reasonable value for Ay in the
backward method. The value should be high enough that bs(Ay) = 0.

Algorithm 4.4 (Fixed Method). Let standardized data (X,y), a fixed 6 > 0, a
sequence-length N > 1, and a tolerance v > 0 be given. Then the fixed-method
solution path Bg(Ak), k=1,...,N, is given by the following algorithm:
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1. b® <0

2. Amax — 20| X"y || s

3. dX\  Amax/(N — 1)

4. AN — Amax

5. Repeat for k< 1to N

(a) by(Mp) «— Algd 1(X,y,d, A\, b® )
(b) Ak < A — dA

Remark 4.6. The fixed method as defined above is more like the forward method,
since for every \ its zeroth iterate starts at b(®) = 0. One could just as easily define
a fixed method in which for every ) the zeroth iterate started at b(®) = b,g, the
least-squares solution. Such a method would be more like the backward method,

and, obviously, would not yield the same solution path.

As mentioned earlier in this section, the forward and backward methods are related
to forward and backward stepwise regression. Forward regression adds to the current
model the predictor that most reduces the norm of the current residual ||y — Xb||.
Backward regression subtracts from the current model the predictor that least in-
creases the norm of the current residual. These methods do not in general yield the
same sequence of predictor subsets. Continuous subset selection methods are able
to add “a little bit” of a predictor at a time, yielding continuous solution paths.
This phenomenon is discussed in [6, 17], and comparisons to forward and backward
stepwise regression are drawn. Because the lasso is convex, its minima are global,
and forward/backward methods yield precisely the same solution paths. While the
log penalty provides for continuous subset selection via continuous solution paths,
the non-convexity of the log penalty means that forward and backward methods will

not in general yield the same solution paths. Nevertheless, because its solutions are
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based on iteratively solving weighted-lasso problems, many of the associations be-
tween lasso and stepwise regression still apply. For example, when the log penalty
forward method adds a predictor to the active set (the active set is the set of predic-
tors whose coefficients are currently non-zero; see [6]), it will be the one most highly
correlated with the residual, as in lasso. When the log penalty backward method
drops a predictor from the active set, it will be one whose coefficient value has been

driven to 0, as in lasso.

Stepwise regression and lasso can be seen as opposite ends of a spectrum, with
the log penalty sitting somewhere in between. On the greediest end, we have stepwise
regression, which, when it adds a predictor to the model, adds the entire predictor,
assigning its associated coefficient to have full magnitude, that corresponding to the
least-squares solution for the current set of predictors. On the least greedy end, we
have the lasso, which, when it adds a predictor to the model, increases the magnitude
of that predictor’s coefficient only until another predictor becomes equally worthy
of addition to the model, based on correlation with the residual. Somewhere in
the middle is the log penalty. When it adds a predictor, it doesn’t add the full
predictor, but neither does it stop increasing that predictor’s coefficient when another
predictor becomes equally worthy of addition, based on correlation with the residual.
The log penalty will prefer the existing active predictor to the inactive predictor,
continuing to increase the active predictor’s coefficient, and not adding in a new
predictor until its correlation with the residual actually exceeds the correlations of
the active predictors. The exact relationship can be determined when we consider
that a local minimum solution when restricted to the active predictors must have
gradient zero. Accordingly, for a particular A and ¢, let b, be a local minimum of the
log-penalized linear regression, restricted to just the active (non-zero) components.

Then b, satisfies

b
0=V, |[ly = Xabal/® + A % (4.71)
A b [+
JEA ‘ J
T T sign(by)
= QXAXAbA — 2XAy + A (472)

ba|+61
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which implies

A sign(b )
Xy =X, by) = 222222 4.73
A(y A A) 2 |bA‘ + 51 ( )

Now, if we define ¢, 2 X' (y — X4ba) to be the vector of correlations of the active

predictors with the current residual, then

Asign(ba(j)) .
ci=—-———""2 VYjeA 4.74
IO b
which implies
(soios ) bl +9)= 5. Vi e
sign(ba(j)) 2’
rom considerations discussed in |6, , , we know that c¢;/sign(o4(7)) = |¢;|,
F id i di d in |6, 13, 14 k h /sign(ba(y g
leading to
. A ,
il (1ba(7)| +0) =5, VieA (4.76)

From (4.76) we deduce that if k is the index of a predictor that has just become
active (meaning its coefficient by has been 0 up until now), and if j is the index of

any already active predictor, then

dler) = le|(|ba(y)] +9)  whence (4.77)
e = (1 + 22 (4.79

This raises the bar for new predictors to enter the model, effectively creating sparser

models.
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4.10 Overcomplete Systems

Since the log penalty aggressively seeks sparse solutions, it is an apt method whenever
there is reason to believe that the true underlying solution is sparse, or simply when-
ever a sparse solution is desired on practical grounds. If one is faced with a regression
problem in which the number of predictors is large, say in the thousands, but one
suspects that only a handful of predictors actually play a role in the phenomenon
being investigated, then the log penalty’s preference for sparse solutions will be an

advantage.

A particular kind of problem in which this often applies is that of an overcomplete
system, in which the number of predictors p exceeds the number of data points n.
If p >> n, then a sparse solution (sparse in the sense that the number of predictors
selected to be in the model is far fewer than the total number of available predictors)
can be returned by virtually any method, even ordinary least squares, but this will
be an artifact of the problem set-up only, as one can always fit the data exactly
using no more than n predictors, and, in fact, any independent set of n predictors
would do the job! In such a case, we are unlikely to place too much faith in the
particular n predictors returned by a regression method. What we need in this case
is a solution that is sparse even relative to n. If we get a solution that uses, say, only
n/2 predictors, then there is reason to believe that the solution is significant rather

than artifactual. Once again, the log penalty may be of use.

