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AbstractThis dissertation discusses log-penalized linear regression, given byb̂log penalty = argminb ky�Xbk2 + �Xj ln(jbjj+ Æ)and compares it against the more common methods known as ridge and the lassowhose respective forms areb̂ridge = argminb ky�Xbk2 + �Xj b2jb̂lasso = argminb ky�Xbk2 + �Xj jbjjIn the above minimizations, � is a complexity parameter. The log penalty form hasan additional precision parameter Æ. The log penalty yields sparser solutions thanthe lasso, making it particularly appropriate for overcomplete problems, is tractablysolved for large numbers of predictors, and has a nice motivation via the minimumdescription length principle and the concept of asymptotic optimality. Somewhatsurprisingly, the ridge and lasso penalties can be reformulated using these principlesso that they too can be seen to have log-like penalties, leading to the conjecturethat in some sense \all penalties are log penalties". Experiments with the log penaltyindicate that it performs better than either ridge or the lasso when the true underlyingparameter vector is sparse.
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Chapter 1
Introduction
Regularization penalties are often employed in linear regression as a remedy for theproblem of over�tting associated with the ordinary least squares method. Two verycommon forms of penalized linear regression are ridge and the lasso, which use the l2and l1 penalties respectively, and whose minimizations have the formsb̂ridge = argminb ky�Xbk2 + �Xj b2j (1.1)b̂lasso = argminb ky�Xbk2 + �Xj jbjj (1.2)where � is a free parameter whose value must be estimated using a method suchas cross-validation, or using an information criterion such as Akaike's informationcriterion (AIC) or the Bayesian information criterion (BIC) [1, 8]. This dissertationmotivates the use of another regularization penalty, the log penalty, whose form isb̂log penalty = argminb ky�Xbk2 + �Xj ln(jbjj+ Æ) (1.3)In all three forms above, � is a free parameter whose value determines the complexityof the resulting solution, with higher values of � yielding lower-complexity solutions.Complexity will be discussed in detail in later chapters. For the moment, it is suÆcientto think of complexity as more or less synonymous with 
exibility. Higher-complexity1



2 CHAPTER 1. INTRODUCTIONsolutions have more 
exibility to �t the data, and hence achieve lower residual error.In the log-penalized form (1.3) above, there is a second free parameter Æ thatessentially determines the precision to which we wish to describe the coeÆcients ofb. It naturally arises when we discuss Æ-quantized codes later on.The log penalty is not new, but it does not seem to have received much attentionin the statistics literature. Those that have mentioned it or touched upon it [7, 11, 12,15], have not focused on it directly, but rather as ancillary to some other problem ormethod, and have not o�ered a theoretical motivation for its use as a regularizationpenalty. As it turns out, the log penalty can be strongly motivated by appealing tothe minimum description length (MDL) principle [15], which interprets penalties ascoding costs, and from which perspective the log penalty emerges as entirely natural.The analysis makes use of the concept of asymptotic optimality and argues that thelog penalty is theoretically justi�ed from an MDL perspective because it correspondsto an asymptotically optimal coding cost. This approach also sheds light on theperformance of the ridge and lasso penalties, showing that, although they do notappear to be asymptotically optimal, they can be reinterpreted as e�ectively leadingto log-like penalties that are asymptotically optimal when the mechanism for choosing� is taken into account. While the dissertation proves this only for ridge and thelasso, it seems a reasonable conjecture that a large class of penalties leads to log-likepenalties in the same fashion, and that it may be more or less true that, in somesense, \all penalties are log penalties". To this extent, then, the approach o�ers aunifying perspective on penalized linear regression in general.The log penalty yields sparse solutions. In fact, its solutions are generally sparserthan those of the lasso, which is also known to yield sparse solutions, and therefore,like the lasso, the log penalty can be used as a continuous subset selection method.The problem of choosing the best subset of predictors from which to build a linearmodel, known as the subset selection problem[8], is inherently intractable, since thereare 2p subsets to consider from among p predictors. While there are many theoreti-cally sound information criteria for preferring one subset of predictors over another,including AIC, BIC, and Rissanen's MDL criterion [1, 8, 15], one cannot tractablyapply any of these methods to all subsets for large p. One possible solution to the



3problem is to �nd a method that somehow considers all possibilities simultaneouslyand constitutes a kind of descent method among the space of possible model instances.Such methods are called continuous subset selection methods. The lasso and the logpenalty both fall into this category. The log penalty is particularly apt for overcom-plete problems, in which the number of predictors p exceeds the number of data pointsn, since in this case ultra-sparse solutions are sought, and this dissertation discussesa method it calls lasso-winnowing for improving the eÆciency of the log penalty onovercomplete problems.Regarding eÆciency, one of the great virtues of both ridge and the lasso is thatthey are convex penalties whose corresponding minimizations can be solved usingstandard convex optimization techniques. (In the case of ridge, the solution is actuallyclosed-form and no descent method is required.) By contrast, the log penalty is not aconvex penalty. In fact, it is concave in the positive orthant, so convex optimizationtechniques are not directly applicable. However, despite the fact that it is not convex,the log penalty minimization can be solved tractably using a method of iterativelinearization [7]. Iterative linearization results in a sequence of convex minimizationproblems whose solutions converge to a local minimum of the original non-convexproblem. Each convex minimization is a weighted lasso problem, demonstrating theclose relationship between the lasso and log-penalized regression.It is important to stress that, unlike ridge and the lasso, the log penalty will ingeneral have multiple local minima for a given value of �. This ineluctable featureshould not surprise us, since the subset selection problem is itself non-convex, norshould it distress us too much vis �a vis ridge and the lasso, since these methods,while convex for a �xed �, also become non-convex when the mechanism for choosing� is taken into account. Still, the non-convexity of the log penalty means that,even for a �xed �, there will not be a unique solution in general to the log-penalizedminimization, and the particular solution yielded by iterative linearization will dependupon the choice of the zeroth iterate. Several obvious choices for the zeroth iteratesuggest themselves, leading to variations that this dissertation refers to as the �xed,forward, and backward methods, the latter two being related in spirit to the greedytechniques known as forward and backward stepwise regression.



4 CHAPTER 1. INTRODUCTIONLater on, we'll apply the log penalty to two di�erent regression problems andcompare its performance to the more standard methods such as ridge and the lasso.The �rst regression problem uses simulated data with a known underlying parametervector. The experiment indicates that the log penalty does indeed yield sparsersolutions than the lasso and that these solutions will in general have somewhat lowerprediction error than the lasso when the true underlying parameter vector is sparse.Unsurprisingly, however, the experiment also indicated that, when the true underlyingparameter vector is not sparse, the log penalty performs a little worse than the lasso.Of course, the lasso itself performs worse than ordinary least squares in this context.The log penalty method is therefore most apt when one has reason to believe thatthe true solution is sparse, or when a sparse solution is desired for practical reasons.The second problem is a real classi�cation problem using gene micro-array data.It is an overcomplete problem, which means that the number of predictors exceedsthe number of data points, with 6; 088 predictors and only 34 data points. Theexperiment illustrates the log penalty's strong drive toward sparsity. Using the logpenalty, a classi�er with very low classi�cation error emerged using just three out of6; 088 genes.



Chapter 2
PreliminariesThis chapter describes the assumed underlying model that provides the context forlinear regression and explains how penalized linear regression can ameliorate the prob-lem of over�tting. It also describes the standard statistical method of cross-validation,which is often used to estimate a good value of the free parameter � in a penalizedlinear regression.2.1 Linear Regression ContextThe underlying context for linear regression is as follows. We are given observationsconsisting of pairs of data (xi; yi), xi 2 Rp, yi 2 R, i = 1; : : : ; n. This data isconveniently represented as (X;y), where X is the n� p matrix whose ith row is xi,and y is the vector whose ith component is yi. We posit a linear relationship betweenx and y, governed by an underlying but unknown parameter vector b0 2 Rp, whichrelationship is corrupted by the addition of Gaussian noise. That is, we assumeyi = bTo xi + zi; zi iid� N(0; �2Z) (2.1)or, equivalently, in matrix form, thaty = Xb0 + z (2.2)5



6 CHAPTER 2. PRELIMINARIESwhere z 2 Rp is the noise vector whose ith component is zi. The problem addressedby regression is simply to make a good guess, b̂, for the true but unknown parametervector b0, based on the data (X;y).The simplest kind of estimate we could make is the ordinary least squares solution,given by b̂ls 4= argminb ky �Xbk2 (2.3)When X is full rank, with p � n, the solution isb̂ls = (XTX)�1XTy (2.4)Many texts, including [8], discuss ordinary least squares regression. However, theordinary least squares estimate over�ts the data, which is to say that the residualsum of squares error on the data (X;y), given by ky�Xb̂k2, is not a realistic estimateof how well b̂ will perform on new data (X0;y0). It is too low. To see why, note that,by de�nition, the ordinary least squares solution chooses the vector b̂ that minimizesthe residual sum of squares over all possible candidate solutions, even the true solutionb0. That is, the least squares solution performs better on (X;y) than even the truesolution. One way to understand this phenomenon is to realize that, in seeking to �ndthe absolute minimum residual error, the ordinary least squares solution inevitably�ts some of the noise as well as the structure inherent in the data.A common remedy for the problem of over�tting is to aÆx a penalty term to (2.3),resulting in what is called penalized linear regression [8]. The general form isb̂(�) 4= argminb ky �Xbk2 + �g(b) (2.5)Here g(b) is a penalty function from Rp into R and � 2 R is a free parameter thatcontrols the complexity of the resulting solution. This dissertation views complexityfrom the minimum description length (MDL) perspective. The complexity of a solu-tion is de�ned to be its description-length with respect to a particular coding scheme.



2.1. LINEAR REGRESSION CONTEXT 7Complexity will be discussed in detail in chapters 3 and 4. Other treatments of com-plexity in the regression literature use the concept of e�ective degrees of freedom [8],which is quite similar. Both perspectives are attempts to quantify the notion thathigher complexity solutions have more 
exibility to conform to the data.The penalty function g essentially describes our preference for one solution overanother when both have the same residual sum of squares. According to (2.5), theminimization prefers the solution with smaller g value. Since in general we prefersolutions that are less complex to those that are more complex|other things beingequal|g can be interpreted as assigning a complexity to each candidate solution b,with the resulting minimization preferring solutions that are less complex to thosethat are more complex. Consistent with this interpretation, the penalty functions gused in practice, such as ridge regression and the lasso, are monotonic in each of thecomponents bj and take their minimum at 0, re
ecting our preference for solutionswith small component values and our bias to call 0 the least complex of all possiblesolutions. These are desirable, but not necessary, features of a penalty function. Intheory, all that is required of g to make (2.5) useful is that it be bounded below.In (2.5) above, � is a tuning parameter whose value allows us to control thecomplexity of the resulting estimate, b̂(�). When � is zero, we recover the ordinaryleast squares solution, because the penalty is given zero weight. As � increases, thepenalty is given more and more weight, causing the minimization to yield less andless complex solutions, which, for reasonable g, results in the components of b̂(�)becoming smaller in absolute value, a phenomenon called shrinkage [8]. Ultimately,a high-enough � value will drive the solution toward g's minimum, which is typicallyattained at b = 0. The set of solutions mapped out as � goes from 0 to 1 will becalled the solution path.Remark 2.1. Note that penalized linear regression methods such as ridge and thelasso, when applied to a particular data set (X;y), do not yield a single solution, butrather a path of solutions. Which solution along the path is chosen depends uponwhich value of � is chosen, and the methods themselves o�er no advice about how toselect �. Di�erent methods for choosing � lead to di�erent � values, and therefore



8 CHAPTER 2. PRELIMINARIESto di�erent points along the solution path. It makes no sense then, to talk about theridge or the lasso solution, except with respect to some identi�ed method for choosing�.
2.2 Cross-ValidationAs noted, the parameter � is free in Equation (2.5). Somehow, a decision must bemade as to which � value will yield a good estimate b̂(�), for the true underlyingparameter vector b0, given the data at hand (X;y). Cross-validation, described in[8], is a general purpose method for estimating a good value of �. It is by no meansthe only method, and [8] describes several others. However, it is robust, considered tobe a standard method, and hence is the method used throughout this dissertation tosolve for � in all the experiments described in Chapter 6. In particular, the methodused is cross-validation with the one-standard-error rule, as described in this and thefollowing section.In m-fold cross-validation, we partition the data points (xi; yi) into m disjoint setsSk, k = 1; : : : ; m, of as equal size as possible. Let nk = jSkj denote the size of thekth set. Thus, Pk nk = n. The points (xi; yi) are assigned to their sets arbitrarily.These sets can be designated, in matrix form, as (Xk;yk), k = 1; : : : ; m, where Xk isan nk � p matrix whose rows are made up of the xi in Sk. The order in which therows are listed in Xk is unimportant, so long as the components of yk, made up ofthe yi in Sk, are in the corresponding order.. These will be our m validation sets.From these sets, we then generate m training sets Tk, k = 1; : : : ; m. The kth trainingset consists of all points not in the kth validation set. That is,Tk = [j 6=kSj (2.6)The sets Tk can be designated, in matrix form, as ( ~Xk; ~yk), k = 1; : : : ; m, where ~Xkis an (n � nk) � p matrix. This results in m training/validation pairs (Tk; Sk). Foreach � and k, we then let b̂k(�) be the solution when the penalized linear regression



2.2. CROSS-VALIDATION 9is applied to Tk with parameter �. That isb̂k(�) 4= argminb k~yk � ~Xkbk2 + �g(b) (2.7)For a given �, we can estimate how well b̂k(�) is likely to perform on future databy testing it out on Sk, yieldingêk(�) 4= 1nk kyk �Xkb̂k(�)k2 (2.8)Since our partition of the data gives us m such training/validation pairs, we canperform this estimate m times and average the results, yieldingê(�) 4= 1m mXk=1 êk(�) (2.9)= 1m mXk=1 1nk kyk �Xkb̂k(�)k2 (2.10)A good � value to use, then, in the original regression problem, on the full data set(X;y), is the one whose associated error estimate is minimal:�� 4= argmin� ê(�) (2.11)As � increases from 0, the shape of the curve ê(�) is roughly that of a bowl with abumpy bottom, which is to say that at �rst the error will be monotonically decreasing,then, after � has passed through some range of interest (the bumpy bottom), ê(�)will be monotonically increasing. It is therefore not too diÆcult using trial and errorto discover a reasonable range of � values to test under cross-validation in order tocome up with a value close to ��.
Remark 2.2. Since log-penalized linear regression has two free parameters � and Æ,



10 CHAPTER 2. PRELIMINARIESequations (2.7) through (2.11) above must be modi�ed in obvious ways to accommo-date the additional Æ parameter, yielding the following new equationsb̂k(Æ; �) 4= argminb k~yk � ~Xkbk2 + �Xj ln(jbjj+ Æ) (2.12)êk(Æ; �) 4= 1nk kyk �Xkb̂k(Æ; �)k2 (2.13)ê(Æ; �) = 1m mXk=1 1nk kyk �Xkb̂k(Æ; �)k2 (2.14)(Æ�; ��) 4= argminÆ;� ê(Æ; �) (2.15)
2.3 The One-Standard-Error RuleRather than using �� above, the authors in [8] prefer to use a more conservativemethod that they call the one-standard-error rule. This dissertation also uses theone-standard-error rule to calculate optimal � (and Æ) values in all the experimentsdescribed in Chapter 6. Among other things, this leads to sparser solutions when thelog penalty is used.As mentioned in the previous section, the curve ê(�) has a bumpy bottom in the� range of interest, which is to say that in general it has several local minima. Thisfeature, combined with the vagaries of randomly partitioning the data, selecting asomewhat arbitrary number of validation sets m ([8] has some advice about choos-ing m), and the inherent noise in any estimation process, means that �� may itselfbe slightly optimistic and may yield an estimate b̂(��) that still over�ts the datasomewhat. A more conservative approach is to use instead the highest value �̂ whoseassociated estimated prediction error ê(�̂) falls within one standard error of ê(��).That is, �̂ 4= max�>0 � subject to ê(�) � ê(��) + s(��) (2.16)



2.3. THE ONE-STANDARD-ERROR RULE 11where s(�) 4=s 1m(m� 1)Xk (êk(�)� ê(�))2 (2.17)Since higher values of � yield less complex solutions, this method essentially selects thesimplest solution, b̂(�̂), whose inferiority with respect to the solution b̂(��), in termsof estimated prediction error, is wholly attributable to noise in the cross-validationprocess.Remark 2.3. As noted in the previous section, when the log penalty is used there aretwo free parameters � and Æ, requiring that the one-standard-error rule be modi�ed.In this case, it does not make sense to maximize both Æ and � simultaneously; however,when we re
ect that the reason � is maximized in the single-parameter case is thatthis yields the least complex solution, then it seems reasonable in the two parametercase to prefer the (Æ; �) pair that yields the sparsest solution. This leads to thefollowing replacements for equations (2.16) and (2.17)(Æ̂; �̂) 4= arg minÆ;�>0 kb̂(Æ; �)k0 subject to ê(Æ; �) � ê(Æ�; ��) + s(Æ�; ��) (2.18)where kb̂(Æ; �)k0 is the number of nonzero components in b̂(Æ; �), and wheres(Æ; �) 4=s 1m(m� 1)Xk (êk(Æ; �)� ê(Æ; �))2 (2.19)The solution to (2.18) need not be unique. One reasonable method of breaking tiesis to prefer the (Æ̂; �̂) pair with lowest residual sum of squares error ky�Xb̂(Æ; �)k2.



