
SPASELOC: AN ADAPTIVE SUBPROBLEM ALGORITHM FOR
SCALABLE WIRELESS SENSOR NETWORK LOCALIZATION

MICHAEL W. CARTER∗, HOLLY H. JIN† , MICHAEL A. SAUNDERS‡ , AND YINYU YE§

Abstract. An adaptive rule-based algorithm, SpaseLoc, is described to solve localization prob-
lems for ad hoc wireless sensor networks. A large problem is solved as a sequence of very small
subproblems, each of which is solved by semidefinite programming relaxation of a geometric opti-
mization model. The subproblems are generated according to a set of sensor/anchor selection rules
and a priority list. Computational results compared with existing approaches show that the SpaseLoc
algorithm scales well and provides excellent positioning accuracy.

Key words. sensor localization, semidefinite programming, large-scale optimization

AMS subject classifications. 49M37, 65K05, 90C30

1. Introduction. Ad hoc wireless sensor networks may contain hundreds or
even tens of thousands of inexpensive devices (sensors) that can communicate with
their neighbors within a limited radio range. By relaying information to each other,
they can transmit signals to a command post anywhere within the network. They
have many practical uses in areas such as military applications [14], environment or
industrial control and monitoring [6, 8], wildlife monitoring [23], and security moni-
toring [14]. For example, Southern California Edison’s Nuclear Generating Station in
San Onofre, California has deployed wireless mesh networked sensors from Dust Net-
works to obtain real-time trend data [8]. These data are used to predict which motors
are about to fail, so they could be preemptively rebuilt or replaced during scheduled
maintenance periods. The use of a wireless sensor network saves the station money
and avoids potential machine shutdown. Implementation of a sensor localization al-
gorithm would provide a service that eliminates the need to record every sensor’s
location and its associated ID number in the network.

Wireless sensor networks are potentially important enablers for many other ad-
vanced applications. A huge variety of applications lie ahead. By 2008, there could
be 100 million wireless sensors in use, up from about 200,000 in 2005, according to
the market-research company Harbor Research. The worldwide market for wireless
sensors, it says, will grow from $100 million in 2005 to more than $1 billion by 2009
[17]. This is motivating great effort in academia and industry to explore effective ways
to build sensor networks with feature-rich services [11].

One of the important inputs these services build upon is the exact locations of
all sensors in the network. The need for sensor localization arises because accurate
positions are known for only some of the sensors (which are called anchors). If the
networks are to achieve their purpose, the positions of the remaining sensors must be
determined. One approach to localizing these sensors with unknown positions is to
use known anchor locations and distance measurements that neighboring sensors and

∗Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
M5S 3G8 (carter@mie.utoronto.ca).

†Department of Management Science and Engineering, Stanford University, Stanford, CA 94305-
4026 (hollyjin@stanford.edu), and Department of Mechanical and Industrial Engineering, University
of Toronto, Toronto, Canada M5S 3G8. Partially supported by Robert Bosch Corporation.

‡Department of Management Science and Engineering, Stanford University, Stanford, CA 94305-
4026 (saunders@stanford.edu).

§Department of Management Science and Engineering, Stanford University, Stanford, CA 94305-
4026 (yinyu-ye@stanford.edu). Submitted to SIOPT, Dec 27, 2004. Revised November 18, 2005.

1

2 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

1 ≤ i < j ≤ s|s+1 ≤ k ≤ n| {z }|| {z }
s sensors m anchors

Fig. 1.1. Indexing of sensors and anchors.

anchors obtain among themselves. The mathematical problem is to estimate sensor
positions using a sparse data matrix of noisy distance measurements. This leads to
a large, non-convex, constrained optimization problem. Large networks may contain
many thousands of sensors, whose locations should be determined accurately and
quickly.