When dealing with an overcomplete system, one can use the LARS/lasso method
[6] to winnow the set of predictors to a much smaller set—though it will still be an
overcomplete set—before applying a log penalty algorithm to the data. An exam-
ple will illustrate the technique. Suppose our standardized data matrix X were of
dimension 50 x 10,000. Rather than running the log penalty directly on all 10,000
predictors, we first apply to X the LARS algorithm for obtaining the entire lasso
solution path. The computation cost is merely one log penalty iteration. We then
examine the solution path and mark as useful any predictor that at any time is active
(has a nonzero coefficient) along the path. The number of useful predictors so marked

will be greater than 50 but far less than 10, 000. We then create a new data matrix
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X containing only the columns of the useful predictors, and perform log-penalized
regression on X. The intuition behind such a procedure is that, if a predictor truly
plays a role in the relationship between x and y, it will probably become active at
least somewhere along the lasso solution path. Further, since the log penalty is even
more stringent about sparsity than lasso, if the predictor is never active under lasso,
it’s unlikely ever to be active under the log penalty. Both the standard log penalty
algorithm and the LARS-winnowed pre-processing method were applied to the Golub

gene classification experiment described in Section 6.2, yielding identical results.

Remark 4.7. Note that the useful predictors, as defined in the preceding, are those
that become active at least once along the lasso solution path, which is not the same
thing as those that are active at the end of the solution path (A = 0), corresponding
to the minimum /' norm solution. It is clear from the analysis given in [6] that, in an
overcomplete system of full rank, no solution can have more than n predictors in it,
and exactly n predictors will participate in the solution for A = 0. (The same must
be true of the log penalty’s solutions, since, ultimately, each solution is the result of
a weighted-lasso minimization.) Nonetheless, the number of predictors that are ever

active along the solution path can easily exceed n.



Chapter 5

Comparing The Penalties

We have seen that the MDL form of linear regression, when relaxed to RP, leads
to a penalized linear regression in which the penalty is interpreted as a coding cost.
In particular, the log penalty corresponds to an asymptotically optimal coding cost,
which this dissertation has argued to be a desirable property in a penalty function.
However, when we consider ridge and the lasso from this viewpoint, interpreting their
penalties as coding costs, the penalties are not asymptotically optimal. Does this
mean that they are biased toward a particular area of the solution space, as this
dissertation has argued? If so, toward what portion of the space are they biased?
Further, since ridge and lasso are standard methods that have been proven to work
well in practice, is asymptotic optimality really that important? Perhaps surprisingly,
it turns out that it is possible to view ridge and lasso from a perspective in which their
penalties can be re-interpreted as log-like penalties that are asymptotically optimal,
providing further support for the notion that asymptotic optimality is actually an

important concept.

72
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5.1 Asymptotic Optimality Vis-a-Vis Ridge and

the Lasso

It is clear that ridge regression,

bridge (1) = argmin [ly — Xbl|* + A[[b]’ (5.1)
and the lasso,

Braso(A) = axgmin [y — Xbl|* + A[[b]| (5.2)

have penalties that are not asymptotically optimal when interpreted as coding costs.
In the case of ridge, the penalty is g(b) = ||b||?; in the case of the lasso, the penalty
is g(b) = ||b]|1; and for both these cases, we have

lim "8%ei<r9(b) (5.3)

T—00 plnr
In point of fact, a penalty need not be asymptotically optimal in order to perform
well on a particular set of data (X,y). For one thing, the least squares solution
b, corresponding to A = 0, is the “biggest” possible solution we can get. That is,
regardless of the value of A, all solutions b(A) will lie in the set {b : g(b) < g(by)}.
So asymptotics of the penalty function as b — oo never come in to play. All we care
about is that the penalty have certain desirable properties (whatever those may be)
in a region near by, the true underlying solution. Further, we have a free parameter
A to play with, whose value can be selected as a function of the data (X,y) in the

hope of conferring such desirable properties upon the penalty function.

Note that if we were not allowed to choose A as a function of the data, but were,
instead, required to use some fixed value of A, say A = 1, regardless of the data,
then the ridge and lasso methods would not perform well at all. In fact, given the
equivalency between penalized linear regression and MAP estimation demonstrated

in Section 5.2, the methods would be biased to favor estimates b with particular /2
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and [' norms respectively, just as predicted by the theory outlined in Section 4.4 on
page 47. Note also that the MDL linear regression formulation does not rely on A in
the same way as do ridge and lasso. Equation (4.18) implies that A = 20% is always

a reasonable assignment, independent of the data (X,y).

So, for ridge and the lasso, the ability to scale A based on the data is essential.
It allows us to tune the penalty so that it is neither too big nor too small in a
crucial area near the true solution by. Since A is chosen only after looking at the
data, the possibility arises that the choice of A may create an “effective penalty”
on b that is quite different from the apparent [? or [' penalties being used. This
dissertation conjectures that, when methods such as cross-validation for determining
A are taken into account, the A\ value chosen effectively scales the penalty such that
it approximates, to first order up to an additive constant, an asymptotically optimal
coding cost, in the neighborhood of by. It is not easy to formalize cross-validation
mathematically. However, when other reasonable methods for selecting A\ are used,
we can show that this is what is going on, at least in the cases of ridge and lasso,

though one might easily speculate that the phenomenon is quite general.