Chapter 3CodingThe log penalty of this dissertation gets its impetus from considerations arising fromalgorithmic complexity, pioneered by Kolmogorov [10], Chaitin [3], and Solomono�[16]. The central insight of algorithmic complexity is that the complexity of an objectshould be de�ned as the length of the most succinct coding of that object. The objectsof interest for our purposes are integers and vectors of integers. Thus, it is importantto understand some basics of coding on Z and Zd. This chapter introduces thesebasics. Those familiar with the concepts or who wish not to be bogged down bydetails may safely skip to Chapter 4, after glancing at Section 3.3 on page 19 and atthe de�nition of asymptotic optimality for Æ-quantized codes given in de�nition 3.10on page 36.Ultimately, we will be interested not so much in any particular coding scheme asin the best achievable asymptotic properties of a code: roughly how many bits doesit take to code a vector of integers as the vector's components get increasingly large?3.1 Coding De�nitionsThis section de�nes what we mean by a code, and introduces some basic concepts.De�nition 3.1. Let A be a �nite or countable set of objects. A pre�x-free code, (alsoknown as a pre�x code) C(m), m 2 A, is a one-to-one mapping between A and the12



3.1. CODING DEFINITIONS 13set of �nite-length binary strings f0; 1g�, such that no string in the range of C is apre�x of any other string in the range of C.For example, if C is a pre�x-free code, then 0110 and 0110101 cannot both bestrings in the range of C, since the �rst is a pre�x of the second. See [4] for a longerdiscussion of pre�x-free codes.In this dissertation, we will typically take A to be either Zd, the set of d-dimensionalvectors with integer components, or a countable subset of Rd. In particular, we willbe interested in the countable subset QdÆ , de�ned in De�nition 3.8 on page 35.Remark 3.1. In this dissertation, all references to codes are really to pre�x-freecodes. Sometimes the modi�er pre�x-free is added for emphasis, but even when it isomitted, code still means pre�x-free code.De�nition 3.2. Let s 2 f0; 1g� be a �nite-length binary string. Denote by jsj thelength of the string s.De�nition 3.3. Let s; t 2 f0; 1g� be �nite-length binary strings. Denote by st theconcatenation of the two strings.De�nition 3.4. Let C(m) be a pre�x-free code with domain A. Its associated code-length function L(m), also with domain A, is the number of bits required to encodem using code C. That is L(m) = jC(m)j (3.1)A basic result from information theory tells us that the code-length function of anypre�x-free code must satisfy the following inequality, known as the Kraft Inequality.Conversely, for any function satisfying the Kraft Inequality, there exists a pre�x-freecode with the corresponding code-lengths.



14 CHAPTER 3. CODINGTheorem 3.1 (Kraft Inequality). Let L(m) be an integer-valued function on do-main A. Then a pre�x-free code C(m) on A exists for which L(m) is the associatedcode-length function if and only if Xm2A 2�L(m) � 1 (3.2)
See [4] for a proof.3.2 A Pre�x-Free Code for the IntegersIt is a well-known fact from Kolmogorov complexity theory that any integer m 2Z may be encoded using a pre�x-free code requiring no more than log(jmj + 1) +O(log log jmj) bits [4, 15, 18]. This section exhibits the construction of such a code,following the standard method.We de�ne the code CZ(m) in several stages, creating intermediary codes Cathrough Ce, each of whose de�nitions depends upon the previously de�ned code.Finally, we de�ne CZ(m) in terms of Ce, and it will have the asymptotic code-lengthproperties we seek.We begin with the crudest imaginable code on the non-negative integers:Ca(m) 4= 111 : : : 111| {z }m times 0 (3.3)Ca is sometimes called a unary code. Figure 3.1 illustrates the Ca encoding of the �rstfew integers. Obviously Ca(m) is pre�x-free, since we know the code has terminatedas soon as we see a zero. By inspection, one can see that the code-length functionLa(m) corresponding to Ca(m) is given by:La(m) = m + 1 (3.4)Ca does not have the asymptotic code-length property we seek. We want a code that



3.2. A PREFIX-FREE CODE FOR THE INTEGERS 15The Ca Codem Ca(m)0 01 102 1103 11104 11110: : : : : :Figure 3.1: The Ca encoding of the �rst few integerstakes about log jmj bits to describe m, whereas Ca requires m+1 bits to describe m.But we will leverage this simple beginning to create a code that has the property weseek.The next stage in the code Cb(m) is a code on the positive integers, as opposedto the non-negative integers, and we build it using Ca to help us. Let s(m) denotethe standard binary representation of the positive integer m, less its leading 1. Forexample, the standard binary representation of m = 5 is 101. Dropping the leading1 gives us s(5) = 01. At the moment we are building a code on just the positiveintegers, and their binary representations always begin with the symbol 1. Thus, forany m > 0, it is suÆcient to describe just the symbols following the 1 in its binaryrepresentation. Notice that s(m) by itself does not constitute a pre�x-free code, sinceit maps onto the entire set f0; 1g�. However, if we precede the string s(m) with apre�x-free encoding of the length of the string s(m), then we achieve a pre�x-free code,because the initial encoding tells us when the remainder of the codeword terminates.This will be our strategy, and we will use Ca to encode the length of the string s(m).Our new code is Cb(m) 4= Ca(js(m)j)s(m) (3.5)Note that Cb must be pre�x-free. The codeword Cb(m) = Ca(js(m)j)s(m) cannotbe the pre�x of any longer codeword because all codewords beginning with the bitsequence Ca(js(m)j) have precisely the same length. Note also that js(m)j could be assmall as zero, when m = 1, but that is okay, because Ca is a code on the non-negative



16 CHAPTER 3. CODINGThe Cb Codem Ca(m) s(m) Cb(m)0 0 [unde�ned] [no code exists]1 10 [empty string] 02 110 0 1003 1110 1 1014 11110 00 11000: : : : : : : : : : : :Figure 3.2: The Cb encoding of the �rst few integers.integers, so it is capable of encoding zero. Table 3.2 illustrates the Cb encoding of the�rst few integers. Now let's calculate the associated code-length function Lb(m).Lb(m) = La(js(m)j) + js(m)j (3.6)(a)= La(blogmc) + blogmc (3.7)(b)= blogmc+ 1 + blogmc (3.8)= 2blogmc + 1 (3.9)where bxc denotes the greatest integer less than or equal to x. It is easy to verifythat the length of s(m) is blogmc, (note: all logs in this section are base two), whichis used in (a) above. (b) follows from (3.4).Although Cb(m) just codes the positive integers, it is easy to extend this to a codeon the non-negative integers by de�ning the new codeCc(m) 4= Cb(m + 1) (3.10)with associated code-length functionLc(m) = Lb(m+ 1) (3.11)= 2blog(m+ 1)c + 1 (3.12)Figure 3.3 illustrates the Cc encoding of the �rst few integers. Already we are in the



3.2. A PREFIX-FREE CODE FOR THE INTEGERS 17The Cc Codem Ca(m) Cb(m) Cc0 0 [no code exists] 01 10 0 1002 110 100 1013 1110 101 110004 11110 11000 11001: : : : : : : : : : : :Figure 3.3: The Cc encoding of the �rst few integers.ballpark of what we hope to achieve. Cc takes about 2 logm bits to encode m. Wewould like to cut that in half. One more application of our inductive code constructionwill do the trick. Let us de�ne:Cd(m) 4= Cc(js(m)j)s(m) (3.13)with associated code-length functionLd(m) = Lc(js(m)j) + js(m)j (3.14)= Lc(blogmc) + blogmc (3.15)= 2blog(blogmc + 1)c+ 1 + blogmc (3.16)= blogmc + 2blog(blogmc + 1)c+ 1 (3.17)As before, we extend this to a code on the non-negative integers by de�ning thenew code Ce(m) 4= Cd(m+ 1) (3.18)with associated code-length functionLe(m) = Ld(m+ 1) (3.19)= blog(m + 1)c+ 2blog(blog(m+ 1)c + 1)c+ 1 (3.20)



18 CHAPTER 3. CODINGThe Ce Codem Ca(m) Cb(m) Cc Cd Ce0 0 [no code exists] 0 [no code exists] 01 10 0 100 0 10002 110 100 101 1000 10013 1110 101 11000 1001 101004 11110 11000 11001 10100 10101: : : : : : : : : : : : : : : : : :Figure 3.4: The Ce encoding of the �rst few integers.Figure 3.4 illustrates the Ce encoding of the �rst few integers.Finally, Ce can be extended to the negative integers by aÆxing a sign bit to thecode: CZ(m) 4= ( 0Ce(m) m � 01Ce(�m) m < 0 (3.21)with associated code-length functionLZ(m) = blog(jmj+ 1)c+ 2blog(blog(jmj+ 1)c+ 1)c+ 2 (3.22)which has the desired asymptotic code-length property:LZ(m) = log(jmj+ 1) +O(log log jmj) (3.23)The reader may wonder why the form log(jmj + 1) was chosen to express theasymptotic property above, rather than the more compact form log jmj, for, surely,if LZ(m) = log(jmj+ 1) +O(log log jmj), then also LZ(m) = log jmj+O(log log jmj).The answer is that not only does the term log(jmj+ 1) convey the principal asymp-totic order, it also represents a good approximation of the code-length for all m.Importantly, at m = 0, it yields an approximate code-length of 0, rather than �1.Later, we will drop the lower-order log log term and use log(jmj+ 1) as a reasonably



3.3. ASYMPTOTIC OPTIMALITY 19good measure of the complexity of any integer.
3.3 Asymptotic OptimalityImportant for the justi�cation of the log penalty is the notion of asymptotic optimality.We wish to make precise the idea that a code achieves|in the limit asm grows large|the smallest code-lengths that it could hope to achieve. This di�ers from the standardanalysis of coding optimality in information theory, in which the goodness of a codeis measured by how the code-length grows as the number of symbols to be encodedgoes to in�nity. In our case, the number of integers to be encoded d stays �xed, andwe measure the goodness of the code instead by how well it codes ever larger integers.In the previous section, we exhibited a code CZ(m) on the integers that growsasymptotically like log jmj. That islimjmj!1 LZ(m)log jmj = 1 (3.24)It is natural to ask whether L(m) � log jmj is the best one can do, or whether therepossibly exists a code with signi�cantly shorter code-lengths. It turns out that thereis a well-de�ned sense in which this is the best that can be done. While it is possibleto design a code whose code-length function L(m) is signi�cantly smaller than log jmjon a particular set of values of m (in�nitely often, in fact), there cannot be an integerM such that 8m; jmj > M ) L(m) � log jmj. To see why not, suppose such acode-length function L(m) and integer M existed. Then we derive a contradiction asfollows: 1 (a)� Xm2Z 2�L(m) (3.25)� Xm:jmj>M 2�L(m) (3.26)(b)� Xm:jmj>M 2� log jmj) (3.27)



20 CHAPTER 3. CODING= Xm:jmj>M 1jmj (3.28)= 1 (3.29)where (a) is the Kraft Inequality, Theorem (3.1) on page 14, and (b) follows byhypothesis. We conclude that L(m) must exceed log jmj in�nitely often, and thereforeL(m)=log jmj must exceed 1 in�nitely often. If limjmj!1 L(m)log jmj exists, it must begreater than or equal to 1.Of course, for some codes, the limit might not exist at all, even though the codewere one we'd like to characterize as optimal. For example, the code-length functionL(m) might not be monotonic in jmj, attaining very short code-lengths in�nitely of-ten, but not so often as to make the worst case code-length grow faster than log jmjasymptotically. For example, the Kolmogorov complexity function K(m) of the in-tegers [4] is a code-length function with this property. Any de�nition of asymptoticoptimality must account for this possibility, and there are a few approaches, one ofwhich, taken by Rissanen in [15], is simply to exclude from consideration code-lengthfunctions that are not monotonic. Focusing on worst-case code-lengths also suÆces,leading to the following de�nition:De�nition 3.5. A code C(m) on Zd, with associated code-length function L(m), isasymptotically optimal in case limr!1 maxkmk�r L(m)d log r = 1 (3.30)where kmk =qPm2j is the standard Euclidean norm.Note that for some codes the above limit still might not exist. But, if so, it willbe because the worst case code-length is greater than (d+ �) log r in�nitely often andhence we would not want it to qualify as an asymptotically optimal code.The following theorem justi�es the above de�nition by showing that d log r is thebest asymptotic code-length one could hope to achieve.



3.3. ASYMPTOTIC OPTIMALITY 21Theorem 3.2. Let L(m) be the code-length function associated with a pre�x-free codeon Zd. Then lim infr!1 maxkmk�r L(m)d log r � 1 (3.31)Proof: The essence of the proof is that the number of vectors m in Zd satisfyingkmk � r is approximately c(d)rd, where c(d) is a constant depending only on d. Thus,the number of bits required to describe each vector in this set must be approximatelylog c(d)rd = d log r +O(1). More precisely, let S(r) 4= fm 2 Zd : kmk � rg. Then1 � Xm2Zd 2�L(m) (3.32)� Xkmk�r 2�L(m) (3.33)� jS(r)j minkmk�r 2�L(m) (3.34)Taking logs of both sides yields0 � log jS(r)j+ minkmk�r�L(m) which implies (3.35)0 � log jS(r)j � maxkmk�rL(m) leading to (3.36)maxkmk�rL(m) � log jS(r)j (3.37)Furthermore, there clearly exists a constant c and a threshold R such that 8r; r >R) jS(r)j � c � rd. Therefore, for r > R,maxkmk�rL(m) � log jS(r)j (3.38)� d log r + log c which implies (3.39)maxkmk�r L(m)d log r � d log r + log cd log r leading to (3.40)lim infr!1 maxkmk�r L(m)d log r � lim infr!1 d log r + log cd log r = 1 (3.41)



22 CHAPTER 3. CODINGRemark 3.2. It should be obvious from (3.24) that the natural code is asymptoticallyoptimal according to De�nition 3.5. A full proof for the generalized natural code onZd is given in Section 3.4. However, there is also a sense in which the natural code aswe've developed it is not asymptotically optimal. The recursive method used to createthe code CZ can be iterated to create another code C� with code-length function L�that is strictly less than LZ for large m. That is, there exists an integer M , such that8m; jmj > M ) L�(m) � LZ(m) (3.42)The code-length function L� is given byL�(m) 4= c+ log jmj+ log log jmj+ log log log jmj+ : : : (3.43)down to the last iterated logarithm of jmj that is still positive, and where c is aconstant. The sum of successive iterated logarithms is known as the log� functionand is discussed in [4, 15] along with the derivation of the code C�.Note that LZ and L� have the same �rst-order term log jmj, but that L� is moreeÆcient in its lower-order terms for large m. The �rst order term is all that will beof interest to us in later chapters, so the simpler code CZ suÆces for our purposes.
3.4 The Natural Code On ZdHaving exhibited an asymptotically optimal code CZ on the integers, we can nowleverage it to create asymptotically optimal codes on Zd. This section constructs anatural extension of CZ to Zd, simply by separately coding each of the componentsof m 2 Zd using CZ . For this reason, we call the resultant code the natural code onZd.De�nition 3.6. The natural code on Zd is the code given byCZd(m) 4= CZ(m1)CZ(m2) : : : CZ(md) (3.44)



3.4. THE NATURAL CODE ON ZD 23
Since CZd is the concatenation of a �xed number d of pre�x-free codes, it too isa pre�x-free code. The code-length of m 2 Zd is just the sum of the code-lengths ofits components:LZd(m) = dXj=1 LZ(mj) (3.45)= dXj=1blog(jmjj+ 1)c+ 2blog(blog(jmjj+ 1)c+ 1)c+ 2 (3.46)�  dXj=1 log(jmjj+ 1)!+ 2d log(log(kmk+ 1) + 1) + 2d (3.47)leading toLZd(m) = dXj=1 log(jmjj+ 1) +O(log log kmk) (3.48)As in the previous section, the principal asymptotic component of LZd is describedas Pdj=1 log(jmjj + 1), rather than as the more compact Pdj=1 log(jmjj), in order toemphasize that this expression is a good approximation of the code-length for all m,including m = 0. When m = 0, the more compact form yields the unreasonablevalue of �1.Notation 3.1. Given the close aÆnity of CZd to the original code CZ on the integers,we will slightly abuse notation. Thus, for m 2 Zd, we will use the less cumbersomeforms CZ(m) and LZ(m) to refer to CZd(m) and LZd(m) respectively.

Theorem 3.3. The natural code CZ on Zd is asymptotically optimal.