1.1. Problem definition. Sensor localization in ad hoc wireless sensor network
aims to find the locations of all sensors in the network, given pair-wise distance mea-
surements among some of the sensors, and known locations of some of the sensors.
The sensors with known locations are called anchors. From now on, sensor generally
means unpositioned sensor, excluding anchors. A node is any sensor or anchor in the
network.

We use a constrained optimization approach to estimate the sensors’ locations.
The following input, output, and objectives are considered.

Input
Total points: n, the total number of nodes in the network.
Unknown points: s sensors, whose locations xi ∈ R2, i = 1, . . . , s are to be de-

termined. (We assume the points are on a plane here, but the approach is
extended to three dimensions in Jin’s thesis [13].)

Known points: m anchors, whose locations ak ∈ R2, k = s + 1, . . . , n are known.
(Note that we put anchors at the end of the total points’ list without loss
of generality, and that n = s + m. Index k is specific for indexing anchors.
Refer to Figure 1.1 for nodes indexing.)

Known distance measurements: The readings of certain ranging devices for esti-
mating the distance between two points. d̂ij is the distance measurement
between two sensors xi and xj (i < j ≤ s), and d̂ik is the distance mea-
surement between some sensor xi and anchor ak (i ≤ s < k). The distance
measurements are constant data and generally have errors.

Output
Locations: Estimated locations xi for s sensors.

Objectives
Accuracy : Minimal errors in the estimated sensor positions.
Speed : Fast enough for real-time applications (e.g., networks with moving sensors).
Scalability : Suitable for large-scale deployment (with tens of thousands of nodes).

1.2. Notation. The Euclidean distance between two vectors v and w is defined
to be ‖v −w‖, where ‖ · ‖ always means the 2-norm. Nodes are said to be connected
if the associated measurements d̂ij or d̂ik exist. The remaining elements of d̂ are zero.
If a measurement does exist between node i and j but it is zero (i and j are at the
same spot), we do not set d̂ij to zero: we set it to machine precision ε instead to
distinguish from the case of d̂ij = 0 when two nodes’ distance is beyond the sensor
device’s measuring range.

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 3

1.3. Related research work. Sensor localization in ad hoc wireless network
has been a booming research area recently. Hightower and Boriello [11] give an ex-
tensive review of the area and available methods. There are many ways to solve the
localization problem [5, 7, 9, 12, 16, 18, 19, 20, 21], with two main ones based on
triangulation and optimization.

Triangulation methods estimate node positions based on distance measurements
between neighboring nodes, and some algorithms use iterative steps to localize all
sensors.

Early work using optimization techniques is reported by Doherty et al. [7]. Ideally
the Euclidean distance between neighboring nodes should be fitted in some near-
equality sense to the distance measurements:

‖xi − xj‖ ≈ d̂ij and ‖xi − ak‖ ≈ d̂ik. (1.1)

Doherty et al. formulate a convex optimization model by treating the constraints
as ‖xi − xj‖ ≤ d̂ij and ‖xi − ak‖ ≤ d̂ik, and by including certain other convex
constraints. This formulation takes advantage of available optimization algorithms,
including those for convex optimization. However, the method needs sufficient anchors
to be positioned on the boundary of the localization area for it to work effectively.

Biswas and Ye [2] work with the near-equality constraints (1.1), and most impor-
tantly they introduced a semidefinite programming (SDP) relaxation method in order
to retain the benefits of convex optimization. They report that their method yields
more accuracy under all conditions than the approach in [7].

The SDP relaxation approach can solve small problems effectively. The paper
reports a few seconds of laptop execution time for a 50-node localization problem.
However, the number of constraints in the SDP model is O(n2), where n is the number
of nodes in the network. Even a few hundred-node problem leads to excessive memory
and computation time by available SDP solvers such as DSDP (Benson, Ye, and
Zhang [1]) and SeDuMi (Sturm [22]). These solvers are effective for SDP problems
with dimension and number of constraints up to a few thousand.