To be more precise, let A\(X,y) denote the A\ value selected, as a function of
the data, by some method such as cross-validation. Let g(b) denote the penalty,
not necessarily an asymptotically optimal one, being used in the penalized linear
regression. Then the conjecture is that there exists an asymptotically optimal penalty

function g(b), such that
AX,¥)Vig(bo) = 205 Vig(bo) (5.4)

where the exact nature of the approximation will be made clear in the derivations
that follow, and where the term 20% comes from (4.18) on page 50. Note that two
different penalties A\;g; and A9 will yield the same penalized regression solutions
if and only if they have the same gradients. To the extent that A;g; and \yg, have
approximately equal gradients in a neighborhood, their local minima in that neigh-
borhood, if any, will be approximately the same. The penalties are free to differ by

an additive constant, since constants don’t affect the minimization over b. This is
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what is meant by saying that \;¢g; and Asgo are approximately the same to first order
up to an additive constant. Thus, when (5.4) holds in a neighborhood of the true
underlying parameter vector, any solution in this neighborhood attained by using
the penalty g with A(X,y) will be close to a solution attained by performing MDL

regression with asymptotically optimal penalty g.

5.2 MAP Solutions to Ridge and the Lasso

This section describes a method of solving for A based on the equivalence between pe-
nalized linear regression and maximum a posteriori (MAP) estimation. When applied
to ridge and the lasso, this method yields log-like equivalent penalties.

It is well-known that, for a fixed A, and known noise 0%, penalized linear regression
is equivalent to MAP estimation under the assumption that b is drawn from a prior
distribution whose exact form is determined by A and the penalty function g(b). The

derivation is as follows:

b(\) = argmin [ly — Xb||” + Ag(b) (5.5)
Ly — Xb]? + =2 g(b) (5.6)
— ar HllIl — —_— .
s 20% y 20%9
A
2 2
= arg mb111 202 ||y Xb||* + B " ln 2moy + <) g(b) (5.7)

Z

now, letting 6 = \/20%,

= argmbln 2 ||y Xb||* + g In 270y, + 0g(b) (5.8)

= arg mln ||y Xb||* + ;L In 2707 + 0g(b) — Inc(f) (5.9)

where ¢(6) is any arbitrary function of 6,

. 1\ L lyoxbp? { 1,
= arg min — In e *z —In{ —¢ g(b)} 5.10
. <\/27r0§> c(0) (5-10)
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where now ¢(f) is chosen specifically to be ¢(f) = [ e %®db so that the expression

within the curly braces integrates to 1,

1 ! — L |ly—Xb|? { 1
= arg max e *z —e g(b)} 5.11
gme ( Tm%) 0 (5.11)

Equation (5.11) now has the form of a MAP estimation, where b is drawn according
to a distribution belonging to an exponential family parameterized by 6, and where,

conditional on b, y is drawn Gaussian with mean Xb and variance o4I,,, like so:

F(b) = ﬁe@(b), and  f(y|b) = N(Xb, 021,) (5.12)
Thus, for every A, the solution to the penalized regression in (5.5) is the same as
the solution to the MAP estimation in (5.11), with § = X\/20%. Of course, in the
penalized regression form of (5.5), the value of A is not known, and hence in the MAP
form of (5.11) the value of # is not known. For the penalized regression form, we
could use cross-validation or some similar technique to come up with a good value
for A. For the MAP form, another method suggests itself. We could treat # as a
hyperparameter and try to estimate it using maximum likelihood. That is, we could

solve

roA\ 1 ! *2;2 HY*XbHQ 1 —0g(b)
(b,H)-argn;agx(W) e 7z {%e (5.13)

or, equivalently,

- 1\ X { 1,
b = arg max e %z max {4 ——e g(b)} 5.14
&M ( , /27”,—%> 0 c(0) ( )

Taking the negative log-likelihood form of (5.14) above, we have

N 1 Y y—xb)? 1
b = argm;xx( ) e 2oy IV XP max{—ea-"(b)} (5.15)

V210 o | c(0)
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1 )
= argmin —|[ly — Xbl]* + " 1n 2o + min {fg(b) + Inc(6)} (5.16)
b 207 2 0
1
= argmiﬂ—2||y—Xb||2+min {6g(b) + Inc(8)} (5.17)
b 207 0
= arg mbin |y — Xb||*> + 207 main {0g(b) +1nc(0)} (5.18)
= arg mbin |y — Xb||*> + 20%1(b) (5.19)

where [(b) is given by

I(b) £ min {6g(b) + Inc(6) } (5.20)

When we solve (5.20) above explicitly for I(b) in the cases of the ridge and lasso
penalties, (the derivations are given in sections 5.3 and 5.4), I(b) is seen to have the

following log-like forms

Lidge(b) = pIn||b|| + @y, and (5.21)
llassn(b) = plIl ||b||1 + (%) (522)

respectively, where oy and ay are constants. Since the constants can be ignored when
performing a minimization over b, the MAP method of solving for A in a penalized

linear regression yields ridge and lasso solutions given by

Briggeap = argmin [y — Xb||* + 2po% In||b],  and (5.23)
brassonrap = argmin [y — Xbl|” + 2po% In|[bl; (5.24)

respectively. Note that the forms above have spurious non-local minima at b =
0. This occurs because we are using maximum likelihood on pdfs instead of pmfs,
yielding an infinite maximum likelihood value of the density when b = 0. If we had
used an MDL approach and quantized the domain to create true pmfs, this would
not have occurred, although the derivation would have only yielded an approximate
correspondence with penalized linear regression. Still, the form of the solutions above