24 CHAPTER 3. CODINGProof: We must show that limr!1 maxkmk�r LZ(m)d log r = 1 (3.49)First, we note that if kmk � r, thenjmjj � r for all j (3.50)which implies that Xj log(jmjj+ 1) � d log(r + 1) (3.51)leading to LZ(m) � d log(r + 1) +O(log log r) (3.52)The �nal line above follows from LZ(m) =Pj log(jmjj+1)+O(log log kmk), derivedat Equation (3.48). Continuing, since Equation (3.52) holds for all m such thatkmk � r, it must hold for the max over this set, yieldingmaxkmk�rLZ(m) � d log(r + 1) +O(log log r) (3.53)which implies maxkmk�r LZ(m)d log r � d log(r + 1) +O(log log r)d log r (3.54)which implieslim supr!1 maxkmk�r LZ(m)d log r � lim supr!1 d log(r + 1) +O(log log r)d log r = 1 (3.55)



3.5. INDEXED CODES 25leading to limr!1 maxkmk�r LZ(m)d log r = 1 (3.56)where (3.56) follows because we knowlim infr!1 maxkmk�r LZ(m)d log r � 1 (3.57)from Theorem 3.2 on page 21.
3.5 Indexed CodesSuppose we have several coding schemes \on hand", any of which can be used toencode m 2 Zd. Then we can describe m in two parts. The �rst part describes theindex of a particular code and the second part describes m using that code. In e�ect,the set of coding schemes must itself be coded using a coding scheme. This is the ideabehind indexed codes. Since in general we are interested in minimal code lengths, weare free to select from among the available coding schemes the one that yields theshortest two-part code-length for m. This is the central notion behind the theory ofminimum description-length estimation, covered in Chapter 4.De�nition 3.7. Let D be a �nite or countable set of pre�x-free codes. Let A bethe union of the domains of the codes in D. Let C0 be a pre�x-free code on D withassociated code-length function L0. Also, denote by jC(m)j the code-length functionassociated with C 2 D. Then the indexed code or two-part code CI on A, constructedfrom D and C0, is CI(m) 4= C0(C�)C�(m) (3.58)



26 CHAPTER 3. CODINGwhere C� satis�es C� = argminC2D L0(C) + jC(m)j (3.59)Here we take jC(m)j to be 1 when m is not in the domain of C. (In case thereare more than one C attaining the minimum above, we can arbitrarily break ties bypreferring the code whose codeword precedes the others in dictionary order.)By construction, the code-length function of CI isLI(m) = argminC2D L0(C) + jC(m)j (3.60)Remark 3.3. Note that C� is the code that attains the shortest total descriptionlength for m from among all codes in D, taking into account the fact that C� itselfmust be described using L0(C�) bits. Therefore it is not necessarily the case thatC� = argminC jC(m)j. This important fact is at the heart of the MDL principle.When in Chapter 4 we interpret codes as models and code-lengths as their associatedcomplexity, L0(C) acts as a regularizer on the estimation process, forcing us to paya price for choosing more complex models.3.6 The l2 Code On ZdThis section describes a code C2(m) whose associated code-length function dependsupon the l2 norm of m, so we'll call it the l2code.We begin by describing a code C(n)a (m) just on those vectors m 2 Zd in thepositive orthant whose norm is less than the integer n. To that end, let S(n) 4=fm 2 Zd : kmk � n; 8j;mj > 0g. Note that, at the moment, we are excluding fromconsideration any vectors m with zero components. Hence, S(n) = ; for n < pd.Further, we'll impose an order on the elements of S(n), numbering them from 0 tojS(n)j�1. Any ordering will do, but for the sake of speci�city, let's impose dictionaryorder: we compare two vectors m1 and m2 componentwise from left to right until



3.6. THE L2 CODE ON ZD 27S(4) and the C(4)a CodeS(4) C(4)a (m)(1; 1) 000(1; 2) 001(1; 3) 010(2; 1) 011(2; 2) 100(2; 3) 101(3; 1) 110(3; 2) 111Figure 3.5: The above table shows the �rst few elements of S(n) in increasing dictio-nary order and their C(n)a encoding for n = 4, d = 2.the �rst component j in which they disagree. Then m1 precedes m2 just in casem1(j) < m2(j). C(n)a uses the same number of bits k = dlog jS(n)je (where dxedenotes the smallest integer greater than or equal to x) to describe all m 2 S(n),assigning to m the k-bit binary representation of its index in the set, using leadingzeros if necessary. Obviously, the associated code-length function is L(n)a (m) = k.Figure 3.5 illustrates the �rst few elements of S(n), in increasing dictionary order,and their C(n)a encoding, for n = 4, d = 2.We then leverage C(n)a to create a code on the entire positive orthant by recognizingthat any m in the positive orthant belongs to S(n) for some n. (In fact, it belongs toS(n) for in�nitely many n: those satisfying n > kmk.) We can therefore describe musing a two-part code: �rst we describe some n > kmk using the natural code CZ(n)and then we describe m 2 S(n) using C(n)a (m). We'll call this code Cb(m).Cb has not yet been precisely de�ned, since we haven't speci�ed which of the in-�nitely many n values compatible with m to encode. It might seem as though weshould choose the smallest compatible value n = dkmke in order to obtain the small-est code-length for m, but this turns out to be incorrect, because it requires aboutlog kmk bits to describe this number, and it will turn out to take about d log kmkbits to describe m 2 S(kmk), leading to a total code-length of about (d+1) logkmk,which is not asymptotically optimal. Had we de�ned S(n) to be the set of vectors



28 CHAPTER 3. CODINGin the positive orthant whose norms were within a tolerance of 1=2 of n, then thiswould have worked, but, as it stands, the choice of n = dkmke describes kmk moreaccurately than we really need.Interestingly, we only need to describe kmk to within a factor of 2. That is, weneed only describe a number n such that kmk � n � 2kmk. This means that we canchoose n to be a power of 2, i.e. n = 2q for some q 2 Z, which in turn means thatwe can describe n merely by describing q, and that takes only about log log kmk bits,which is asymptotically negligible. In so doing, we may be describing a set S(n) thatis up to 2d times as large as it ideally would need to be, but this potential enlargingof the set size induces a cost of at most d bits over the ideal code-length, which isalso asymptotically negligible.As mentioned above, we seek a number n = 2q, q 2 Z, such that kmk � n =2q � 2kmk. Taking logs, we have log kmk � q � log kmk + 1, which means thatq = dlog kmke. If we de�ne q(m) 4= dlog kmke and n(m) 4= 2q(m), then we can de�neCb(m) as Cb(m) 4= CZ(q(m))C(n(m))a (m) (3.61)whose associated code-length function isLb(m) = LZ(dlog kmke) + log jS(2dlog kmke)j (3.62)Let 1 be the vector of all ones. It is easy to extend Cb from a code on the positiveorthant to a code on the non-negative orthant by de�ning the new codeCc(m) = Cb(m+ 1) (3.63)with associated code-length functionLc(m) = LZ(dlog km+ 1ke) + log jS(2dlog km+1ke)j (3.64)It is also easy to extend this code to the entire space Zd by aÆxing a d-bit sign string



3.6. THE L2 CODE ON ZD 29to the code. Let s(m) 2 f0; 1gd be the d-bit string satisfyingsj = ( 0 mj > 01 mj � 0 (3.65)In e�ect, sj tells us whether the jth component ofm should be interpreted as positiveor negative. Now let m 2 Zd and let jmj denote the vector in the non-negativeorthant whose jth component is jmjj. With this addition, the �nal code is given byC2(m) = s(m)Cc(jmj) (3.66)with associated code-length functionL2(m) = Lc(jmj) + js(m)j (3.67)= LZ(dlog k jmj+ 1ke) + log jS(2dlog k jmj+1ke)j+ d (3.68)We wish to understand the asymptotic properties of L2 as expressed in Equation (3.68)above. The �rst and third terms are asymptotically negligible, since LZ(dlog kjmj+1ke) = O(log log kmk), and d = O(1). To get a handle on the middle term, noticethat the set S(n) is completely contained in the cube of side n in the positive orthantof Zd. To be precise, let T (n) 4= fm 2 Zd : 8j; 0 < mj � ng. Then clearlyS(n) � T (n) which implies jS(n)j � jT (n)j = nd (3.69)which implies log jS(n)j � d logn leading to (3.70)L2(m) = d log k jmj+ 1k+O(log log kmk) (3.71)where the last line above follows from (3.70) and (3.68).Theorem 3.4. The code C2 on Zd is asymptotically optimal.Proof: The proof follows identical lines to the proof of Theorem 3.3. We mustshow that limr!1 maxkmk�r L2(m)d log r = 1 (3.72)



30 CHAPTER 3. CODINGFirst, we note that if kmk � r thenk jmj+ 1k � r +pd (3.73)which implies log k jmj+ 1k � log(r +pd) (3.74)leading to L2(m) � d log(r +pd) +O(log log r) (3.75)where the line above follows from L2(m) = d logk jmj+1k+O(log log kmk), derivedat Equation (3.71).Continuing, since Equation (3.75) holds for allm such that kmk � r, it must holdfor the max over this set, yieldingmaxkmk�rL2(m) � d log(r +pd) +O(log log r) (3.76)which implies maxkmk�r L2(m)d log r � d log(r +pd) +O(log log r)d log r (3.77)leading tolim supr!1 maxkmk�r L2(m)d log r � lim supr!1 d log(r +pd) +O(log log r)d log r = 1 (3.78)from which we conclude limr!1 maxkmk�r L2(m)d log r = 1 (3.79)



3.7. THE L1 CODE ON ZD 31since we know that, for all L, lim infr!1 maxkmk�r L(m)d log r � 1 (3.80)from Theorem 3.2 on page 21.3.7 The l1 Code On ZdThis section describes a code C1(m), whose associated code-length function dependsupon the l1 norm of m, so we'll call it the l1code. Its development parallels exactlythe construction of the l2 code of the previous section.As before, we begin by describing a code C(n)a (m), just on those vectorsm 2 Zd inthe positive orthant whose l1 norm is less than the integer n, and we let S(n) 4= fm 2Zd : kmk1 � n; 8j;mj > 0g, where kmk1 4= Pj jmjj. As before, note that, at themoment, we are excluding from consideration any vectors m with zero components,and, hence, that S(n) = ; for n < d. As before, we impose dictionary order on theelements of S(n), numbering them from 0 to jS(n)j � 1. C(n)a uses the same numberof bits, k = dlog jS(n)je, to describe all m 2 S(n), assigning to m the k-bit binaryrepresentation of its index in the set, using leading zeros if necessary. Obviously,the associated code-length function is L(n)a (m) = k. Figure 3.6 illustrates S(n), inincreasing dictionary order, and its C(n)a encoding, for n = 4, d = 2.As before, we then leverage C(n)a to create a code on the entire positive orthant via atwo-part code that �rst describes n satisfying kmk1 � n � 2kmk1 and then describesm using C(n)a , where n = 2q and q = dlog kmk1e. If we de�ne q(m) 4= dlog kmk1e andn(m) 4= 2q(m)), then we can de�ne Cb(m) asCb(m) 4= CZ(q(m))C(n(m))a (m) (3.81)whose associated code-length function isLb(m) = LZ(dlog kmk1e) + log jS(2dlog kmk1e)j (3.82)



32 CHAPTER 3. CODINGS(4) and the C(4)a CodeS(4) C(4)a (m)(1; 1) 000(1; 2) 001(1; 3) 010(2; 1) 011(2; 2) 100(3; 1) 110Figure 3.6: The above table shows the �rst few elements of S(n) in increasing dictio-nary order and their C(n)a encoding for n = 4, d = 2.We then extend Cb to a code on the non-negative orthant by de�ning the newcode Cc(m) = Cb(m+ 1) (3.83)with associated code-length functionLc(m) = LZ(dlog km+ 1k1e) + log jS(2dlog km+1k1e)j (3.84)and then further extend the code to the entire space Zd by aÆxing a d-bit sign stringto the code. As before, let s(m) 2 f0; 1gd be the d-bit string satisfyingsj = ( 0 mj > 01 mj � 0 (3.85)and let jmj denote the vector in the non-negative orthant whose jth component isjmjj. The �nal code is then given byC1(m) = s(m)Cc(jmj) (3.86)with associated code-length functionL1(m) = Lc(jmj) + js(m)j (3.87)



3.7. THE L1 CODE ON ZD 33= LZ(dlog k jmj+ 1k1e) + log jS(2dlog k jmj+1k1e)j+ d (3.88)In order to understand the asymptotic properties of L1 as expressed in Equation (3.88)above, we note, as before, that the �rst and third terms are asymptotically negligible,since LZ(dlog km + 1k1e) = O(log log kmk1), and d = O(1). For the middle term,we notice, as before, that S(n) is completely contained in the cube of side n in thepositive orthant of Zd. To be precise, let T (n) 4= fm 2 Zd : 8j; 0 < mj � ng. ThenclearlyS(n) � T (n) which implies jS(n)j � jT (n)j = nd (3.89)which implies log jS(n)j � d logn leading to (3.90)L1(m) = d log k jmj+ 1k1 +O(log log kmk1) (3.91)where the last line above follows from (3.90) and (3.88).Theorem 3.5. The code C1 on Zd is asymptotically optimal.Proof: The proof follows identical lines to the proof of Theorem 3.3. We mustshow that limr!1 maxkmk�r L1(m)d log r = 1 (3.92)First, we note that if kmk � r thenk jmj+ 1k1 � rpd+ d (3.93)which implies log k jmj+ 1k1 � log(rpd+ d) (3.94)leading to L1(m) � d log(rpd+ d) +O(log log r) (3.95)



34 CHAPTER 3. CODINGwhere the line above follows from L1(m) = d log k jmj+1k1+O(log log kmk1), derivedat Equation (3.91).Continuing, since Equation (3.95) holds for allm such that kmk � r, it must holdfor the max over this set, yieldingmaxkmk�rL1(m) � d log(rpd+ d) +O(log log r) (3.96)which implies maxkmk�r L1(m)d log r � d log(rpd+ d) +O(log log r)d log r (3.97)Noting that log rpd above grows asymptotically in r like log r, since log rpd = log r+1=2 log d, this leads tolim supr!1 maxkmk�r L1(m)d log r � lim supr!1 d log(rpd+ d) +O(log log r)d log r = 1 (3.98)from which we conclude limr!1 maxkmk�r L1(m)d log r = 1 (3.99)since we know that, for all L, lim infr!1 maxkmk�r L(m)d log r � 1 (3.100)from Theorem 3.2 on page 21.3.8 Æ-Quantized CodesWe now turn to the problem of describing an arbitrary x 2 Rd to some speci�edprecision Æ=2. Since Rd is uncountable, no pre�x-free code can exist on it. However,by quantizing it into Æ-sized cubes whose centers we take as reproduction points, we



3.8. Æ-QUANTIZED CODES 35create a countable subset of Rd that is Æ-close to any arbitrary x 2 Rd we care toname. Since this quantized subset is countable, a pre�x-free code exists on it, and,in fact, we can easily extend any of the pre�x-free codes on Zd constructed in theprevious sections to a code on the reproduction points.De�nition 3.8. Let Æ > 0 be given. Then the set of reproduction points in Rdinduced by quantization width Æ isQdÆ 4= fÆm :m 2 Zdg (3.101)Further, let x 2 Rd be an arbitrary vector. Then the reproduction point associatedwith the quantization cube into which x falls isQdÆ(x) 4= x̂, where x̂j = Æbxj=Æ + 1=2c (3.102)
Remark 3.4. Note that if x̂ 2 QdÆ , then the index of the quantization cube for whichx̂ is the reproduction point is the integer vector m = x̂=Æ.Since every reproduction point x̂ 2 QdÆ is indexed by an integer vector m = x̂=Æ,any code C on Zd can be used to induce a code CÆ on the reproduction points, leadingto the following de�nition:De�nition 3.9. A Æ-quantized code CÆ is a code on QdÆ . If C is a code on Zd, thenthe Æ-quantized code on QdÆ induced by C isCÆ(x̂) 4= C(x̂=Æ) (3.103)and, conversely, if CÆ is a Æ-quantized code on QdÆ , then the integer code on Zd inducedby CÆ is C(m) 4= CÆ(Æm) (3.104)



36 CHAPTER 3. CODING
De�nition 3.10. A Æ-quantized code-length function, LÆ on QdÆ , is asymptoticallyoptimal in case limr!1 maxx̂2QdÆ : kx̂k�r LÆ(x̂)d log r = 1 (3.105)The justi�cation for the above de�nition is the same as for the integer case.Asymptotically, d log kx̂k is the best one can hope to achieve in encoding x̂. Theproof follows identical lines as in the integer case and will be omitted. When deal-ing with Æ-quantized codes, there is no essential di�erence than when dealing withintegers: we have a countable set of reproduction points, evenly spaced on Rd. Thefact that they happen to be spaced Æ apart instead of 1 apart does not substantivelychange the coding properties.A Æ-quantized code-length function LÆ is de�ned only on QdÆ , rather than onRd. InChapter 4, it will become important to �nd appropriate extensions of such code-lengthfunctions to Rd. That is, given LÆ on QdÆ , we will want to �nd an appropriate relaxedfunction lÆ on Rd, so that descent methods can be used to solve the minimization.To that end, we make the following de�nition.De�nition 3.11. Let lÆ(x) be a function from Rd to R. lÆ is a Æ-approximate code-length function in case there exists a code CÆ on QdÆ with associated code-lengthfunction LÆ, and a constant �, satisfyingjlÆ(x̂)� LÆ(x̂)j � �; 8x̂ 2 QdÆ (3.106)and minx̂2QdÆ : kx̂�xk1�ÆLÆ(x̂) � lÆ(x) � maxx̂2QdÆ : kx̂�xk1�ÆLÆ(x̂) (3.107)



3.8. Æ-QUANTIZED CODES 37Formally, we extend the notion of asymptotic optimality to include Æ-approximatecode-length functions.De�nition 3.12. A Æ-approximate code-length function, lÆ on Rd, is asymptoticallyoptimal in case limr!1 maxkxk�r lÆ(x)d log r = 1 (3.108)The Æ-quantized code on QdÆ induced by the natural code CZ on Zd is the naturalcode on QdÆ , which we'll denote CÆ;Z(x̂). Its code-length function LÆ;Z(x̂), accordingto equations (3.45), (3.46) on page 23, and remark 3.4 on page 35, is given byLÆ;Z(x̂) = dXj=1 LZ(x̂j=Æ) (3.109)= dXj=1blog(jx̂jj=Æ + 1)c+ 2blog(blog(jx̂jj=Æ + 1)c+ 1)c+ 2 (3.110)That LÆ;Z(x̂) is asymptotically optimal according to De�nition 3.12 follows directlyfrom the asymptotic optimality of LZ on Zd.Similarly, the Æ-quantized codes on QdÆ induced by the l2 and l1 codes describedin sections 3.6 and 3.7, have respectively the code-length functionsLÆ;2(x̂) = (dlog k jx̂j=Æ + 1ke) + log jS(2dlog k jx̂j=Æ+1ke)j+ d and (3.111)LÆ;1(x̂) = (dlog k jx̂j=Æ + 1k1e) + log jS(2dlog k jx̂j=Æ+1k1e)j+ d (3.112)according to equations (3.68) on page 29 and (3.88) on page 33, as well as remark 3.4on page 35. That these code-length functions are asymptotically optimal accordingto De�nition 3.12 follows directly from the asymptotic optimality of L2 and L1 onZd.The development of Æ-quantized codes assumed that Æ > 0 was an arbitrary realnumber, speci�ed in advance, and available, \for free", as it were, to both the encodingand decoding process. By specifying Æ as part of the coding process, we can obtain



38 CHAPTER 3. CODINGa code on a dense countable subset of Rd, allowing us to approximately encode anyreal vector to any desired degree of precision. We do this using the indexed codingscheme described in Section 3.5. We begin with a de�nition.De�nition 3.13. Let Qd denote the set of diadic reproduction points:Qd 4= f2�qm : q 2 Z;m 2 Zdg (3.113)= [Æ: Æ=2�q ; q2ZQdÆ (3.114)Qd is countable and contains reproduction points to any arbitrary �nite precision.That is, given an arbitrary vector x 2 Rd, Qd contains points arbitrarily close to it.Now we proceed with the construction of an indexed code on Qd. Let C be a �xedcode on Zd, and, for each Æ > 0, let CÆ denote the Æ-quantized code on QdÆ inducedby C as described in De�nition 3.9. Let D 4= fCÆ : Æ = 2�q; q 2 Zg be the countablesubset of such codes corresponding to quantization widths Æ = 2�q for some integerq, and, for all CÆ 2 D, let C0(CÆ) 4= CZ(q). We observe that the union of the domainsof the codes in D is Qd. Let CI be the resulting indexed code on Qd constructed fromD and C0.If x̂ 2 Qd , then it has more than one candidate representation of the formx̂ = 2�qm. In fact, it has in�nitely many, for if x̂ = 2�qm, then also x̂ = 2�q�1(2m).The indexed code chooses the representation with the shortest code-length, so, ifx̂ 2 Qd, its codeword will beCI(x̂) = CZ(q�)C(m�) (3.115)where q� and m� satisfy(q�;m�) = arg minq;m:2�qm=x̂LZ(q) + L(m) (3.116)



3.9. CODES DERIVED FROM PROBABILITY MASS FUNCTIONS 39By construction, the code-length function of CI isLI(x̂) = arg minq;m:2�qm=x̂LZ(q) + L(m) (3.117)De�nition 3.14. When the code C above is the natural code CZ on Zd, then we'llcall the code CI constructed from it the natural code on Qd, writing CZ(x̂), andwriting LZ(x̂) to indicate its associated code-length function.Remark 3.5. If x̂ is a reproduction point in Qd, then it codeword under the naturalcode is CZ(x̂) = CZ(q�)CZ(m�) (3.118)where q� and m� satisfy(q�;m�) = arg minq;m:2�qm=x̂LZ(q) + LZ(m) (3.119)In other words, the codeword for x̂ under CZ really is the natural code on an integervector (q�;m�) 2 Zd+1 that determines it, and its code-length function isLZ(x̂) = arg minq;m:2�qm=x̂LZ(q) + LZ(m) (3.120)
3.9 Codes Derived From Probability Mass Func-tionsThe previous sections exhibited the explicit construction of some codes on Zd. It isalso possible to derive a code from a probability distribution, and, more importantly,from a parametric family of probability distributions.