Tseng [24] has presented a second-order cone programming (SOCP) relaxation
model that permits solution for problem sizes up to a few thousand using available
SOCP solvers. However, the additional relaxation of the original model usually gen-
erates larger error rates, and the run-times are high. The author reports CPU times
of 330 seconds for 1000 nodes and 3 hours for 2000 nodes using SeDuMi 1.05 [22] and
Matlab 6.1 on a Linux PC.

Biswas and Ye [3] propose a decomposition scheme to overcome the scalability
issue with SDP solvers. The anchors in the network are first partitioned into many
clusters according to their physical positions, and sensors are assigned to these clus-
ters if they have a direct connection to one of the anchors. Each cluster formulates
a subproblem, and the subproblems are solved independently on each cluster using
the SDP relaxation of [2]. The paper reports results for randomly generated sensor
networks of 4000 sensors partitioned into 100 clusters strictly according to their ge-
ographic locations. Sensors with distance connections to more than one cluster are
included in multiple clusters. The final estimation of their locations is determined
by the cluster that gives the least estimated errors. An execution time of about 4
minutes on a 1.2GHz Pentium laptop is reported for this sized problem. The time
could be reduced by using multiple CPUs.

Although Biswas and Ye [3] make large-scale sensor network localization pos-
sible by decomposing the large-scale problem geographically, there are shortfalls in

4 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

this approach that may prevent its large-scale deployment. First of all, for any real
deployment of a wireless sensor network, localization algorithms should run in real-
time, where minutes could be too long and multiple CPUs could be too expensive.
Secondly, since the partition is strictly based on geographic locations, sensors near
the border lines of a cluster may not be positioned as accurately as they would be
using other approaches. This is due to the fact that each cluster may include only
partial connection information for the bordering sensors if the bordering sensors have
connections with multiple clusters. Furthermore, the SDP relaxation approach that
their decomposition method is based on provides poor accuracy on certain topologies
with low anchor density or small radio range for even medium-size networks (refer to
section 4.2).

1.4. SpaseLoc. A basic tool that we have developed during this research is
a rule-based iterative algorithm named SpaseLoc (sub-problem algorithm for sensor
localization). It is effective for networks involving tens of thousands of sensors and
beyond.

To solve a large localization problem (defined as the full problem), SpaseLoc pro-
ceeds iteratively by estimating only a portion of the total sensors’ locations at each
iteration. Some anchors and sensors are chosen according to a set of rules. They
form a sensor localization subproblem that can be treated similarly to the basic SDP
formulation of Biswas and Ye [2]. The solution from the subproblem is fed back to
the full problem and the algorithm iterates again until all sensors are localized.

Computational results show that SpaseLoc can solve small or large problems with
excellent accuracy and scalability. It is capable of localizing 4000 nodes with great
accuracy in under 20 seconds, and 10000 nodes in about a minute on a 2.4GHz laptop.

2. The subproblem SDP model. This section reviews the quadratic program-
ming formulation of the sensor localization problem and the SDP relaxation model of
Biswas and Ye [2] that the SpaseLoc subproblem is based on. Error analysis is also
reviewed here as reference for later sections.

2.1. Euclidean distance model. Consider a network of sensors and anchors
labeled as in Figure 1.1. For any point in the network, there could be three types
of distance measurements. Since we generally do not need the distance information
between two anchor points, we exclude this type of measurement from now on.

The other types of distance measurements are the two we need for the localization
model. First is the distance measurement between two sensors (i and j) with unknown
positions; second is the distance measurement between a sensor (i) and an anchor (k)
with known position. Corresponding to these two types of distances, we define sets
N1, N1, N2 and N2 as follows:

• N1 includes pairwise sensors (i, j) if i < j and there exists a distance mea-
surement d̂ij :

N1 = {(i, j) with known d̂ij and i < j}.
• N1 includes pairwise sensors (i, j) with unknown measurement d̂ij and i < j:

N1 = {(i, j) with unknown d̂ij and i < j}.
• N2 includes pairs of sensor i and anchor k if there exists a measurement d̂ik:

N2 = {(i, k) with known d̂ik}.
• N2 includes pairs of sensor i and anchor k with unknown measurement d̂ik:

N2 = {(i, k) with unknown d̂ik}.