indicate that the effective penalties are the relaxed [, and [;, codes described in
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Section 4.6 on page 53, corresponding to the code-length functions associated with
the I2 and I' codes, and that the proper way to remove the spurious infima is to add a
0 term corresponding to some quantization of the domain. This yields the J-quantized

forms described in Section 4.6 as the MDL versions of ridge and lasso

Bridge mpL = arg min ly = Xbl[* + 2poy In|| [b| + 61|, and (5.25)
Brassomr. = argmin [[y — Xbl|* + 2po? In|| [b] + 1], (5.26)

where |b| is the vector in the positive orthant whose j™ component is |b;|. Recall
that the above penalties are asymptotically optimal. Thus, somewhat surprisingly,
although ridge and the lasso do not seem to have asymptotically optimal penalties,
the MAP method of choosing A leads to effective penalties that are asymptotically

optimal, and which have a log-like form reminiscent of the log penalty itself.

Remark 5.1. Note that the penalties derived above are truly asymptotically optimal,
which is a stronger assertion than the conjecture of Section 5.1, which merely stated
that A scaled itself such that the effective penalty approximated an asymptotically
optimal penalty to first order near by. This situation occurs because A is not really
chosen based on the data (X,y), but, rather, based on the choice of b. This is seen

in Equation (5.20), where the minimization over 6 depends only on b, not on (X,y).

Remark 5.2. It is natural to ask what parametric family of distributions arises when

the log penalty itself is plugged in to (5.12). One obtains a distribution of the form

1 1
fo®) =25 T, o7 (5.27)

which is finitely integrable for § > 1. It is also natural to wonder what happens when
we solve for [(b) in (5.20). Since we are starting out with a log penalty, do we get an

effective penalty that is an iterated log? That is, do we get an effective penalty like
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O(In> (In|b;| +6))? No, the log penalty remains essentially unchanged, albeit with

some messy lower-order terms.

One should also remember that L is a code-length function and therefore has an

equivalent prior with respect to which it is the Shannon code, given by
f(b) =e "z® (5.28)

If we use the relaxed function [5(b) = > (|b;| + J) as an approximation of L, we get

the improper prior
1
f(b) = =+ (5.29)
I1;(1b;] +9)

The prior is improper because we have thrown away the lower-order terms. If we add

back in the O(Inln||b||) term, we get something akin to

1
T0) = T, T ) (e, |+ 572 (5:30)

which is finitely integrable.

5.3 MAP Ridge Solution
Recalling Equation (5.20) on page 77,
I(b) £ min {6g(b) + In¢(0)}

we solve for the explicit form of I(b) when the penalty function is the ridge penalty
g(b) = ||b|?>. Recall also that c(f) = [e %®)db is a normalizing constant chosen
to make the associated exponential family integrate to 1. When g(b) = ||b||?, the
associated exponential family is a Gaussian family with mean 0 and variance 1/(26),

given by

fo(b) = (ﬁ) o (5.31)

™
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Thus, we have

T\ 5
c(6) = (5) (5.32)
and
[(b) = arg m{)in 0||b]|* + Inc(6) (5.33)
= argmin 0|bl* + g ln% (5.34)
:argmein0||b||2—§ln9+§ln7r (5.35)

Taking derivatives to solve for the minimizing 6 yields

0=|b|? - % whence (5.36)
p
h= P _ (5.37)
2||b||?
Plugging this back in to (5.35) yields
p s Py P D
(b) = “b|l* == 1n +=Inm (5.38)
2||b|f? 2 2|l 2
:§+pln||b||—§ln§+§ln7r (5.39)
=pln|b||+ « (5.40)

where « is just a constant. Thus, we see that when we solve for A using the MAP
method the resulting effective penalty for ridge regression is p In ||b||, which is asymp-

totically optimal, rather than ||b]|%.

5.4 MAP Lasso Solution

Again recalling Equation (5.20) on page 77,

I(b) £ min {6g(b) + In¢(0)}
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we solve for the explicit form of [(b) when the penalty function is the lasso penalty
g(b) = ||b][1. When g(b) = ||b|1, the associated exponential family is a Laplacian
family, given by

0 p
fo(b) = <§> e !IPl (5.41)
Thus, we have
2 p
c(f) = <_> (5.42)
o
and
I(b) = arg main f]|bll; + Inc(0) (5.43)
2
= argmain9||b||] +pln5 (5.44)

:argmgin9||b||1 —plnf+pln2 (5.45)

Taking derivatives to solve for the minimizing 6 yields

0= bl —g whence (5.46)
p
0 = (5.47)
[bl];

Plugging this back in to (5.45) yields

p

p
I(b) = ——|b|ly — pl In2 5.48
T TR o4
=pln|b|; + « (5.49)

where « is just a constant. Thus, we see that, when A is solved for using the MAP
method, the resulting effective penalty for lasso regression is pIn ||b||;, which is asymp-

totically optimal, rather than ||bl|;.
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5.5 Generalized C), Solution To Ridge

In the case of ridge regression, there is another method that can be used to estimate
a good value of \. The method is based on a concept known as effective degrees of
freedom, which is a generalization of the C, statistic. Both are discussed in [8]. We

will only outline the method here, without giving insights into its derivation.