40 CHAPTER 3. CODINGDe�nition 3.15. If p(m) is a probability mass function on Zn, then the Kraft In-equality, Theorem 3.1 on page 14, guarantees the existence of a code Cp with code-lengths Lp(m) = d� log p(m)e. Cp is referred to as a Shannon code associated withp(m).
Remark 3.6. We will often write about the Shannon code Cp associated with p(m).Although such a code is never unique, the code-lengths Lp are, which is all we reallycare about.Now suppose P = fpb(m)g is a family of probability mass functions on Zn,indexed by a real-vector b 2 Rd, and, for each pb 2 P, let Cb and Lb be the associatedShannon code and code-length function respectively. Let D = fCb : b 2 Qdg, whereQd is the set of diadic reproduction points de�ned in De�nition 3.13. Then D is acountable collection of codes indexed by the elements of Qd, so we can build from itan indexed code C(m) on Zn. Following the construction in Section 3.5, let C0(b)be a code on b 2 Qd. Then the indexed code isC(m) 4= C0(b̂)Cb̂(m) (3.121)where b̂ satis�es b̂ = arg minb2Qd L0(b) + Lb(m) (3.122)The preceding construction plays a crucial role in the theory of minimum description-length (MDL) estimation, which will be discussed in Chapter 4. In fact, for the givenparametric family, P, and the particular quantization set Qd and coding scheme C0,b̂ above is the MDL estimator, because it yields the shortest two-part description(code-length) of the data m.



Æ-QUANTIZED CODES FROM PROBABILITY DENSITY FUNCTIONS 413.10 Æ-Quantized Codes Derived From ProbabilityDensity FunctionsLet F = ffb(x)g be a family of probability density functions on Rn, indexed by areal-valued vector b 2 Rd. We can combine the methods of the last several sectionsto create Æ-quantized codes on Rn based on F . Let Æ > 0 be �xed. We begin byquantizing Rn into Æ-sized cubes whose centers are reproduction points in QnÆ . For agiven b, each of these cubes has an associated probability mass, which is the cube'sprobability under fb. The quantization therefore allows us to convert the familyF = ffb(x)g of pdfs on Rn into a family PÆ = fpÆ;b(x̂)g of pmfs on QnÆ . In moredetail, if VÆ(x̂) denotes the quantization cube whose reproduction point is x̂ 2 QnÆ ,then pÆ;b(x̂) is given by pÆ;b(x̂) 4= ZVÆ(x̂) fb(x)dx (3.123)Now that we have a family of pmfs, we can follow the methods of the previous sectionto create an indexed code CÆ on QnÆ . For each pÆ;b 2 PÆ, let CÆ;b and LÆ;b be theassociated Shannon code and code-length function respectively. Let D = fCÆ;b : b 2Qdg, where Qd is the set of diadic reproduction points de�ned in De�nition 3.13.Then D is a countable collection of codes indexed by the elements of Qd, so we canbuild from it an indexed code CÆ(x̂) on QnÆ . Following the construction in Section 3.5on page 25, let C0(b) be a code on b 2 Qd. Then the indexed code isCÆ(x̂) 4= C0(b̂)CÆ;b̂(x̂) (3.124)where b̂ satis�es b̂ = arg minb2Qd L0(b) + LÆ;b(x̂) (3.125)



Chapter 4Log-Penalized Linear RegressionThis chapter discusses the theoretical motivation for the log penalty as well as prac-tical methods for solving the log-penalized linear regression minimization. Whenone takes a complexity-based approach to estimation, as embodied by the minimumdescription length principle, the log penalty emerges quite naturally.4.1 The Minimum Description-Length PrincipleThe minimum description-length (MDL) principle was developed by Rissanen [15],based on the pioneering work in algorithmic complexity by Kolmogorov [10], Chaitin[3], and Solomono� [16]. The principle relates parametric estimation theory to codingtheory by asserting that the estimate be associated with a minimum-length code onthe data. Using ideas that parallel those of algorithmic complexity, Rissanen de�nesthe complexity of a data set to be the code-length of the data with respect to anindexed code induced by a parametric family of probability distributions. From thisperspective, complexity is just a synonym for code-length with respect to an identi�edcode.Let fpb(m)g be a family of pmfs on Zn, indexed by a real vector b 2 Rd. Supposethat we are given data m generated from the probability distribution whose index isb0|that is, m � pb0(m)|and that b0 is unknown. We would like to �nd a goodestimate b̂ of the true but unknown underlying parameter vector b0.42



4.1. THE MINIMUM DESCRIPTION-LENGTH PRINCIPLE 43To that end, let Cb and Lb be the Shannon code and code-length function as-sociated with pb, let Qd be the set of diadic reproduction points on Rd as de�nedin De�nition 3.13, and let C(b) be a code (any code, for the moment) on Qd withassociated code-length function L(b). As illustrated in Equation (3.121) on page 40,m 2 Zn can then be encoded with an indexed code CI asCI(m) = C(b̂)Cb̂(m) (4.1)where b̂ satis�es b̂ = arg minb2Qd L(b) + Lb(m) (4.2)= arg minb2Qd L(b) + d� log pb(m)e (4.3)In Equation (4.2) above, b̂ is the MDL estimate. Note that, for any b 2 Qd whatever,m can be described as C(b)Cb(m), but that the b̂ selected above is the one thatattains the minimum code-length from among all possible choices of b. The complexityofm is de�ned to be its code-length under this coding scheme, L(b̂)+ d� log pb̂(m)e,and the complexity of b̂ is de�ned to be L(b̂). (Rissanen actually uses a more involvedde�nition to de�ne what he calls the stochastic complexity of m, but our de�nitioncaptures the spirit and is suÆcient for our purposes.) The structure of the two-partcode re
ects our competing desires to both choose a b̂ that �ts the data m well andto choose a b̂ of low complexity.Note also that there is nothing particular about Qd. Any dense countable subset ofRd would do. We focus on Qd because it is convenient. Finally, note that b̂ dependsupon the code C chosen.De�nition 4.1. Let P = fpb(m)g be a family of pmfs on Zn, indexed by a realvector b 2 Rd, and let Q be a dense countable subset of Rd on which a pre�x-freecode C with code-length function L is de�ned. Then the MDL estimator determinedby P; Q; and L is b̂ = argminb2Q L(b) + d� log pb(m)e



44 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSION
As noted above, the MDL estimator depends upon the choice of C. The code Cembodies our inherent preference for certain kinds of models. Di�erent choices leadto di�erent MDL estimates. Rissanen comments on this in [15]. He notes that whilethis may be formally equivalent to a Bayesian approach, and therefore just as ad hoc,the coding perspective naturally causes one to focus on succinct codes rather thanon prior probability distributions, which can be a liberating viewpoint. From theBayesian perspective, one may question whether the chosen prior distribution trulyre
ects an underlying generation mechanism for the data. However, from the codingperspective, any code that yields a succinct coding of the data is perfectly acceptable.Further, when the coding perspective is adopted, this dissertation observes that itmakes sense to consider only asymptotically optimal codes. The naturalness withwhich this conclusion follows from the coding perspective also reinforces Rissanen'sobservation that the coding perspective can lead to a di�erent choice of equivalentprior, since it leads to what we have been calling the natural code, which does notbelong to any standardly recognized parametric family of probability densities.4.2 MDL On Continuous DataThe MDL method can be extended to handle continuous rather than discrete data.Let F = ffb(x)g be a parametric family of probability density functions on Rnindexed by b 2 Rd and let C(b) be a code on Qd with code-length function L(b).We assume that the data x is generated from the pdf whose index is b0|that is,x � fb0(x)|and we seek a good estimate b̂ for the true underlying parameter vectorb0.We begin by observing that the problem can be reduced to that of discrete estima-tion by quantizing the domain. Let � > 0 be given. We use the construction detailedin Section 3.10 on page 41 to convert F into a family P = fp�;bg of pmfs de�ned onQn� . We can then use the MDL method described in the previous section to �nd an



4.3. MDL AND REGRESSION 45estimate b̂ of the quantized data Qn� (x) under the parametric family P, yieldingb̂� = arg minb2Qd L(b) + d� log p�;b(Qn� (x))e (4.4)We can go a step further. In theory, we'd like � to be arbitrarily small. Forincreasingly smaller �, the approximations Qn� (x) � x and p�;b(x̂) � fb(x̂)�n becomeincreasingly accurate, which means that the approximation� log p�;b(x̂) � � log fb(x̂)� n log � (4.5)becomes increasingly accurate, leading to the following chain of approximationsb̂� = arg minb2Qd L(b) + d� log p�;b(Qn� (x))e (4.6)� arg minb2Qd L(b) + d� log fb(x)� n log �e (4.7)� arg minb2Qd L(b) +� log fb(x)� n log � (4.8)= arg minb2Qd L(b)� log fb(x) (4.9)and to the following de�nition.De�nition 4.2. Let F = ffb(x)g be a family of pmfs on Rn, indexed by a realvector b 2 Rd, and let Q be a dense countable subset of Rd on which a pre�x-freecode C with code-length function L is de�ned. Then the MDL estimator determinedby F ; Q; and L is b̂(x) = argminb2Q L(b)� log fb(x)
4.3 MDL And RegressionIn the regression setting, we are given n pairs of data f(xi; yi)g, x 2 Rp, yi 2 R,and we assume a relationship between x and y governed by a deterministic function



46 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSIONhb0 : Rp ! R belonging to a parametric family H = fhb(x)g indexed by b 2 Rdand then corrupted by zero-mean additive Gaussian noise z with known variance �2Z .That is, yi = hb0(xi) + zi; zi iid� N(0; �2Z) (4.10)Let y 2 Rn be the vector whose ith component is yi. Let X be the n�p matrix whoseith row is xi. Let hb(X) denote the vector whose ith component is hb(xi). Then analternate formulation of the above, assuming X to be �xed and given, is that y is arandom variable drawn according to a Gaussian distribution with mean hb0(X) andvariance �2ZIn. If we let F = ffb(y)g be the parametric family of such distributions,indexed by b 2 Rp, and given byfb(y) 4=  1p2��2Z!n e� 12�2Z ky�hb(X)k2 (4.11)then we can apply the methods of the previous section to obtain an MDL estimate b̂of the true underlying parameter vector b0.Remark 4.1. It will be convenient in the following derivation, and in many of thesubsequent derivations, to use the natural logarithm, rather than the log base 2.When the natural logarithm is used, the code-length function L must be thoughtof as expressing code-lengths in nats, rather than in bits, so that the units remaincomparable. Formally, a nat is log2 e bits. So if ~L(b) is a code-length functionexpressed in bits, then L(b) = ~L(b)= log2 e is the equivalent code-length function innats.Proceeding with the derivation of the MDL estimate:b̂ = arg minb2Qd L(b)� log fb(y) (4.12)= arg minb2Qd L(b) + n logq2��2Z + 12�2Z ky � hb(X)k2 (4.13)= arg minb2Qd L(b) + 12�2Z ky � hb(X)k2 (4.14)



4.4. MOTIVATION FOR ASYMPTOTICALLY OPTIMAL CODES 47= arg minb2Qd ky� hb(X)k2 + 2�2ZL(b) (4.15)The linear regression form of MDL estimation occurs when the family H = fhb(x)gis the family of linear functions on x given by hb(x) = bTx, yieldingb̂ = arg minb2Qd ky�Xbk2 + 2�2ZL(b) (4.16)At this stage, there are a couple of impediments to solving (4.15) or its linear form(4.16) to actually yield an estimate for a particular data set (X;y). One problem isphilosophical; the other is practical. The philosophical problem is that we don'tnecessarily know what constitutes a good code-length function L to use in the aboveminimization. The practical problem is that, given a particular code-length functionL there may not exist eÆcient computational methods to solve the minimization.Regarding the �rst problem, this dissertation argues that the natural code-lengthfunction on Qd is an obvious choice for L, both because it is natural and because itis asymptotically optimal. The philosophical reasons behind this choice are discussedin greater length in Section 4.4.Regarding the problem of computational eÆciency, various relaxations can bemade to yield a computationally tractable solution in the linear case. While thenatural code-length function represents a theoretically sound choice regarding theMDL solution to the general regression problem (4.15), this dissertation focuses onlyon tractable methods for the linear case (4.16).4.4 Motivation For Asymptotically Optimal CodesUsing the MDL method is nearly equivalent to performing Bayesian maximum a pos-teriori (MAP) estimation, although there are some di�erences induced by the integerconstraints of coding. The MDL method uses code-lengths to assess whether one can-didate model instance is less complex than another, and therefore inherently prefer-able, while the Bayesian method uses a prior probability distribution to assess whetherone candidate model instance is more probable than another, and therefore inherently



48 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSIONpreferable. In the discrete case, there is a direct correspondence between probabil-ity distributions and code-length functions, and the equivalence between MDL andBayesian MAP is quite tight. Moreover, MAP estimation with a Bayesian prior is, inturn, mathematically equivalent to penalized regression, as demonstrated in Section5.2 on page 75. All three methods require the pulling out of thin air, as it were,of a function|be it a code-length function, a probability distribution, or a penaltyfunction|whose selection determines a preference for some model instances over someothers, with seemingly no rationale for so doing. Why use this code-length function,this probability distribution, this penalty, and not some other?The situation is reminiscent of that in algorithmic complexity, in which the com-plexity of a bit string depends upon the choice of general-purpose computer used todescribe it. There is seemingly no objective way to compare the complexity of twoobjects without �rst making a subjective selection of the machinery used to describethem. In algorithmic complexity, we can take heart from a kind of weak universal-ity: any two speci�c general-purpose machines di�er by at most a constant in theircomplexity assignments [4, 18]. Unfortunately, this constant can be arbitrarily large,depending on the two machines. In statistics, we can take heart from a similar kindof universality: as the amount of data n goes to in�nity, the regression method used,be it MDL, Bayesian, or penalized, converges to the correct estimate, regardless ofthe code-length function, prior probability distribution, or penalty function chosen.As in the case of algorithmic complexity, however, the amount of data N required toachieve a certain level of estimation accuracy can be arbitrarily large, depending onthe choice made.Although MDL, Bayesian MAP, and penalized regression are roughly equivalentmathematically, they o�er di�erent perspectives on the regression problem, whichmay lead to di�erent insights. Taking the MDL approach and thinking about theproblem in terms of code-lengths, it is not too diÆcult to see why asymptoticallyoptimal codes might be preferable. In a well-de�ned sense, an asymptotically optimalcode achieves in the limit the shortest possible code-lengths. This is not so much amatter of being eÆcient as it is a matter of allocating short codewords judiciously. Infact, asymptotically optimal codes need not be eÆcient and eÆcient codes need not