Let y» be the hat vector associated with the data y and the parameter A, given by
V 2 XB()\) With certain regression methods, for a given A, y, is a linear function
of y. That is, y, = S,y for some matrix S, whose value depends only on X and A

but not on y. This is the case with ridge regression. For ridge, we have

o= {XX'X+AI)'X"}y (5.50)
=S,y (5.51)

In those cases, such as ridge, where y, = S,y, the generalized C, method dictates

that the A\ value to use is the one satisfying
A" =arg m}\in lly — XB()\)||2 + 202 Tr Sy (5.52)

We can solve the above equation explicitly for ridge regression in the special case in
which X is orthogonal, i.e., where X?X = I, and show that \* scales the original
penalty ||b||? such that it effectively agrees with the MDL ridge log penalty (4.46) to

first order in the region near by.

In the case of ridge, we have

b)) = (X"X +AI) 'X"y and (5.53)
Sy = X(XTX 4+ AI)'X” (5.54)

The above expressions are derived in [8]. In the case in which X" X = I, they simplify.

~

In (5.53), b(A) simplifies to

b)) = (XTX + A1) X"y (5.55)
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= (I+ M) 'X"y (5.56)
1
E—— :
[ (5.57)
b]e
= — 5.58
1+ A (5.58)

where by, is the ordinary least squares solution, obtained by substituting A = 0 into
(5.57). In (5.54), Sy simplifies to

Sy = X(X"X 4+ A1) 'X" (5.59)
= X(I+ A1) 'X” (5.60)
1
= —_XX7¥ 61
1+ (5.61)
and hence Tr S, equals
TrSy =T L xXXT (5.62)
r = 1T .
A 1+ A
1
=T XX .
T (5.63)
p
=+ .64
1+ (5.64)

Substituting Equation (5.64) back into (5.52) yields

A = arg m}n lly — XB()\)H2 + 202 Tr S, (5.65)
« 2po

— in|ly — Xb()\)|? Z 5.66

argmin ly — XY + 22 (5.6

If A* above is a local minimum, then, by taking the derivative of (5.66) with respect

to A and setting it equal to 0, we see that \* must satisfy

- db(\* 2o’
0:42XTXbQV)—2XTyV’(; >—(1f?%2 which implies (5.67)
b )TdB(Aﬂ _ po

BUTTAN T (T4 )2

leading to (5.68)
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0=
L+ X" dh (14 M)

In going from (5.67) to (5.68), we have used the substitutions XX = I (assumed),
X"y = by, (5.57 with A = 0), and b(\) = by,/(1 + \) (5.58). From Equation (5.58),
we can also calculate db(\*)/d\. Substituting that back into (5.69) yields

i)\* *bls p(f%
0= I — - 5.70
L+ (1422 (1+2%)? (5:70)

)\*
= by ||* — po; 5.71
o [Pisll™ = poz (5.71)
= X[by[* = (1 + A*)po (5.72)
= \||by||> — pog — A*poy  which implies (5.73)
poy = N(||b||* — poy) leading to (5.74)
2

X v (5.75)

bl = po

Let us now consider the conjecture (5.4) and see whether A*||b||* approximately
agrees to first order up to an additive constant with the asymptotically optimal
penalty associated with ridge regression in the neighborhood of by. We'll use the
non-§ quantized form of (5.23) 2po% In ||b]| for the comparison. According to (5.4),
we only need to compare their gradients at by. The gradient of \*||b||? is given by

* 2 pO'% 2
Vp{X[b]|"} = 7 Vu{[[b|"} (5.76)
Z

b [[* — po
2po?

=— 2 b 5.77
Tonl?— po? (5-17)

The gradient of 2po? In ||b]| is

Vi {2poy In b} = poy Vi {In|b]*} (5.78)
92 2
_ 2P9z (5.79)
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We wonder whether equations (5.77) and (5.79) evaluated at b = b, are approxi-

mately equal. That is, we wonder whether

2po2, 7 2pos
S by ~ “ b, 5.80
Tonl? — 502 20~ Tbo? (5-80)

The terms on the left and right hand sides of (5.80) are now the same, except for
the denominators of the fractions, |[by||*> — po%, on the left hand side, and ||bg||?
on the right hand side. Note that b, on the left hand side is a random variable
whose value depends on the data, so we could never expect perfectly equality with
the deterministic value on the right hand side. However, the expected value of by
(treating X as fixed and the only randomness as coming from the additive noise z),

is ||bg||? + po%. So (5.80) is approximately true in the sense that

2po 2po
7 b[] — 7

b 5.81
e R T E (5:81)



Chapter 6
Experimental Results

This chapter shows the results of two experiments comparing the performance of log-
penalized linear regression with the performance of the ridge and lasso methods. The
first experiment is on simulated data, where the true underlying model is known. The
second experiment is a classification problem on micro-array data.

A general conclusion from these experiments is that the log penalty finds sparser
solutions than the lasso and that, when the true underlying model is sparse, the log
penalty generally finds a more favorable solution than lasso. However, when the true
underlying model is not sparse, the log penalty generally performs worse than lasso,
which performs about the same as the ordinary least squares solution.

The experiments all used cross-validation with the one-standard-error rule, as
described in sections 2.2 and 2.3, to estimate the optimal values of the free parameter

A, and, in the case of the log penalty, of the free parameters (4, \).

6.1 A Large Test-Suite

This test-suite was designed to measure how well the log penalty does against other
standard methods as a function of the sparsity-level of the underlying parameter
vector. A moderately large predictor set is used, consisting of 50 predictors.

The best way to describe the test-suite is to focus on just one test, at a specific

sparsity-level k£ which means that the underlying parameter vector has only k£ non-zero
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components. In order to see how well a particular regression method such as the log
penalty does at sparsity-level k, we generate 7' = 10 data sets (X4, yx), t =1,....T
at this sparsity level and average the resulting prediction errors to obtain an estimate
of the prediction error that the estimation method incurs. For each ¢, the data set
(X1, ¥kt) is generated by first generating a vector by, € R°" with exactly k non-zero
components. Each of the non-zero components is drawn standard normal. Then a
100 x 50 data matrix Xy ; is generated, with each of its entries also drawn standard

normal, and the associated y;, € R'% vector is generated, according to the equation
Vit = Xpibrt + Ziy (6.1)

where z;, € R'" is a noise vector, each of whose components is drawn i.i.d. N(0,4).
The regression method in question is then applied individually to each of the T" data
sets, resulting in estimates lA)k,t, t=1,...,T. The error associated with each estimate

is defined to be

ers = Bx[(b],x — B} x))?] (6.2)
— E[(bry — bps) xx" (byy — byy)] (6.3)
= (bpy — bpy)  By[xx"| (b, — brs) (6.4)
= (bgy — byy) I,(brs — byy) (6.5)
= |Ibrs — brl? (6.6)

where (6.5) follows because, by assumption, the components of x are drawn i.i.d.

standard normal. The estimated error is then just

N

% =7 ; Cht (6.7)
and its standard error is given by

_ ZtT:1(ek,t —ex)?
= \/ T(T — 1) (6.8)
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The above set-up was tried for the log penalty, ridge, the lasso, and ordinary least
squares. For each sparsity-level k, we get an estimate of how well the log penalty
performs relative to the other methods. As Figure 6.1 shows, the log penalty does
quite well for £ =1,...,10. It had the best performance over the entire range, with
the lasso coming in a close second, supporting the conclusion that, when the true

underlying model is sparse, the log penalty is good to use.

However, as Figure 6.2 shows, when the underlying parameter vector is not sparse,
the log penalty does not do so well. In fact, it clearly has the worst performance over
the entire range. Nevertheless, its performance in these non-sparse cases is not grossly
worse than that of ordinary least squares. By contrast, the log penalty performs

significantly better when the true underlying model is sparse.

Figure 6.3 shows the average sparsity of each method, as a function of k, for
k=1,...,10. The sparsity of a vector is the number of non-zero components in the
vector. Recall that, for each k, there are ten data sets, leading for each method to
ten different estimates with different sparsities. For each method, these ten different
sparsities are averaged, which can lead to a non-integral number. The table reveals

that the log penalty definitely leads to sparser solutions than the other methods.

In fact, it seems that the log penalty leads to solutions that are too sparse in that
they are less sparse than the true underlying parameter vector, while the lasso seems to
lead to solutions that are closer in sparsity to that of the underlying parameter vector.
However, as Figure 6.4 shows, that is somewhat misleading. Although the lasso seems
to lead to solutions with roughly the same sparsity as the true underlying parameter
vector, it is not finding the correct non-zero components. Instead, it is positing
predictors to be non-zero that are actually zero in the true underlying parameter
vector, and vice versa. What we are really interested in is that a sparse solution find
the right predictors: those that are actually non-zero in the true underlying parameter
vectors, as opposed to simply finding the right number of predictors. With this in
mind, a better measure of the accuracy of each method as regards finding predictors

that are truly involved in the underlying model is sparsity distance, which we define
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Test-Suite Errors For Sparse Models

least-squares

Test Error e

I//l
1
| log penalty

0 ! ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10

Number of non-zero components & in underlying model

Figure 6.1: This graph shows the errors associated with the four different regression
methods on sparsity levels 1, ...,10. The vertical bars at each data point are standard
error bars, showing plus or minus one standard deviation of the estimated error ey.
The log penalty does best.
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Test-Suite Errors For Non-Sparse Models
6 | T T T T T

log penalty L

lasso

S

\
\/

least-squares

w
T

0 ! ! ! ! ! ! ! !
40 41 42 43 44 45 46 47 48 49

Number of non-zero components £ in underlying model

Figure 6.2: This graph shows the errors associated with the four different regression
methods on sparsity levels 40, ...,49. The vertical bars at each data point are standard
error bars, showing plus or minus one standard deviation of the estimated error ey.
The log penalty does worst.
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Test-Suite Sparsity

True Sparsity Log Penalty Lasso Ridge Ordinary Least Squares

1 0.4 0.5 50 50
2 1.3 1.3 49.9 50
3 1.4 1.5 50 50
4 2.6 3.5 50 50
bt 2.5 5.5 50 50
6 3.3 7.5 50 50
7 2.7 6.7 50 50
8 3.6 6.8 50 50
9 4.2 7.3 50 50
10 6.3 11.5 499 50

Figure 6.3: This table shows the average sparsity of the estimates for each method as a
function of k, the sparsity of the true underlying parameter vector, for k =1,...,10.
The sparsity of a vector is the number of non-zero components in the vector.

to be

(b1, b2) = D7 [1(byy #0) — 1(by; #0) (6.9)

In terms of sparsity distance, we see from Figure 6.4 that the log penalty generally

does a better job at finding the right predictors than do the other methods.