4.5. THE LOG PENALTY 49be asymptotically optimal (loosely speaking, a code is eÆcient if no other code existsthat assigns as short or shorter code-lengths to all objects). While all codes mustmake arbitrary decisions about which objects get shorter codewords than others, anasymptotically optimal code is not allowed to lavish exceedingly short code-lengthson a particular subset of objects to the detriment of achieving asymptotic optimality.There must always be enough short codes to go around such that the worst casecode-length length is optimal to �rst order. Put another way, if a code puts so muchemphasis on its short codewords that the rest have to become much longer, then thiscode is biasing the estimation too much.In the absence of any a priori knowledge about the true underlying parametervector b0, it seems wise to choose a robust code that distributes the code-length painas evenly as possible over the domain. Such codes are in some sense universal, becausethey do as well in the limit as any code possibly could. Conversely, to use instead acode that forsakes asymptotic optimality in order to favor a particular subset of theparameter domain with particularly short code-lengths would be to implicitly assertthat one knew something a priori about where in the domain the true underlyingparameter vector b0 fell. Unless such is known to be the case, it is imprudent to usesuch a code. This fact is intuitively understood by those applying Bayesian methods.No one would seriously propose a speci�c prior, such as i.i.d. standard normal, onb, since it would hopelessly bias the regression toward solutions with kb̂k2 = p.Instead, if an i.i.d. zero-mean Gaussian prior were desired, the entire family of zero-mean Gaussian distributions on b would be considered, with the unknown variance�b treated as a hyper-parameter whose value must be estimated. But this methode�ectively leads to an asymptotically optimal code, as demonstrated in sections 5.2and 5.3 beginning on page 75.4.5 The Log PenaltyHaving motivated above the use of an asymptotically optimal code-length functionfor MDL regression, there are several we might use, for example, the l2 or l1 codes,or the natural code. Using the natural code LZ on Qd, as the code-length function in



50 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSIONEquation (4.15) leads to what this dissertation calls log-penalized regression. Whilethe log penalty could be used in any kind of penalized regression, this dissertationfocuses on the linear regression form of Equation (4.16), showing how it can be relaxedto yield an approximate solution in a computationally eÆcient manner.Remark 4.2. In the linear regression setting, the dimensionality of b must be thesame as the dimensionality of xi 2 Rp. Henceforth, the dimensionality of b willbe denoted by p rather than d. Note also that code-lengths in this section will beexpressed in nats, rather than bits.We begin with the linear regression form of MDL estimation expressed in Equation(4.16), using the natural code-length function LZ ,b̂ = arg minb2Qp ky �Xbk2 + 2�2ZLZ(b) (4.17)Formally, this is an integer programming problem over the (q;m) pairs that representthe points of the form 2�qm in Qp. We'd like to relax it to a problem on Rp so thatdescent methods can be used on it. If we could �nd a function l(b), b 2 Rp, thatwere a good approximation of LZ(b), b 2 Qp, then we could substitute the relaxedproblem b̂ = arg minb2Rp ky�Xbk2 + 2�2Z l(b) (4.18)This is the approach we'll take. Unfortunately, LZ is not continuous on Qp, so thereis no immediate continuous extension to Rp. In fact, for any b0 2 Rp, we havelimb!b0;b2Qp LZ(b) =1 (4.19)But what if we separate Equation (4.17) as follows:b̂ = arg minÆ=2�q ; b2QpÆ LZ(q) + ky �Xbk2 + 2�2ZLÆ;Z(b) (4.20)where LÆ;Z is de�ned in de�nition 3.9 on page 35, and where, by the admittedlyawkward notation argminÆ=2�q ; b2QpÆ above, we mean that if (Æ�;b�) is a minimizing



4.5. THE LOG PENALTY 51pair of (4.20), then b̂ = b�. Now for �xed Æ the minimization can be relaxed to Rpeasily, because the natural code LÆ;Z on QpÆ has a natural extension to Rp. Accordingto Equation (3.110) on page 37, LÆ;Z is given byLÆ;Z(b̂) = dXj=1blog(jb̂jj=Æ + 1)c+ 2blog(blog(jb̂jj=Æ + 1)c+ 1)c+ 2 (4.21)for b̂ 2 QdÆ . De�ning a relaxed function ~lÆ(b) on b 2 Rd by~lÆ(b) 4= dXj=1 log(jbjj=Æ + 1) + 2 log(log(jbjj=Æ + 1) + 1) + 2 (4.22)we obtain an asymptotically optimal Æ-approximate code-length function, as de�nedby de�nitions 3.11 and 3.12 on page 36. However, we don't really require all the bag-gage of the lower-order terms, since they won't much a�ect minimizations involving~lÆ. By dropping the lower order terms, we arrive at the further relaxed approximationlÆ(b) 4= pXj=1 ln(jbjj=Æ + 1) (4.23)referred to in this dissertation as the log penalty. lÆ retains the asymptotic propertiesof ~lÆ, so, in a loose sense, it can still be thought of as an asymptotically optimalapproximate coding-length function, to �rst order.
Note also that Ppj=1 ln(jbjj=Æ + 1) can be expressed aspXj=1 ln(jbjj=Æ + 1) = pXj=1 ln� jbjj+ ÆÆ � (4.24)= pXj=1 ln(jbjj+ Æ) + p ln(1=Æ) (4.25)so, for minimizations in which Æ is a constant, we can drop the term p ln(1=Æ) and



52 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSIONuse the more succinct form l0Æ(b) = pXj=1 ln(jbjj+ Æ) (4.26)Plugging our relaxed version lÆ of LÆ;Z in to Equation (4.20) leads tob̂ = arg minÆ=2�q ; b2QpÆ LZ(q) + ky�Xbk2 + 2�2ZLÆ;Z(b) (4.27)� arg minÆ2R; b2Rp LZ(ln 1=Æ) + ky �Xbk2 + 2�2Z lÆ(b) (4.28)= arg minÆ2R; b2Rp LZ(ln 1=Æ) + ky�Xbk2 + 2�2Z pXj=1 ln(jbjj=Æ + 1) (4.29)= arg minÆ2R; b2Rp LZ(ln 1=Æ) + 2p�2Z ln(1=Æ) + ky �Xbk2 + 2�2Z pXj=1 ln(jbjj+ Æ)(4.30)� arg minÆ2R; b2Rp 2p�2Z ln 1=Æ + ky�Xbk2 + 2�2Z pXj=1 ln(jbjj+ Æ) (4.31)In (4.28), we relax the domain from quantized to continuous. In (4.31), we dropthe term LZ(ln 1=Æ) = O(ln ln 1=Æ), since it is dominated by the higher-order term2p�2Z ln 1=Æ. The relaxed minimization problem (4.31) is now in a form where itcan be solved eÆciently. Note that for �xed Æ the �rst term is a constant and theminimization reduces tob̂ = arg minb2Rp ky �Xbk2 + 2�2Z pXj=1 ln(jbjj+ Æ) (4.32)Section 4.8 discusses a method for solving the above minimization. With such amethod in hand, it is then straightforward to plug a handful of reasonable Æ valuesinto (4.31), say for q = 1; : : : ; 10, solving (4.32) in each case, and to select the b̂value yielding the minimum over all. Since (4.31) is an approximation to the totalcode-length in nats required to express the data y, the value b̂ that minimizes (4.31)is approximately the MDL estimator.



4.6. RELAXATIONS OF THE L2 AND L1 CODES 53But this is not the only way to solve the problem. Strange as it may seem, havingused the MDL principle to motivate the penaltyPpj=1 ln(jbjj+Æ), we can now abandonthat view and give the problem a conventional statistical treatment as a penalizedlinear regression problem. That is, rather than using minimum code-length as thecriterion for establishing an optimal guess b̂, we can treat (4.32) simply as a penalizedlinear regression problem and consider it from the perspective outlined in Chapter2 on page 5. To that end, we'll replace 2�2Z in (4.31) with the free variable � (inpractice we would have needed to estimate �2Z anyway). Then, for each (Æ; �) pair,we have the following minimization problemb̂(Æ; �) = arg minb2Rp ky �Xbk2 + � pXj=1 ln(jbjj+ Æ) (4.33)and we can use standard methods such as cross-validation to estimate the (Æ; �) pairthat will yield the estimator b̂ with lowest expected prediction error. Note that (4.33)is just a generalization of (4.32) with �2Z replaced by the free parameter �, so anycomputational method that solves the latter also solves the former.
4.6 Relaxations of the l2 and l1 CodesWe'll digress for a moment to re-emphasize that the log penalty, while natural, isnot the only asymptotically optimal code. For example, the Æ-quantized code-lengthfunctions, LÆ;1 and LÆ;1, described in Section 3.8 on page 34, are also asymptoticallyoptimal, and they can be similarly relaxed to yield approximate code-length functionson Rp. We'll illustrate using the LÆ;2 code, with the derivation for the LÆ;1 code beingvirtually identical.We'll take the inner minimization of Equation (4.20) as our starting point, replac-ing LÆ;Z with LÆ;2 b̂ = arg minb2QpÆ ky �Xbk2 + 2�2ZLÆ;2(b) (4.34)



54 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSIONAccording to Equation (3.111) on page 37, LÆ;2 is given byLÆ;2(b̂) = LZ(dlog k jb̂j=Æ + 1ke) + log jS(2dlog k jb̂j=Æ+1ke)j+ d (4.35)De�ning a relaxed function, ~lÆ(b) on Rp by~lÆ;2(b) 4= lZ(log k jbj=Æ + 1k) + log jS(2log k jbj=Æ+1k)j+ d (4.36)where lZ is the natural relaxation of LZ to R, given bylZ(x) 4= log(jxj+ 1) + 2 log(log(jxj+ 1) + 1) + 2 (4.37)yields an asymptotically optimal Æ-approximate code-length function, as de�ned byde�nitions 3.11 and 3.12 on page 36. As with the log penalty, we don't really require allthe baggage of the lower-order terms. Their presence or absence will not much a�ectthe resulting minimization, so we can simplify things by removing them. According toEquation (3.71) on page 29, the principal order of (4.36) above is simply p lnk jbj=Æ+1k, allowing for a relaxation to principal order oflÆ;2(b) 4= p lnk jbj=Æ + 1k (4.38)As with the log penalty, note also that p lnk jbj=Æ + 1k can be expressed asp ln k jbj=Æ + 1k = p lnvuutXj � jbjjÆ + 1�2 (4.39)= p2 lnXj � jbjj+ ÆÆ �2 (4.40)= p2 ln 1Æ2Xj (jbjj+ Æ)2 (4.41)= p lnk jbj+ Æ1k+ p ln 1Æ (4.42)so, for minimizations in which Æ is constant, we can drop the term p ln 1=Æ and use



4.6. RELAXATIONS OF THE L2 AND L1 CODES 55the more succinct form l0Æ;2(b) = p ln k jbj+ Æ1k (4.43)A similar process applied to the LÆ;1 code yields the respective relaxed formslÆ;1(b) 4= p lnk jbj=Æ + 1k1 and (4.44)l0Æ;1(b) 4= p lnk jbj+ Æ1k1 (4.45)Substituting the relaxed forms l0Æ;2 and l0Æ;1 for the log penalty in Equation (4.32) yieldswhat might be called the MDL forms of ridge and lasso regressionb̂ridge,MDL = argminb ky �Xbk2 + 2p�2Z ln k jbj+ Æ1k and (4.46)b̂lasso,MDL = argminb ky �Xbk2 + 2p�2Z ln k jbj+ Æ1k1 (4.47)For non-zero Æ, the solutions to the above forms are not precisely ridge and lassosolutions. For example, there will be no � such that b̂ridge(�) is the solution to (4.46)above. However, as Æ ! 0, the solution converges to a ridge solution. At Æ = 0, theminimizations above have spurious non-local minima at b = 0 (which stems directlyfrom using a quantization width of 0), but their local minima are still well-de�nedand will lie precisely on the ridge and lasso solution paths respectively. This is dueprimarily to the fact that (4.46) and (4.47) have the same level curves when Æ = 0and is straightforward to show by taking derivatives.For example, consider (4.46). At Æ = 0, it reduces to the simpler, unquantizedform b̂ = argminb ky�Xbk2 + 2p�2Z ln kbk (4.48)If b̂ is a local minimum of the above equation, then, taking derivatives, it must satisfy0 = 2XTXb̂� 2XTy + 2p�2Zkbk2b; which implies (4.49)(XTX+ 2p�2Zkbk2 I)b̂ = XTy; leading to (4.50)



56 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSIONb̂ = (XTX+ 2p�2Zkbk2 I)�1XTy (4.51)The ridge solution path is shown in [8] to be b(�) = (XTX + �I)�1XTy, so, if b̂ isa local minimum of (4.48) then, via comparison with (4.51), it obviously lies on theridge solution path for � = 2p�2Z=kbk2.More generally now, suppose f is a convex objective function and g is a convexpenalty function. Suppose further that ~g has the same level curves as g. That is,suppose ~g(b) = h(g(b)) for some monotonic increasing function h from R to R. (Ifh were not monotonic, it would map two level curves of g onto the same level curveof ~g. If h were monotonic decreasing, it would invert the nesting order of the levelcurves.) Then any local minimum to the penalized regressionf(b) + �h(g(b)) (4.52)for a particular � > 0, is also a local minimum tof(b) + �g(b) (4.53)for some � > 0. To see this, suppose that b were a local minimum of both (4.52) and(4.53) above for some � > 0 and � > 0. Then, taking derivatives, we have0 = rf(b̂) + �rg(b̂) and (4.54)0 = rf(b̂) + � _h(g(b̂))rg(b̂) (4.55)from which we conclude, comparing the above two forms, that� = � _h(g(b̂)) (4.56)Obviously (4.56) is a necessary condition for b̂ to be a local minimum of both (4.52)and (4.53), but it is easy to see that it is also a suÆcient condition. If b̂ is a localminimum of (4.52) for a particular � > 0, then it is also a local minimum of (4.53)



4.7. SPARSITY 57for � = � _h(g(b̂)). The converse does not quite hold. If b̂ is a local minimum of(4.53), then it is a critical point of (4.52) for � = �= _h(g(b̂), but not necessarily alocal minimum. The implication works in the �rst direction because all the criticalpoints of (4.53) must be local minima, under the assumption that f and g are convex.Note also that, since h is monotonic increasing, _h(g(b)) is positive for all b andhence � = � _h(g(b̂) is positive whenever � is positive.
4.7 SparsityIt has been mentioned that the log penalty leads to sparse solutions, an assertion thatis corroborated by the experiments in Chapter 6. From a philosophical point of view,it should be unsurprising that a penalty based upon an asymptotically optimal codingcost and the MDL principle should yield sparse solutions, since the MDL principle isprimarily about �nding low complexity solutions, and a sparse solution is one kindof low complexity solution. We can get a more solid grasp on why the log penalty inparticular should yield sparse solutions when we consider the shape of its level curves.Figure 4.1 illustrates one of the level curves of the log penalty in two dimensions. Thecurve is quite pointy, and it is essentially this pointiness that leads to sparse solutions.A local minimum of the log-penalized linear regression must occur at a point b̂ atwhich the level curve of the log penalty going through b̂ is tangent to the level curveof the residual sum of squares term going through b̂. In particular, at b = b̂, we haverbfky �Xbk2g = ��rbfXj ln(jbjj+ Æ)g (4.57)Other things being equal, the point of tangency is more likely to occur at the pointyend of the log penalty's level curve, which represents a sparse solution, than at theinterior of the curve, which represents a non-sparse solution. In p dimensions, the logpenalty's level surfaces have k-dimensional pointy edges for all k < p.



58 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSION

A Log Penalty Level-Curve
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Figure 4.1: This graph shows a level curve in two dimensions of the log penalty.The pointiness of the curve is essentially what causes log-penalized regression to yieldsparse solutions



4.8. ITERATIVE LINEARIZATION 594.8 Iterative LinearizationThe main impediment to eÆciently solving the log penalty minimization (4.33) is thatthe objective is not convex; speci�cally, the log penalty term is not convex, and, infact, it is concave on the positive orthant. This means that, in general, there will bemultiple local minima, and the machinery of convex optimization cannot be directlyapplied. However, a method called iterative linearization, described in [7], allows oneto eÆciently �nd a local minimum of the log penalty minimization through solvinga sequence of convex minimization problems, each of which locally approximates thelog penalized minimization about the current iterate.(Current iterate is a concept from descent method techniques, all of which areiterative. One begins at some arbitrary point in the solution space, the zeroth iterate,calculates a descent direction, takes a small step in that direction, leading to a newpoint, the �rst iterate. One then repeats the process, calculating a new descentdirection, takes a small step, leading to the next iterate, and so on. This results in asequence of iterates that converges to a minimum.)The linearization trick is to take a �rst-order Taylor series expansion of the logpenalty about the current iterate and to solve the resulting linearized minimizationproblem to get the next iterate, leading to the following iterative method:b(k+1) = argminb ky �Xbk2 + �Xj ln(jb(k)j j+ Æ) + 1jb(k)j j+ Æ (jbjj � jb(k)j j) (4.58)= argminb ky �Xbk2 + �Xj jbjjjb(k)j j+ Æ + �Xj ln(jb(k)j j+ Æ)� jb(k)j jjb(k)j j+ Æ(4.59)= argminb ky �Xbk2 + �Xj jbjjjb(k)j j+ Æ (4.60)Equation (4.58) is derived from Equation (4.33) by substituting for the log penalty its�rst-order Taylor series expansion about the kth iterate. (Actually, the substitutionmade is not quite a �rst-order Taylor series expansion, because of the absolute-valuesigns. This makes the substituted penalty function a cone with hyperplanar faces



60 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSIONrather than simply a hyperplane, while still corresponding locally to the �rst-orderTaylor series expansion in the region of the kth iterate. It also makes the substitutedpenalty have a �nite minimum and mirrors the symmetry of the original log penalty.)Equation (4.59) merely re-arranges the terms in (4.59) so that constants not a�ectingthe minimization are collected together. Equation (4.60) then drops those constants,since they don't a�ect the result of the minimization.The method works as follows: we begin at k = 0 with an arbitrary zeroth iterate,say b(0) = 0. Plugging this in to Equation (4.60), we solve the resulting minimization,which is convex, leading to the �rst iterate b(1). We then plug b(1) into (4.60), leadingto a new convex minimization problem whose solution gives us b(2), and so on. Thisresults in a sequence of convex minimization problems whose solutions lead to asequence fb(k)g of iterates that converges to a local minimum of the original logpenalized regression problem (4.33).Note that, for each b(k), the minimization (4.60) is a weighted lasso minimization.That is, it has the form b̂ = argminky �Xbk2 + �Xj jbjjwj (4.61)where wj > 0 are arbitrary weights. Thus, the relationship between log-penalizedlinear regression and the lasso is a close one, with the log penalty solution being thelimit of a succession of iteratively re-weighted lasso minimizations. Equation (4.60)can be solved eÆciently using standard quadratic programming methods or by theleast-angle-regression (LARS) method of [6]. The LARS method is straightforwardbut somewhat intricate and will not be discussed here. An excellent reference onconvex optimization methods in general is [2].One thing that needs to be mentioned, though, is a stopping criterion for the aboveiterative linearization method. The stopping criterion tells us when the current iterateb(k) is suÆciently close to the actual local minimum for us to stop the iteration. Toobtain a stopping criterion, we note that if b is a local minimum of (4.33), then thegradient of the objective function at b must be the p-dimensional zero-vector, leading



4.8. ITERATIVE LINEARIZATION 61to 0 = rb "ky �Xbk2 + �Xj jbjjjb(k)j j+ Æ# (4.62)= 2XTXb� 2XTy + � sign(b)jbj+ Æ1 (4.63)where sign(b)jbj+ Æ1denotes the vector whose jth component issign(bj)jbjj+ ÆThe iteration can then be stopped when (4.63) becomes suÆciently small, say whenk2XTXb(k) � 2XTy + � sign(b(k))jb(k)j+ Æ1k � 
 (4.64)where 
 is some small positive threshold, say 
 = :001.Putting together all the pieces just described, we have the following iterativesolution method for obtaining a local minimum to (4.33)Algorithm 4.1 (Iterative Solution To The Log Penalty Minimization). Letdata (X;y) and parameters (Æ; �) be given, as well as a starting iterate b(0) and atolerance 
 > 0. Then a local minimum of (4.33), to within a tolerance determinedby 
, is given by the following algorithm:1. b b(0).2. Repeat(a) if k2XTXb� 2XTy + � sign(b)jbj+ Æ1k � 
then stop, returning b as the solution.



62 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSION(b) Otherwise, assign w b + Æ1(c) and assign b argminb ky �Xbk2 + �Xj jbjjwjLine 2c above can be computed using the LARS algorithm [6] or any standardconvex problem solver.Remark 4.3. As is standard with any linear regression method, we assume in algo-rithm 4.1 above that the X matrix includes a column of all 1s as its initial column,to capture the intercept of the model. If it does not, the X matrix should be soaugmented and the dimension of the b vector increased by one to accommodate this.As with the lasso and ridge models, it is also important to standardize the databefore performing the above algorithm. This means at the very least that each columnof the X matrix should have squared norm equal to n. The reason for normalizationis simple. Consider scaling all the values in the jth column by some large number�. Then the corresponding coeÆcient values bj could reasonably take on would bereduced by a factor of �, meaning that its contribution to the penalty ln(jbjj+Æ) wouldbe very small, essentially encouraging introduction of this predictor into the model.In order not to bias the process toward one predictor over the other, we normalizethe columns. It is less crucial to normalize y, though this is also standard practice.It is also less crucial to subtract out the mean �j of each column of X (except the�rst column of all ones) from each element in the column, resulting in a matrix eachof whose columns has mean zero, though this is also standard practice and results ina solution that is translation independent.Remark 4.4. It is important to remember that (4.33) is non-convex and thereforehas multiple local minima in general, and that algorithm 4.1 only leads to one of theselocal minima, not necessarily the best. The local minimum found depends entirely



4.9. OBTAINING DIFFERENT SOLUTION PATHS 63upon the initial choice for the zeroth iterate b(0). (In practice the solution will alsodepend upon the tolerance 
.)Neither ridge nor the lasso has this de�ciency. For a particular � value, the ridgeand lasso minimizations are convex, leading to a global minimum. However, it shouldbe pointed out that �nding the solution for a particular � value is not the end ofthe problem. One must still use some method, such as cross-validation, the Akaikecriterion [1], etc., to estimate which � value leads to a model with minimum predictionerror, and when this aspect is factored into the equation, the problem again becomesnon-convex, even for ridge and the lasso.Finally, the log penalty leads to sparser models than the lasso, and Chapter 6demonstrates examples in which these sparser models have comparable or betterprediction error than the lasso. So, in cases in which sparsity is desired, or believedto be a property of the solution, the log penalty may be preferable to the lasso. Afterall, there is no reason a priori why the local minimum of one method might not besparser and even have lower prediction error than the global minimum of anothermethod. This is seen readily when one compares the performance of ridge, whosesolutions are global minima, against the log penalty in the simulated example whoseresults are tabulated in Figure 6.1 on page 89.
4.9 Obtaining Di�erent Solution PathsA good way to think about the problem of solving for b̂(Æ; �) in (4.33) is to think ofÆ as being �xed �rst, and then to think of the resulting minimization as having justthe single free parameter �, for which we desire to obtain the solution path bÆ(�)as � progresses through a �nite set of values �1; : : : ; �N , ranging from �1 = 0 to�N = �max. At �1 = 0, the solution b̂Æ(0) is the ordinary least squares solution. As �grows, increasing from 0 to �max, the solution path b̂Æ(�) shrinks toward the origin.Finally, at �N = �max, b̂Æ(�max) = 0.For a �xed Æ and particular range of � values, it is possible to obtain di�erentsolution paths, depending on whether one increases � from zero or decreases it from



64 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSION�max, and depending on how one selects the zeroth iterate to begin the iterativesolution process. One reasonable approach to selecting the zeroth iterate for �k is touse the solution value b̂(Æ; �k�1). That is, the starting point is taken to be the solutionfor the previous �-value. If successive �-values �1; : : : ; �N are close to each other, thesolution to the current �-value should be close to the solution for the previous �-value, so starting there makes sense and is more likely to ensure continuity in thesolution path. Another reasonable approach is simply to choose b(0) = 0 for all �k, inwhich case the solution path is independent of whether one increases or decreases �,since the zeroth iterate in each case does not depend on the solution to the previous�-value.Assigning the zeroth iterate to be b̂Æ(�k�1) as � increases from �1 = 0 to �N = �maxresults in what we'll call the backward method. Assigning the zeroth iterate to beb̂Æ(�k+1) as � decreases from �N = �max down to �1 = 0 results in what we'll callthe forward method. These methods are so-named because they have something incommon with the traditional greedy statistical techniques for subset selection termedforward and backward stepwise regression respectively. Descriptions of forward andbackward stepwise regression abound, and can be found in [5, 6, 8].Assigning the zeroth iterate to be 0 for all � results in what we'll call the �xedmethod. The �xed method is obviously less sensitive to initial conditions, and alsohas the nice theoretical property that its �rst iterate is always the lasso solution. Theforward and backward methods are greedier, but exploit continuity assumptions.Algorithm 4.2 (Forward Method). Let standardized data (X;y), a �xed Æ > 0,a sequence-length N > 1, and a tolerance 
 > 0 be given. Then the forward-methodsolution path b̂Æ(�k); k = 1; : : : ; N , is given by the following algorithm:1. b(0)  02. �max  2ÆkXTyk13. d� �max=(N � 1)4. �N  �max



4.9. OBTAINING DIFFERENT SOLUTION PATHS 655. Repeat for k N down to 1(a) b̂Æ(�k) Alg4:1(X;y; Æ; �k;b(0); 
)(b) b(0)  b̂Æ(�k)(c) �k�1  �k � d��max in 2 is calculated to be the smallest � value that will yield a solution of0 as a local minimum of (4.33). (Therefore the �rst iteration of the above loop isirrelevant, since its solution is known to be 0, and could be optimized out.) The valueis obtained by considering that at a local minimum b the gradient must be 0. Thisleads to 0 = rb "ky �Xbk2 + �Xj jbjjjb(k)j j+ Æ# (4.65)= 2XTXb� 2XTy + � sign(b)jbj+ Æ1 (4.66)where jbj and sign(b) are the vectors whose jth components are sign(bj) and jbjjrespectively. We run into a slight problem when we try to solve (4.66) for � byplugging in b = 0, because the sign function is discontinuous at 0, or, in other words,jbjj is non-di�erentiable at 0. A non-di�erentiable point is a local minimum if 0belongs to the subgradient at that point. Let us extend the de�nition of sign(b) sothat it represents the subgradient of jbj. To be precise, we'll de�nesign(b) = fv : vj 2 8>><>>: f1g bj > 0f�1g bj < 0[�1; 1] bj = 0 (4.67)Generalizing(4.66) and using our extended de�nition of sign, we have that b is alocal minimum in case 0 2 2XTXb� 2XTy + � sign(b)jbj+ Æ1 (4.68)



66 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSIONwhich at b = 0 implies that2XTy 2 �Æ sign(b) (4.69)leading to � = 2ÆkXTyk1 (4.70)Algorithm 4.3 (Backward Method). Let standardized data (X;y), a �xed Æ > 0,a �nite, monotonically increasing sequence f�kgk=Nk=1 satisfying �1 = 0, and a tolerance
 > 0 be given. Then the backward-method solution path b̂Æ(�k); k = 1; : : : ; N , isgiven by the following algorithm:1. b(0)  02. Repeat for k 1 to N(a) b̂Æ(�k) Alg4:1(X;y; Æ; �k;b(0); 
)(b) b(0)  b̂Æ(�k)
Remark 4.5. Note that the value �max as calculated in algorithm 4.2 cannot be usedfor the backward method. Because of the non-convexity of the problem, nonzerominima with associated � values higher than the 0-solution's �max can and do occur.Some ad hoc method must be used to determine a reasonable value for �N in thebackward method. The value should be high enough that b̂Æ(�N) = 0.Algorithm 4.4 (Fixed Method). Let standardized data (X;y), a �xed Æ > 0, asequence-length N > 1, and a tolerance 
 > 0 be given. Then the �xed-methodsolution path b̂Æ(�k); k = 1; : : : ; N , is given by the following algorithm:



4.9. OBTAINING DIFFERENT SOLUTION PATHS 671. b(0)  02. �max  2ÆkXTyk13. d� �max=(N � 1)4. �N  �max5. Repeat for k 1 to N(a) b̂Æ(�k) Alg4:1(X;y; Æ; �k;b(0); 
)(b) �k�1  �k � d�
Remark 4.6. The �xed method as de�ned above is more like the forward method,since for every � its zeroth iterate starts at b(0) = 0. One could just as easily de�nea �xed method in which for every � the zeroth iterate started at b(0) = bLS, theleast-squares solution. Such a method would be more like the backward method,and, obviously, would not yield the same solution path.As mentioned earlier in this section, the forward and backward methods are relatedto forward and backward stepwise regression. Forward regression adds to the currentmodel the predictor that most reduces the norm of the current residual ky � Xbk.Backward regression subtracts from the current model the predictor that least in-creases the norm of the current residual. These methods do not in general yield thesame sequence of predictor subsets. Continuous subset selection methods are ableto add \a little bit" of a predictor at a time, yielding continuous solution paths.This phenomenon is discussed in [6, 17], and comparisons to forward and backwardstepwise regression are drawn. Because the lasso is convex, its minima are global,and forward/backward methods yield precisely the same solution paths. While thelog penalty provides for continuous subset selection via continuous solution paths,the non-convexity of the log penalty means that forward and backward methods willnot in general yield the same solution paths. Nevertheless, because its solutions are



68 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSIONbased on iteratively solving weighted-lasso problems, many of the associations be-tween lasso and stepwise regression still apply. For example, when the log penaltyforward method adds a predictor to the active set (the active set is the set of predic-tors whose coeÆcients are currently non-zero; see [6]), it will be the one most highlycorrelated with the residual, as in lasso. When the log penalty backward methoddrops a predictor from the active set, it will be one whose coeÆcient value has beendriven to 0, as in lasso.Stepwise regression and lasso can be seen as opposite ends of a spectrum, withthe log penalty sitting somewhere in between. On the greediest end, we have stepwiseregression, which, when it adds a predictor to the model, adds the entire predictor,assigning its associated coeÆcient to have full magnitude, that corresponding to theleast-squares solution for the current set of predictors. On the least greedy end, wehave the lasso, which, when it adds a predictor to the model, increases the magnitudeof that predictor's coeÆcient only until another predictor becomes equally worthyof addition to the model, based on correlation with the residual. Somewhere inthe middle is the log penalty. When it adds a predictor, it doesn't add the fullpredictor, but neither does it stop increasing that predictor's coeÆcient when anotherpredictor becomes equally worthy of addition, based on correlation with the residual.The log penalty will prefer the existing active predictor to the inactive predictor,continuing to increase the active predictor's coeÆcient, and not adding in a newpredictor until its correlation with the residual actually exceeds the correlations ofthe active predictors. The exact relationship can be determined when we considerthat a local minimum solution when restricted to the active predictors must havegradient zero. Accordingly, for a particular � and Æ, let bA be a local minimum of thelog-penalized linear regression, restricted to just the active (non-zero) components.Then bA satis�es 0 = rbA "ky�XAbAk2 + �Xj2A jbA(j)jjb(k)j j+ Æ# (4.71)= 2XTAXAbA � 2XTAy + � sign(bA)jbAj+ Æ1 (4.72)



4.9. OBTAINING DIFFERENT SOLUTION PATHS 69which implies XTA(y �XAbA) = �2 sign(bA)jbAj+ Æ1 (4.73)Now, if we de�ne cA 4= XTA(y �XAbA) to be the vector of correlations of the activepredictors with the current residual, thencj = �2 sign(bA(j))jbA(j)j+ Æ ; 8j 2 A (4.74)which implies� cjsign(bA(j))� (jbA(j)j+ Æ) = �2 ; 8j 2 A (4.75)From considerations discussed in [6, 13, 14], we know that cj=sign(bA(j)) = jcjj,leading to jcjj(jbA(j)j+ Æ) = �2 ; 8j 2 A (4.76)From (4.76) we deduce that if k is the index of a predictor that has just becomeactive (meaning its coeÆcient bk has been 0 up until now), and if j is the index ofany already active predictor, thenÆjckj = jcjj(jbA(j)j+ Æ) whence (4.77)jckj = (1 + jbA(j)jÆ )jcjj (4.78)This raises the bar for new predictors to enter the model, e�ectively creating sparsermodels.



70 CHAPTER 4. LOG-PENALIZED LINEAR REGRESSION4.10 Overcomplete SystemsSince the log penalty aggressively seeks sparse solutions, it is an apt method wheneverthere is reason to believe that the true underlying solution is sparse, or simply when-ever a sparse solution is desired on practical grounds. If one is faced with a regressionproblem in which the number of predictors is large, say in the thousands, but onesuspects that only a handful of predictors actually play a role in the phenomenonbeing investigated, then the log penalty's preference for sparse solutions will be anadvantage.A particular kind of problem in which this often applies is that of an overcompletesystem, in which the number of predictors p exceeds the number of data points n.If p >> n, then a sparse solution (sparse in the sense that the number of predictorsselected to be in the model is far fewer than the total number of available predictors)can be returned by virtually any method, even ordinary least squares, but this willbe an artifact of the problem set-up only, as one can always �t the data exactlyusing no more than n predictors, and, in fact, any independent set of n predictorswould do the job! In such a case, we are unlikely to place too much faith in theparticular n predictors returned by a regression method. What we need in this caseis a solution that is sparse even relative to n. If we get a solution that uses, say, onlyn=2 predictors, then there is reason to believe that the solution is signi�cant ratherthan artifactual. Once again, the log penalty may be of use.When dealing with an overcomplete system, one can use the LARS/lasso method[6] to winnow the set of predictors to a much smaller set|though it will still be anovercomplete set|before applying a log penalty algorithm to the data. An exam-ple will illustrate the technique. Suppose our standardized data matrix X were ofdimension 50 � 10; 000. Rather than running the log penalty directly on all 10; 000predictors, we �rst apply to X the LARS algorithm for obtaining the entire lassosolution path. The computation cost is merely one log penalty iteration. We thenexamine the solution path and mark as useful any predictor that at any time is active(has a nonzero coeÆcient) along the path. The number of useful predictors so markedwill be greater than 50 but far less than 10; 000. We then create a new data matrix



4.10. OVERCOMPLETE SYSTEMS 71~X containing only the columns of the useful predictors, and perform log-penalizedregression on ~X. The intuition behind such a procedure is that, if a predictor trulyplays a role in the relationship between x and y, it will probably become active atleast somewhere along the lasso solution path. Further, since the log penalty is evenmore stringent about sparsity than lasso, if the predictor is never active under lasso,it's unlikely ever to be active under the log penalty. Both the standard log penaltyalgorithm and the LARS-winnowed pre-processing method were applied to the Golubgene classi�cation experiment described in Section 6.2, yielding identical results.Remark 4.7. Note that the useful predictors, as de�ned in the preceding, are thosethat become active at least once along the lasso solution path, which is not the samething as those that are active at the end of the solution path (� = 0), correspondingto the minimum l1 norm solution. It is clear from the analysis given in [6] that, in anovercomplete system of full rank, no solution can have more than n predictors in it,and exactly n predictors will participate in the solution for � = 0. (The same mustbe true of the log penalty's solutions, since, ultimately, each solution is the result ofa weighted-lasso minimization.) Nonetheless, the number of predictors that are everactive along the solution path can easily exceed n.