Remark 6.1. The data was not standardized prior to running any of the regression
methods. By design, the data was generated zero-mean and of equivalent scale among
predictors. Also, the specific log penalty algorithm used was the backward method,
as described in algorithm 4.3. All methods used 10-fold cross-validation and the one-
standard error rule as described in sections 2.2 and 2.3 to determine which model along
the solution path to use. The d values tried by the log penalty were {.01,.001,.0001}.
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Sparsity Error

True Sparsity LP Lasso Ridge LS
1 06 0.5 49 49

2 1.1 1.1 48 48
3 20 1.9 47 47
4 1.8 2.5 46 46
D 29 49 45 45
6 3.5 6.1 44 44
7 4.3 5.3 43 43
8 4.4 5.6 42 42
9 2.2 5.5 41 41
10 5.3 7.7 40 40

Figure 6.4: This table shows the average sparsity distance of each method’s estimate
from the true underlying parameter vector. The sparsity distance counts 1 for each
non-zero component of the estimate that is zero in the true underlying parameter
vector, and 1 for each zero component of the estimate that is non-zero in the true
underlying parameter vector.
Example:
bywe = (1.2, =33, .7, 0, 0, ..., 0)

b (0, =16, 3, 2, 0, ..., 0)
d(b,biye) = 2

3 3



6.2. GOLUB GENE DATA 93

6.2 Golub Gene Data

The analysis of micro-array data virtually always involves an overcomplete data set.
Micro-arrays are a fairly recent tool in the statistical analysis of the role of genes
in determining phenotypic traits. A micro-array measures the expression-levels of
a set of designated genes. A gene is expressed by being converted into mRNA and
eventually into protein. The extent to which a gene is “on” is determined by the
magnitude of its expression level. Micro-arrays are capable of measuring several
thousand gene expression levels at a time. The genes are the predictors, so micro-
array data-sets generally contain several thousand predictors and generally fewer than

100 data points.

The Golub data set [9] is a case in point. Tt consists of a training set containing
gene expression levels of 6088 genes from 38 individuals (the actual number of genes
was greater, but many of these resulted in duplicate columns in the data matrix),
and a test set containing gene expression levels for the same genes on 34 different
individuals. Each of the people involved in the study was identified as having one of
two types of leukemia: either acute myeloid leukemia (AML), or acute lymphoblastic
leukemia (ALL). The goal was to develop a classifier that distinguished between the

two based on gene expression levels.

The log penalty, the lasso, and the minimum /! and /2 norm solutions were all tried
on the Golub data set. Nothing fancy was done in the way of modifying the methods
to accommodate a classification setting as opposed to a regression setting. The class
values AML and ALL were assigned real values of 1 and —1 respectively, and, in the
case of the log penalty and lasso, the resulting regression problem was solved using
cross-validation with the one-standard error rule (the min /' and /2 solutions have
no free parameters to solve for). The resulting model was used to create a classifier
in the obvious way: if b"x > 0, classify as AML, otherwise classify as ALL. This
classifier was then applied to the test set to get an estimate of its classification error.

The results are summarized in table 6.5. There are several comments to make.

The first is that the log penalty did indeed find a sparser solution than the lasso.

Its solution uses only three genes as predictors, while the lasso’s uses 11 genes, yet
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both have equally good performance on the test set. (All three genes found by the
log penalty were among the 11 found by the lasso.) However, neither do as well as
the non-sparse solution yielded by the minimum /' norm method (a 38-dimensional
solution can’t be considered sparse when there are only 38 data points), or the truly
non-sparse solution yielded by the minimum /2 norm method, indicating that, in fact,
a great number of genes actually participate in the AML/ALL distinction. That
is, despite the excellent classification performance of the three-gene classifier, the
assumption of sparsity in the underlying model is probably not valid. This does not
by any means invalidate the log-penalty results however. Its job, so to speak, is to
find sparse solutions even when the true underlying solution is not sparse, a fact that
could only make its job harder. Further, even were it known for certain that the true
underlying model were not sparse, a sparse solution might be sought on practical,
aesthetic, or explanatory grounds. In this case, the log penalty yields an ultra-sparse
solution that is nearly as good as the non-sparse solutions. One could argue that it

has done precisely what we want it to do.

Classification Error On Golub Data

Method Sparsity Classification Error

Min /2 Norm 6088 1/34
Min /' Norm 38 1/34

Lasso 11 2/34
Log Penalty 3 2/34

Figure 6.5: This graph shows the classification error associated with the four different
regression. methods.

Remark 6.2. The minimum /' and [? norm solutions are given respectively by

by & mbin |Ibl[1 subject to y =Xb (6.10)
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and

by 2 mbin |Ib|]| subject to y =Xb (6.11)

Remark 6.3. For all methods, the X matrix was first standardized by normalizing
each of its columns to have squared norm n, and augmented by a ones column.
The columns were not standardized to have mean zero. The backward method, as
described in algorithm 4.3, was used for the log penalty solutions. As mentioned
in Section 4.10, the log penalty solutions were calculated twice: once with LARS-
winnowed pre-processing, and once without, yielding identical results. The ¢ values

tried by the log penalty method were {1,.5,.25,.1,.05,.01}

The upper graph in Figure 6.6 shows the solution path associated with § = .01 for
the log penalty. The lower graph shows the corresponding estimated test error and
actual training error for each solution. Note how the upper graph breaks cleanly into
fairly stable regimes. Since the graph is robust relative to perturbations in A, an ultra-
precise method of estimating the optimal A is not needed. Most of the predictors are
driven to zero almost immediately, then a five-predictor solution pops out, followed
by a three-predictor solution, followed by a two-predictor solution. Even without a
fancy method for choosing the optimal A value, it is easy to eyeball the graph and see
that the three-gene and five-gene classifiers will both do quite well, while the two-gene
classifier is not as good. The horizontal red line in the lower graph demarcates the
one-standard-error boundary, and the vertical magenta line indicates where the blue
estimated error line crosses this boundary, establishing the value of the optimal A
value according to the one-standard-error rule. (Since the log penalty has two free
parameters, the one-standard-error line may be determined by, and in this case was
determined by, a different  than the one shown here. It’s not possible to look at

these graphs and figure out why the line is where it is.)
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The Log Penalty On Golub Data