Chapter 5
Comparing The Penalties
We have seen that the MDL form of linear regression, when relaxed to Rp, leadsto a penalized linear regression in which the penalty is interpreted as a coding cost.In particular, the log penalty corresponds to an asymptotically optimal coding cost,which this dissertation has argued to be a desirable property in a penalty function.However, when we consider ridge and the lasso from this viewpoint, interpreting theirpenalties as coding costs, the penalties are not asymptotically optimal. Does thismean that they are biased toward a particular area of the solution space, as thisdissertation has argued? If so, toward what portion of the space are they biased?Further, since ridge and lasso are standard methods that have been proven to workwell in practice, is asymptotic optimality really that important? Perhaps surprisingly,it turns out that it is possible to view ridge and lasso from a perspective in which theirpenalties can be re-interpreted as log-like penalties that are asymptotically optimal,providing further support for the notion that asymptotic optimality is actually animportant concept. 72



5.1. ASYMPTOTIC OPTIMALITY VIS- �A-VIS RIDGE AND THE LASSO 735.1 Asymptotic Optimality Vis-�a-Vis Ridge andthe LassoIt is clear that ridge regression,b̂ridge(�) = argminb ky�Xbk2 + �kbk2 (5.1)and the lasso, b̂lasso(�) = argminb ky�Xbk2 + �kbk1 (5.2)have penalties that are not asymptotically optimal when interpreted as coding costs.In the case of ridge, the penalty is g(b) = kbk2; in the case of the lasso, the penaltyis g(b) = kbk1; and for both these cases, we havelimr!1 maxkbk�r g(b)p ln r =1 (5.3)In point of fact, a penalty need not be asymptotically optimal in order to performwell on a particular set of data (X;y). For one thing, the least squares solutionbls, corresponding to � = 0, is the \biggest" possible solution we can get. That is,regardless of the value of �, all solutions b(�) will lie in the set fb : g(b) � g(bls)g.So asymptotics of the penalty function as b!1 never come in to play. All we careabout is that the penalty have certain desirable properties (whatever those may be)in a region near b0, the true underlying solution. Further, we have a free parameter� to play with, whose value can be selected as a function of the data (X;y) in thehope of conferring such desirable properties upon the penalty function.Note that if we were not allowed to choose � as a function of the data, but were,instead, required to use some �xed value of �, say � = 1, regardless of the data,then the ridge and lasso methods would not perform well at all. In fact, given theequivalency between penalized linear regression and MAP estimation demonstratedin Section 5.2, the methods would be biased to favor estimates b̂ with particular l2



74 CHAPTER 5. COMPARING THE PENALTIESand l1 norms respectively, just as predicted by the theory outlined in Section 4.4 onpage 47. Note also that the MDL linear regression formulation does not rely on � inthe same way as do ridge and lasso. Equation (4.18) implies that � = 2�2Z is alwaysa reasonable assignment, independent of the data (X;y).So, for ridge and the lasso, the ability to scale � based on the data is essential.It allows us to tune the penalty so that it is neither too big nor too small in acrucial area near the true solution b0. Since � is chosen only after looking at thedata, the possibility arises that the choice of � may create an \e�ective penalty"on b that is quite di�erent from the apparent l2 or l1 penalties being used. Thisdissertation conjectures that, when methods such as cross-validation for determining� are taken into account, the � value chosen e�ectively scales the penalty such thatit approximates, to �rst order up to an additive constant, an asymptotically optimalcoding cost, in the neighborhood of b0. It is not easy to formalize cross-validationmathematically. However, when other reasonable methods for selecting � are used,we can show that this is what is going on, at least in the cases of ridge and lasso,though one might easily speculate that the phenomenon is quite general.To be more precise, let �(X;y) denote the � value selected, as a function ofthe data, by some method such as cross-validation. Let g(b) denote the penalty,not necessarily an asymptotically optimal one, being used in the penalized linearregression. Then the conjecture is that there exists an asymptotically optimal penaltyfunction ~g(b), such that �(X;y)rbg(b0) � 2�2Zrb~g(b0) (5.4)where the exact nature of the approximation will be made clear in the derivationsthat follow, and where the term 2�2Z comes from (4.18) on page 50. Note that twodi�erent penalties �1g1 and �2g2 will yield the same penalized regression solutionsif and only if they have the same gradients. To the extent that �1g1 and �2g2 haveapproximately equal gradients in a neighborhood, their local minima in that neigh-borhood, if any, will be approximately the same. The penalties are free to di�er byan additive constant, since constants don't a�ect the minimization over b. This is



5.2. MAP SOLUTIONS TO RIDGE AND THE LASSO 75what is meant by saying that �1g1 and �2g2 are approximately the same to �rst orderup to an additive constant. Thus, when (5.4) holds in a neighborhood of the trueunderlying parameter vector, any solution in this neighborhood attained by usingthe penalty g with �(X;y) will be close to a solution attained by performing MDLregression with asymptotically optimal penalty ~g.5.2 MAP Solutions to Ridge and the LassoThis section describes a method of solving for � based on the equivalence between pe-nalized linear regression and maximum a posteriori (MAP) estimation. When appliedto ridge and the lasso, this method yields log-like equivalent penalties.It is well-known that, for a �xed �, and known noise �2Z , penalized linear regressionis equivalent to MAP estimation under the assumption that b is drawn from a priordistribution whose exact form is determined by � and the penalty function g(b). Thederivation is as follows:b̂(�) = argminb ky �Xbk2 + �g(b) (5.5)= argminb 12�2Z ky �Xbk2 + �2�2Z g(b) (5.6)= argminb 12�2Z ky �Xbk2 + n2 ln 2��2Z + �2�2Z g(b) (5.7)now, letting � = �=2�2Z,= argminb 12�2Z ky �Xbk2 + n2 ln 2��2Z + �g(b) (5.8)= argminb 12�2Z ky �Xbk2 + n2 ln 2��2Z + �g(b)� ln c(�) (5.9)where c(�) is any arbitrary function of �,= argminb � ln 1p2��2Z!n e� 12�2Z ky�Xbk2 � ln� 1c(�)e��g(b)� (5.10)



76 CHAPTER 5. COMPARING THE PENALTIESwhere now c(�) is chosen speci�cally to be c(�) = R e��g(b)db so that the expressionwithin the curly braces integrates to 1,= argmaxb  1p2��2Z!n e� 12�2Z ky�Xbk2 � 1c(�)e��g(b)� (5.11)Equation (5.11) now has the form of a MAP estimation, where b is drawn accordingto a distribution belonging to an exponential family parameterized by �, and where,conditional on b, y is drawn Gaussian with mean Xb and variance �ZIn, like so:f(b) = 1c(�)e��g(b); and f(yjb) = N(Xb; �2ZIn) (5.12)Thus, for every �, the solution to the penalized regression in (5.5) is the same asthe solution to the MAP estimation in (5.11), with � = �=2�2Z . Of course, in thepenalized regression form of (5.5), the value of � is not known, and hence in the MAPform of (5.11) the value of � is not known. For the penalized regression form, wecould use cross-validation or some similar technique to come up with a good valuefor �. For the MAP form, another method suggests itself. We could treat � as ahyperparameter and try to estimate it using maximum likelihood. That is, we couldsolve (b̂; �̂) = argmaxb;�  1p2��2Z!n e� 12�2Z ky�Xbk2 � 1c(�)e��g(b)� (5.13)or, equivalently,b̂ = argmaxb  1p2��2Z!n e� 12�2Z ky�Xbk2 max� � 1c(�)e��g(b)� (5.14)Taking the negative log-likelihood form of (5.14) above, we haveb̂ = argmaxb  1p2��2Z!n e� 12�2Z ky�Xbk2 max� � 1c(�)e��g(b)� (5.15)



5.2. MAP SOLUTIONS TO RIDGE AND THE LASSO 77= argminb 12�2Z ky �Xbk2 + n2 ln 2��2Z +min� f�g(b) + ln c(�)g (5.16)= argminb 12�2Z ky �Xbk2 +min� f�g(b) + ln c(�)g (5.17)= argminb ky �Xbk2 + 2�2Z min� f�g(b) + ln c(�)g (5.18)= argminb ky �Xbk2 + 2�2Z l(b) (5.19)where l(b) is given byl(b) 4= min� f�g(b) + ln c(�)g (5.20)When we solve (5.20) above explicitly for l(b) in the cases of the ridge and lassopenalties, (the derivations are given in sections 5.3 and 5.4), l(b) is seen to have thefollowing log-like forms lridge(b) = p ln kbk+ �1; and (5.21)llasso(b) = p ln kbk1 + �2 (5.22)respectively, where �1 and �2 are constants. Since the constants can be ignored whenperforming a minimization over b, the MAP method of solving for � in a penalizedlinear regression yields ridge and lasso solutions given byb̂ridge,MAP = argminb ky�Xbk2 + 2p�2Z lnkbk; and (5.23)b̂lasso,MAP = argminb ky�Xbk2 + 2p�2Z lnkbk1 (5.24)respectively. Note that the forms above have spurious non-local minima at b =0. This occurs because we are using maximum likelihood on pdfs instead of pmfs,yielding an in�nite maximum likelihood value of the density when b = 0. If we hadused an MDL approach and quantized the domain to create true pmfs, this wouldnot have occurred, although the derivation would have only yielded an approximatecorrespondence with penalized linear regression. Still, the form of the solutions aboveindicate that the e�ective penalties are the relaxed l0Æ;2 and l0Æ;1 codes described in



78 CHAPTER 5. COMPARING THE PENALTIESSection 4.6 on page 53, corresponding to the code-length functions associated withthe l2 and l1 codes, and that the proper way to remove the spurious in�ma is to add aÆ term corresponding to some quantization of the domain. This yields the Æ-quantizedforms described in Section 4.6 as the MDL versions of ridge and lassob̂ridge,MDL = argminb ky�Xbk2 + 2p�2Z ln k jbj+ Æ1k; and (5.25)b̂lasso,MDL = argminb ky�Xbk2 + 2p�2Z ln k jbj+ Æ1k1 (5.26)where jbj is the vector in the positive orthant whose jth component is jbjj. Recallthat the above penalties are asymptotically optimal. Thus, somewhat surprisingly,although ridge and the lasso do not seem to have asymptotically optimal penalties,the MAP method of choosing � leads to e�ective penalties that are asymptoticallyoptimal, and which have a log-like form reminiscent of the log penalty itself.Remark 5.1. Note that the penalties derived above are truly asymptotically optimal,which is a stronger assertion than the conjecture of Section 5.1, which merely statedthat � scaled itself such that the e�ective penalty approximated an asymptoticallyoptimal penalty to �rst order near b0. This situation occurs because � is not reallychosen based on the data (X;y), but, rather, based on the choice of b. This is seenin Equation (5.20), where the minimization over � depends only on b, not on (X;y).
Remark 5.2. It is natural to ask what parametric family of distributions arises whenthe log penalty itself is plugged in to (5.12). One obtains a distribution of the formf�(b) = 1c(�) � 1Qj(jbjj+ Æ)� (5.27)which is �nitely integrable for � > 1. It is also natural to wonder what happens whenwe solve for l(b) in (5.20). Since we are starting out with a log penalty, do we get ane�ective penalty that is an iterated log? That is, do we get an e�ective penalty like



5.3. MAP RIDGE SOLUTION 79O(lnP(ln jbjj + Æ))? No, the log penalty remains essentially unchanged, albeit withsome messy lower-order terms.One should also remember that LZ is a code-length function and therefore has anequivalent prior with respect to which it is the Shannon code, given byf(b) = e�LZ(b) (5.28)If we use the relaxed function lÆ(b) =P(jbjj+ Æ) as an approximation of LZ , we getthe improper prior f(b) = 1Qj(jbjj+ Æ) (5.29)The prior is improper because we have thrown away the lower-order terms. If we addback in the O(ln lnkbk) term, we get something akin tof(b) = 1Qj(jbjj+ Æ)(ln(jbjj+ Æ)2 (5.30)which is �nitely integrable.
5.3 MAP Ridge SolutionRecalling Equation (5.20) on page 77,l(b) 4= min� f�g(b) + ln c(�)gwe solve for the explicit form of l(b) when the penalty function is the ridge penaltyg(b) = kbk2. Recall also that c(�) = R e��g(b)db is a normalizing constant chosento make the associated exponential family integrate to 1. When g(b) = kbk2, theassociated exponential family is a Gaussian family with mean 0 and variance 1=(2�),given by f�(b) = � ��� p2 e��kbk2 (5.31)



80 CHAPTER 5. COMPARING THE PENALTIESThus, we have c(�) = ��� � p2 (5.32)and l(b) = argmin� �kbk2 + ln c(�) (5.33)= argmin� �kbk2 + p2 ln �� (5.34)= argmin� �kbk2 � p2 ln � + p2 ln� (5.35)Taking derivatives to solve for the minimizing � yields0 = kbk2 � p2� whence (5.36)� = p2kbk2 (5.37)Plugging this back in to (5.35) yieldsl(b) = p2kbk2 � kbk2 � p2 ln p2kbk2 + p2 ln� (5.38)= p2 + p lnkbk � p2 ln p2 + p2 ln� (5.39)= p lnkbk+ � (5.40)where � is just a constant. Thus, we see that when we solve for � using the MAPmethod the resulting e�ective penalty for ridge regression is p lnkbk, which is asymp-totically optimal, rather than kbk2.5.4 MAP Lasso SolutionAgain recalling Equation (5.20) on page 77,l(b) 4= min� f�g(b) + ln c(�)g



5.4. MAP LASSO SOLUTION 81we solve for the explicit form of l(b) when the penalty function is the lasso penaltyg(b) = kbk1. When g(b) = kbk1, the associated exponential family is a Laplacianfamily, given by f�(b) = ��2�p e��kbk1 (5.41)Thus, we have c(�) = �2��p (5.42)and l(b) = argmin� �kbk1 + ln c(�) (5.43)= argmin� �kbk1 + p ln 2� (5.44)= argmin� �kbk1 � p ln � + p ln 2 (5.45)Taking derivatives to solve for the minimizing � yields0 = kbk1 � p� whence (5.46)� = pkbk1 (5.47)Plugging this back in to (5.45) yieldsl(b) = pkbk1 � kbk1 � p ln pkbk1 + p ln 2 (5.48)= p lnkbk1 + � (5.49)where � is just a constant. Thus, we see that, when � is solved for using the MAPmethod, the resulting e�ective penalty for lasso regression is p ln kbk1, which is asymp-totically optimal, rather than kbk1.



82 CHAPTER 5. COMPARING THE PENALTIES5.5 Generalized Cp Solution To RidgeIn the case of ridge regression, there is another method that can be used to estimatea good value of �. The method is based on a concept known as e�ective degrees offreedom, which is a generalization of the Cp statistic. Both are discussed in [8]. Wewill only outline the method here, without giving insights into its derivation.Let ŷ� be the hat vector associated with the data y and the parameter �, given byŷ� 4= Xb̂(�). With certain regression methods, for a given �, ŷ� is a linear functionof y. That is, ŷ� = S�y for some matrix S� whose value depends only on X and �but not on y. This is the case with ridge regression. For ridge, we haveŷ� = �X(XTX+ �I)�1XT	y (5.50)= S�y (5.51)In those cases, such as ridge, where ŷ� = S�y, the generalized Cp method dictatesthat the � value to use is the one satisfying�� = argmin� ky�Xb̂(�)k2 + 2�2ZTrS� (5.52)We can solve the above equation explicitly for ridge regression in the special case inwhich X is orthogonal, i.e., where XTX = I, and show that �� scales the originalpenalty kbk2 such that it e�ectively agrees with the MDL ridge log penalty (4.46) to�rst order in the region near b0.In the case of ridge, we haveb̂(�) = (XTX+ �I)�1XTy and (5.53)S� = X(XTX+ �I)�1XT (5.54)The above expressions are derived in [8]. In the case in which XTX = I, they simplify.In (5.53), b̂(�) simpli�es to b̂(�) = (XTX+ �I)�1XTy (5.55)



5.5. GENERALIZED CP SOLUTION TO RIDGE 83= (I+ �I)�1XTy (5.56)= 11 + �XTy (5.57)= bls1 + � (5.58)where bls is the ordinary least squares solution, obtained by substituting � = 0 into(5.57). In (5.54), S� simpli�es toS� = X(XTX+ �I)�1XT (5.59)= X(I+ �I)�1XT (5.60)= 11 + �XXT (5.61)and hence TrS� equals TrS� = Tr 11 + �XXT (5.62)= Tr 11 + �XTX (5.63)= p1 + � (5.64)Substituting Equation (5.64) back into (5.52) yields�� = argmin� ky �Xb̂(�)k2 + 2�2ZTrS� (5.65)= argmin� ky �Xb̂(�)k2 + 2p�2Z1 + � (5.66)If �� above is a local minimum, then, by taking the derivative of (5.66) with respectto � and setting it equal to 0, we see that �� must satisfy0 = (2XTXb̂(��)� 2XTy)T db̂(��)d� � 2p�2Z(1 + ��)2 which implies (5.67)0 = ( bls1 + �� � bls)T db̂(��)d� � p�2Z(1 + ��)2 leading to (5.68)



84 CHAPTER 5. COMPARING THE PENALTIES0 = ���1 + ��bTlsdb̂(��)d� � p�2Z(1 + ��)2 (5.69)In going from (5.67) to (5.68), we have used the substitutions XTX = I (assumed),XTy = bls (5.57 with � = 0), and b̂(�) = bls=(1 + �) (5.58). From Equation (5.58),we can also calculate db̂(��)=d�. Substituting that back into (5.69) yields0 = ���1 + ��bTls �bls(1 + ��)2 � p�2Z(1 + ��)2 (5.70)= ��1 + ��kblsk2 � p�2Z (5.71)= ��kblsk2 � (1 + ��)p�2Z (5.72)= ��kblsk2 � p�2Z � ��p�2Z which implies (5.73)p�2Z = ��(kblsk2 � p�2Z) leading to (5.74)�� = p�2Zkblsk2 � p�2Z (5.75)
Let us now consider the conjecture (5.4) and see whether ��kbk2 approximatelyagrees to �rst order up to an additive constant with the asymptotically optimalpenalty associated with ridge regression in the neighborhood of b0. We'll use thenon-Æ quantized form of (5.23) 2p�2Z ln kbk for the comparison. According to (5.4),we only need to compare their gradients at b0. The gradient of ��kbk2 is given byrbf��kbk2g = p�2Zkblsk2 � p�2Zrbfkbk2g (5.76)= 2p�2Zkblsk2 � p�2Z b (5.77)The gradient of 2p�2Z ln kbk isrbf2p�2Z ln kbkg = p�2Zrbfln kbk2g (5.78)= 2p�2Zkbk2b (5.79)



5.5. GENERALIZED CP SOLUTION TO RIDGE 85We wonder whether equations (5.77) and (5.79) evaluated at b = b0 are approxi-mately equal. That is, we wonder whether2p�2Zkblsk2 � p�2Z b0 ?� 2p�2Zkb0k2b0 (5.80)The terms on the left and right hand sides of (5.80) are now the same, except forthe denominators of the fractions, kblsk2 � p�2Z , on the left hand side, and kb0k2on the right hand side. Note that bls on the left hand side is a random variablewhose value depends on the data, so we could never expect perfectly equality withthe deterministic value on the right hand side. However, the expected value of bls(treating X as �xed and the only randomness as coming from the additive noise z),is kb0k2 + p�2Z . So (5.80) is approximately true in the sense that2p�2ZEkblsk2 � p�2Z b0 = 2p�2Zkb0k2b0 (5.81)



Chapter 6Experimental ResultsThis chapter shows the results of two experiments comparing the performance of log-penalized linear regression with the performance of the ridge and lasso methods. The�rst experiment is on simulated data, where the true underlying model is known. Thesecond experiment is a classi�cation problem on micro-array data.A general conclusion from these experiments is that the log penalty �nds sparsersolutions than the lasso and that, when the true underlying model is sparse, the logpenalty generally �nds a more favorable solution than lasso. However, when the trueunderlying model is not sparse, the log penalty generally performs worse than lasso,which performs about the same as the ordinary least squares solution.The experiments all used cross-validation with the one-standard-error rule, asdescribed in sections 2.2 and 2.3, to estimate the optimal values of the free parameter�, and, in the case of the log penalty, of the free parameters (Æ; �).6.1 A Large Test-SuiteThis test-suite was designed to measure how well the log penalty does against otherstandard methods as a function of the sparsity-level of the underlying parametervector. A moderately large predictor set is used, consisting of 50 predictors.The best way to describe the test-suite is to focus on just one test, at a speci�csparsity-level k which means that the underlying parameter vector has only k non-zero86



6.1. A LARGE TEST-SUITE 87components. In order to see how well a particular regression method such as the logpenalty does at sparsity-level k, we generate T = 10 data sets (Xk;t;yk;t), t = 1; : : : ; Tat this sparsity level and average the resulting prediction errors to obtain an estimateof the prediction error that the estimation method incurs. For each t, the data set(Xk;t;yk;t) is generated by �rst generating a vector bk;t 2 R50 with exactly k non-zerocomponents. Each of the non-zero components is drawn standard normal. Then a100� 50 data matrix Xk;t is generated, with each of its entries also drawn standardnormal, and the associated yk;t 2 R100 vector is generated, according to the equationyk;t = Xk;tbk;t + zk;t (6.1)where zk;t 2 R100 is a noise vector, each of whose components is drawn i.i.d. N(0; 4).The regression method in question is then applied individually to each of the T datasets, resulting in estimates b̂k;t, t = 1; : : : ; T . The error associated with each estimateis de�ned to be ek;t 4= Ex[(bTk;tx� b̂Tk;tx])2] (6.2)= Ex[(bk;t � b̂k;t)TxxT (bk;t � b̂k;t)] (6.3)= (bk;t � b̂k;t)TEx[xxT ](bk;t � b̂k;t) (6.4)= (bk;t � b̂k;t)T Ip(bk;t � b̂k;t) (6.5)= kbk;t � b̂k;tk2 (6.6)where (6.5) follows because, by assumption, the components of x are drawn i.i.d.standard normal. The estimated error is then justêk 4= 1T TXt=1 ek;t (6.7)and its standard error is given bysk =sPTt=1(ek;t � ek)2T (T � 1) (6.8)



88 CHAPTER 6. EXPERIMENTAL RESULTSThe above set-up was tried for the log penalty, ridge, the lasso, and ordinary leastsquares. For each sparsity-level k, we get an estimate of how well the log penaltyperforms relative to the other methods. As Figure 6.1 shows, the log penalty doesquite well for k = 1; : : : ; 10. It had the best performance over the entire range, withthe lasso coming in a close second, supporting the conclusion that, when the trueunderlying model is sparse, the log penalty is good to use.However, as Figure 6.2 shows, when the underlying parameter vector is not sparse,the log penalty does not do so well. In fact, it clearly has the worst performance overthe entire range. Nevertheless, its performance in these non-sparse cases is not grosslyworse than that of ordinary least squares. By contrast, the log penalty performssigni�cantly better when the true underlying model is sparse.Figure 6.3 shows the average sparsity of each method, as a function of k, fork = 1; : : : ; 10. The sparsity of a vector is the number of non-zero components in thevector. Recall that, for each k, there are ten data sets, leading for each method toten di�erent estimates with di�erent sparsities. For each method, these ten di�erentsparsities are averaged, which can lead to a non-integral number. The table revealsthat the log penalty de�nitely leads to sparser solutions than the other methods.In fact, it seems that the log penalty leads to solutions that are too sparse in thatthey are less sparse than the true underlying parameter vector, while the lasso seems tolead to solutions that are closer in sparsity to that of the underlying parameter vector.However, as Figure 6.4 shows, that is somewhat misleading. Although the lasso seemsto lead to solutions with roughly the same sparsity as the true underlying parametervector, it is not �nding the correct non-zero components. Instead, it is positingpredictors to be non-zero that are actually zero in the true underlying parametervector, and vice versa. What we are really interested in is that a sparse solution �ndthe right predictors: those that are actually non-zero in the true underlying parametervectors, as opposed to simply �nding the right number of predictors. With this inmind, a better measure of the accuracy of each method as regards �nding predictorsthat are truly involved in the underlying model is sparsity distance, which we de�ne
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Test-Suite Errors For Sparse Models
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Figure 6.1: This graph shows the errors associated with the four di�erent regressionmethods on sparsity levels 1; : : : ; 10. The vertical bars at each data point are standarderror bars, showing plus or minus one standard deviation of the estimated error ek.The log penalty does best.



90 CHAPTER 6. EXPERIMENTAL RESULTS
Test-Suite Errors For Non-Sparse Models
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Figure 6.2: This graph shows the errors associated with the four di�erent regressionmethods on sparsity levels 40; : : : ; 49. The vertical bars at each data point are standarderror bars, showing plus or minus one standard deviation of the estimated error ek.The log penalty does worst.



6.1. A LARGE TEST-SUITE 91Test-Suite SparsityTrue Sparsity Log Penalty Lasso Ridge Ordinary Least Squares1 0:4 0:5 50 502 1:3 1:3 49:9 503 1:4 1:5 50 504 2:6 3:5 50 505 2:5 5:5 50 506 3:3 7:5 50 507 2:7 6:7 50 508 3:6 6:8 50 509 4:2 7:3 50 5010 6:3 11:5 49:9 50Figure 6.3: This table shows the average sparsity of the estimates for each method as afunction of k, the sparsity of the true underlying parameter vector, for k = 1; : : : ; 10.The sparsity of a vector is the number of non-zero components in the vector.to be d(b1;b2) 4= pXj=1 j1(b1j 6= 0)� 1(b2j 6= 0)j (6.9)In terms of sparsity distance, we see from Figure 6.4 that the log penalty generallydoes a better job at �nding the right predictors than do the other methods.
Remark 6.1. The data was not standardized prior to running any of the regressionmethods. By design, the data was generated zero-mean and of equivalent scale amongpredictors. Also, the speci�c log penalty algorithm used was the backward method,as described in algorithm 4.3. All methods used 10-fold cross-validation and the one-standard error rule as described in sections 2.2 and 2.3 to determine which model alongthe solution path to use. The Æ values tried by the log penalty were f:01; :001; :0001g.



92 CHAPTER 6. EXPERIMENTAL RESULTS

Sparsity ErrorTrue Sparsity LP Lasso Ridge LS1 0:6 0:5 49 492 1:1 1:1 48 483 2:0 1:9 47 474 1:8 2:5 46 465 2:9 4:9 45 456 3:5 6:1 44 447 4:3 5:3 43 438 4:4 5:6 42 429 5:2 5:5 41 4110 5:3 7:7 40 40Figure 6.4: This table shows the average sparsity distance of each method's estimatefrom the true underlying parameter vector. The sparsity distance counts 1 for eachnon-zero component of the estimate that is zero in the true underlying parametervector, and 1 for each zero component of the estimate that is non-zero in the trueunderlying parameter vector.Example: btrue = (1:2; �3:3; :7; 0; 0; : : : ; 0)b̂ = (0; �1:6; :3; :2; 0; : : : ; 0)d(b̂;btrue) = 2



6.2. GOLUB GENE DATA 936.2 Golub Gene DataThe analysis of micro-array data virtually always involves an overcomplete data set.Micro-arrays are a fairly recent tool in the statistical analysis of the role of genesin determining phenotypic traits. A micro-array measures the expression-levels ofa set of designated genes. A gene is expressed by being converted into mRNA andeventually into protein. The extent to which a gene is \on" is determined by themagnitude of its expression level. Micro-arrays are capable of measuring severalthousand gene expression levels at a time. The genes are the predictors, so micro-array data-sets generally contain several thousand predictors and generally fewer than100 data points.The Golub data set [9] is a case in point. It consists of a training set containinggene expression levels of 6088 genes from 38 individuals (the actual number of geneswas greater, but many of these resulted in duplicate columns in the data matrix),and a test set containing gene expression levels for the same genes on 34 di�erentindividuals. Each of the people involved in the study was identi�ed as having one oftwo types of leukemia: either acute myeloid leukemia (AML), or acute lymphoblasticleukemia (ALL). The goal was to develop a classi�er that distinguished between thetwo based on gene expression levels.The log penalty, the lasso, and the minimum l1 and l2 norm solutions were all triedon the Golub data set. Nothing fancy was done in the way of modifying the methodsto accommodate a classi�cation setting as opposed to a regression setting. The classvalues AML and ALL were assigned real values of 1 and �1 respectively, and, in thecase of the log penalty and lasso, the resulting regression problem was solved usingcross-validation with the one-standard error rule (the min l1 and l2 solutions haveno free parameters to solve for). The resulting model was used to create a classi�erin the obvious way: if bTx > 0, classify as AML, otherwise classify as ALL. Thisclassi�er was then applied to the test set to get an estimate of its classi�cation error.The results are summarized in table 6.5. There are several comments to make.The �rst is that the log penalty did indeed �nd a sparser solution than the lasso.Its solution uses only three genes as predictors, while the lasso's uses 11 genes, yet



94 CHAPTER 6. EXPERIMENTAL RESULTSboth have equally good performance on the test set. (All three genes found by thelog penalty were among the 11 found by the lasso.) However, neither do as well asthe non-sparse solution yielded by the minimum l1 norm method (a 38-dimensionalsolution can't be considered sparse when there are only 38 data points), or the trulynon-sparse solution yielded by the minimum l2 norm method, indicating that, in fact,a great number of genes actually participate in the AML/ALL distinction. Thatis, despite the excellent classi�cation performance of the three-gene classi�er, theassumption of sparsity in the underlying model is probably not valid. This does notby any means invalidate the log-penalty results however. Its job, so to speak, is to�nd sparse solutions even when the true underlying solution is not sparse, a fact thatcould only make its job harder. Further, even were it known for certain that the trueunderlying model were not sparse, a sparse solution might be sought on practical,aesthetic, or explanatory grounds. In this case, the log penalty yields an ultra-sparsesolution that is nearly as good as the non-sparse solutions. One could argue that ithas done precisely what we want it to do.Classi�cation Error On Golub DataMethod Sparsity Classi�cation ErrorMin l2 Norm 6088 1=34Min l1 Norm 38 1=34Lasso 11 2=34Log Penalty 3 2=34Figure 6.5: This graph shows the classi�cation error associated with the four di�erentregression methods.
Remark 6.2. The minimum l1 and l2 norm solutions are given respectively byb̂l1 4= minb kbk1 subject to y = Xb (6.10)



6.2. GOLUB GENE DATA 95and b̂l2 4= minb kbk subject to y = Xb (6.11)
Remark 6.3. For all methods, the X matrix was �rst standardized by normalizingeach of its columns to have squared norm n, and augmented by a ones column.The columns were not standardized to have mean zero. The backward method, asdescribed in algorithm 4.3, was used for the log penalty solutions. As mentionedin Section 4.10, the log penalty solutions were calculated twice: once with LARS-winnowed pre-processing, and once without, yielding identical results. The Æ valuestried by the log penalty method were f1; :5; :25; :1; :05; :01gThe upper graph in Figure 6.6 shows the solution path associated with Æ = :01 forthe log penalty. The lower graph shows the corresponding estimated test error andactual training error for each solution. Note how the upper graph breaks cleanly intofairly stable regimes. Since the graph is robust relative to perturbations in �, an ultra-precise method of estimating the optimal � is not needed. Most of the predictors aredriven to zero almost immediately, then a �ve-predictor solution pops out, followedby a three-predictor solution, followed by a two-predictor solution. Even without afancy method for choosing the optimal � value, it is easy to eyeball the graph and seethat the three-gene and �ve-gene classi�ers will both do quite well, while the two-geneclassi�er is not as good. The horizontal red line in the lower graph demarcates theone-standard-error boundary, and the vertical magenta line indicates where the blueestimated error line crosses this boundary, establishing the value of the optimal �value according to the one-standard-error rule. (Since the log penalty has two freeparameters, the one-standard-error line may be determined by, and in this case wasdetermined by, a di�erent Æ than the one shown here. It's not possible to look atthese graphs and �gure out why the line is where it is.)
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The Log Penalty On Golub Data
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Figure 6.6: The upper graph is the solution path for log-penalized linear regressionapplied to the Golub training data for Æ = :01. Each vertical slice through a given� value represents the associated coeÆcient values of b̂Æ(�). All 6088 predictors arerepresented here, though most of them are zero throughout the entire solution path.The lower graph shows the corresponding training error (RSS) in green and estimatedprediction error in blue. The yellow vertical bars at the data points are standarderrors associated with the cross-validation estimate of prediction error. The horizontalred line demarcates the one-standard-error boundary, and the vertical magenta linedemarcates where the estimated prediction error (blue line) crosses this boundary,indicating the optimal � value.
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The Lasso On Golub Data
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Figure 6.7: The upper graph is the solution path for the lasso applied to the Golubtraining data. Each vertical slice through a given � value represents the associated co-eÆcient values of b̂(�). All 6088 predictors are represented here, though most of themare zero throughout the entire solution path. The lower graph shows the correspondingtraining error (RSS) in green and estimated prediction error in blue. The yellow ver-tical bars at the data points are standard errors associated with the cross-validationestimate of prediction error. The horizontal red line demarcates the one-standard-error boundary.



98 CHAPTER 6. EXPERIMENTAL RESULTSFigure 6.7 shows the lasso solution path. Notice how much smoother it is. Al-though this a nice property, in some sense, it also makes it much harder to eyeballthe results to assess which model might be optimal, and, obviously, it is much moresensitive than the log penalty to the choice of �.Figure 6.8 gives a graphical view of the performance of the log penalty's classi�er.With the exception of one point, both the training and test data seem quite wellseparated by this sparse classi�er.
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The Log Penalty Classi�er
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Figure 6.8: A graph showing the separating plane for the log penalty classi�er. Train-ing data from classes AML and ALL are shown as red and blue respectively. Testdata from classes AML and ALL are shown as magenta and light blue respectively.One of the two misclassi�ed test points, in light blue, �gures prominently on the leftside of the plane.



Chapter 7
Concluding Remarks
As a penalty function, the log penalty at �rst blush does not seem to have much torecommend itself. Unlike ridge and the lasso, it is not convex, so involving it in aregression minimization leads to multiple minima and to a less tractable optimizationproblem. Nor does its MAP-equivalent distribution correspond to any well-knownparametric family such as the Gaussian and Laplacian families. Undoubtably theseare among the reasons it has received little attention in the statistics literature. Itis interesting therefore how naturally the log penalty arises when one approaches theregression problem from a complexity perspective. Moreover, when we consider theimplications of asymptotic optimality from this perspective, the log penalty attains akind of primacy, and we �nd, perhaps surprisingly, that the ridge and lasso penaltiesthemselves can be reinterpreted as having log-like penalties, when the mechanismfor estimating � is taken into account. Indeed, all asymptotically optimal penaltiesmust be log-like penalties in the sense that they must grow no faster than p lnkbkto �rst order. As such, the theory becomes a kind of unifying principle from whichto understand penalized linear regression. If it is the property of asymptotic opti-mality that makes a penalized regression method impartial enough|in terms of itsinherent preference for one kind of model over another| to be of general use, thenall reasonable penalties must e�ectively resolve to log-like penalties.Despite the interesting theoretical motivation for the log penalty, it would be of nodirect practical value if the impediments to eÆcient solution could not be overcome.100



101Fortunately, via the proper relaxation from Qp to Rp, and through application ofiterative linearization, we obtain approximate characterizations of log-penalized linearregression that admit tractable solutions. Because the log penalty yields very sparsesolutions, sparser than those of the lasso, it may be desirable to use when an ultra-sparse solution is sought for practical or aesthetic reasons, or when it is suspecteda priori that the true solution is sparse. In particular, the log penalty may �nd aniche in the realm of overcomplete regression problems, which is gaining currencyas a representational approach. In that regard, the log penalty's performance onthe Golub micro-array data is promising, since it �nds an excellent three-predictorclassi�er that performs just as well as the eleven-predictor classi�er found by thelasso.At the theoretical level, some interesting work has been done on overcompletesystems. Donoho's recent paper [5] gives conditions under which the lasso solutionis close to the true solution in the presence of noise. The analysis might possiblybe leveraged to learn something about the properties of the log penalty in similarcircumstances.Finally, although the complexity approach to estimation as embodied by the MDLprinciple has stood alongside traditional estimation techniques for awhile, there doesnot yet seem to be a theoretical treatment that uni�es the two approaches. Thisdissertation has provided perhaps a piece of the puzzle by showing in the special casesof ridge and the lasso how their penalties can be reformulated to re
ect asymptoticallyoptimal coding costs, but one might suspect that a stronger relationship exists ingeneral between the standard statistical methods, which judge the goodness of asolution based on its estimated prediction error, and the MDL methods, which judgethe goodness of a solution based on its ability to compress data. The exact relationshipbetween complexity and estimation still waits to be found.
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