Coefficients For Log Penalty with § = .01

N

1 \\ o i
0
_1 —
-2 T | | |
0 0.5 1 15 2 2.5 3 3.5 4
A
Estimated Prediction Error (blue) and RSS (green)
1.2 T T T T T T T
1F X
| /
0.8 : : —/ -
0.6 | - / .
\
.41 | - / .
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~ | / y A -
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Figure 6.6: The upper graph is the solution path for log-penalized linear regression
applied to the Golub training data for 6 = .01. FEach vertical slice through a given
A value represents the associated coefficient values of 55()\). All 6088 predictors are
represented here, though most of them are zero throughout the entire solution path.
The lower graph shows the corresponding training error (RSS) in green and estimated
prediction error in blue. The yellow vertical bars at the data points are standard
errors associated with the cross-validation estimate of prediction error. The horizontal
red line demarcates the one-standard-error boundary, and the vertical magenta line
demarcates where the estimated prediction error (blue line) crosses this boundary,
indicating the optimal A\ value.
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The Lasso On Golub Data

Coefficients For Lasso
2 T T T T T T T T T

6 7 8 9 10

Estimated Prediction Error (blue) and RSS (green)
1 T T T T T T T T T

Figure 6.7: The upper graph is the solution path for the lasso applied to the Golub
training data. Fach vertical slice through a given A value represents the associated co-
efficient values of B(A). All 6088 predictors are represented here, though most of them
are zero throughout the entire solution path. The lower graph shows the corresponding
training error (RSS) in green and estimated prediction error in blue. The yellow ver-
tical bars at the data points are standard errors associated with the cross-validation
estimate of prediction error. The horizontal red line demarcates the one-standard-
error boundary.
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Figure 6.7 shows the lasso solution path. Notice how much smoother it is. Al-
though this a nice property, in some sense, it also makes it much harder to eyeball
the results to assess which model might be optimal, and, obviously, it is much more
sensitive than the log penalty to the choice of .

Figure 6.8 gives a graphical view of the performance of the log penalty’s classifier.
With the exception of one point, both the training and test data seem quite well

separated by this sparse classifier.
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The Log Penalty Classifier
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Figure 6.8: A graph showing the separating plane for the log penalty classifier. Train-
ing data from classes AML and ALL are shown as red and blue respectively. Test
data from classes AML and ALL are shown as magenta and light blue respectively.

One of the two misclassified test points, in light blue, figures prominently on the left
side of the plane.



Chapter 7
Concluding Remarks

As a penalty function, the log penalty at first blush does not seem to have much to
recommend itself. Unlike ridge and the lasso, it is not convex, so involving it in a
regression minimization leads to multiple minima and to a less tractable optimization
problem. Nor does its MAP-equivalent distribution correspond to any well-known
parametric family such as the Gaussian and Laplacian families. Undoubtably these
are among the reasons it has received little attention in the statistics literature. It
is interesting therefore how naturally the log penalty arises when one approaches the
regression problem from a complexity perspective. Moreover, when we consider the
implications of asymptotic optimality from this perspective, the log penalty attains a
kind of primacy, and we find, perhaps surprisingly, that the ridge and lasso penalties
themselves can be reinterpreted as having log-like penalties, when the mechanism
for estimating A\ is taken into account. Indeed, all asymptotically optimal penalties
must be log-like penalties in the sense that they must grow no faster than pln|/b||
to first order. As such, the theory becomes a kind of unifying principle from which
to understand penalized linear regression. If it is the property of asymptotic opti-
mality that makes a penalized regression method impartial enough—in terms of its
inherent preference for one kind of model over another to be of general use, then

all reasonable penalties must effectively resolve to log-like penalties.

Despite the interesting theoretical motivation for the log penalty, it would be of no

direct practical value if the impediments to efficient solution could not be overcome.
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Fortunately, via the proper relaxation from Q” to RP, and through application of
iterative linearization, we obtain approximate characterizations of log-penalized linear
regression that admit tractable solutions. Because the log penalty yields very sparse
solutions, sparser than those of the lasso, it may be desirable to use when an ultra-
sparse solution is sought for practical or aesthetic reasons, or when it is suspected
a priori that the true solution is sparse. In particular, the log penalty may find a
niche in the realm of overcomplete regression problems, which is gaining currency
as a representational approach. In that regard, the log penalty’s performance on
the Golub micro-array data is promising, since it finds an excellent three-predictor
classifier that performs just as well as the eleven-predictor classifier found by the
lasso.

At the theoretical level, some interesting work has been done on overcomplete
systems. Donoho’s recent paper [5] gives conditions under which the lasso solution
is close to the true solution in the presence of noise. The analysis might possibly
be leveraged to learn something about the properties of the log penalty in similar
circumstances.

Finally, although the complexity approach to estimation as embodied by the MDL
principle has stood alongside traditional estimation techniques for awhile, there does
not yet seem to be a theoretical treatment that unifies the two approaches. This
dissertation has provided perhaps a piece of the puzzle by showing in the special cases
of ridge and the lasso how their penalties can be reformulated to reflect asymptotically
optimal coding costs, but one might suspect that a stronger relationship exists in
general between the standard statistical methods, which judge the goodness of a
solution based on its estimated prediction error, and the MDL methods, which judge
the goodness of a solution based on its ability to compress data. The exact relationship

between complexity and estimation still waits to be found.
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