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 5

The full set of nodes and pair-wise distance measurements form a graph G = {V, E},
where V = {1, 2, . . . , s, s + 1, . . . , n} and E = N1 ∪N2.

Introduce αij to be the difference between the measured squared distance (d̂ij)2

and the squared Euclidean distance ‖xi − xj‖2 from sensor i to sensor j. Also, let
αik be the difference between the measured squared distance (d̂ik)2 and the squared
Euclidean distance ‖xi−ak‖2 from sensor i to anchor k. Intuitively, we seek a solution
for which the magnitude of these differences is small.

Lower bounds rij or rik are imposed if (i, j) ∈ N1 or if (i, k) ∈ N2. Typically each
rij or rik value is the radio range (also known as radius) within which the associated
sensors can detect each other.

Biswas and Ye [2] formulate the sensor localization problem as minimizing the
`1 norm of the squared-distance errors αij and αik subject to mixed equality and
inequality constraints:

minimize
xi,xj ,αij ,αik

∑

(i,j)∈N1

|αij | +
∑

(i,k)∈N2

|αik|

subject to ‖xi − xj‖2 − αij = (d̂ij)2, ∀ (i, j) ∈ N1,

‖xi − ak‖2 − αik = (d̂ik)2, ∀ (i, k) ∈ N2,

‖xi − xj‖2 ≥ r2
ij , ∀ (i, j) ∈ N1,

‖xi − ak‖2 ≥ r2
ik, ∀ (i, k) ∈ N2,

xi, xj ∈ R2, αij , αik ∈ R,

i, j = 1, . . . , s, k = s + 1, . . . , n.

(2.1)

The above model is a non-convex constrained optimization problem. As yet there
is no effective solution method. In the following subsections, we review Biswas and
Ye’s [2] relaxation method for solving this problem approximately.

2.2. The Euclidean distance model in matrix form. The distance model
(2.1) is reformulated into (2.2) (refer to Biswas and Ye [2]) by introducing matrix
variables as follows:

minimize
∑

(i,j)∈N1

(α+
ij + α−ij) +

∑

(i,k)∈N2

(α+
ik + α−ik)

subject to eT
ij Y eij − α+

ij + α−ij = (d̂ij)2, ∀ (i, j) ∈ N1,

(
ei

−ak

)T(
Y XT

X I

)(
ei

−ak

)
− α+

ik + α−ik = (d̂ik)2, ∀ (i, k) ∈ N2,

eT
ij Y eij ≥ r2

ij , ∀ (i, j) ∈ N1,

(
ei

−ak

)T(
Y XT

X I

)(
ei

−ak

)
≥ r2

ik, ∀ (i, k) ∈ N2,

Y = XT X,

α+
ij , α−ij , α+

ik, α−ik ≥ 0,

i, j = 1, . . . , s, k = s + 1, . . . , n,

(2.2)

6 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

where
• X = (x1 x2 . . . xs) is a 2× s matrix to be determined;
• eij is a zero column vector except for 1 in position i and −1 in position j, so

that

‖xi − xj‖2 = eT
ij XT X eij ;

• ei is a zero column vector except for 1 in position i, so that

‖xi − ak‖2 =
(

ei

−ak

)T (
X I

)T (
X I

) (
ei

−ak

)
;

• Y is defined to be XT X;
• The substitutions αij = α+

ij − α−ij and αik = α+
ik − α−ik are made to deal with

|αij | and |αik| in the normal way.

2.3. The SDP relaxation model. The approach of Biswas and Ye [2] is to
relax the constraint Y = XT X to be Y º XT X, for which an equivalent matrix
inequality is (Boyd et al. [4])

ZI ≡
(

Y XT

X I

)
º 0. (2.3)

With the definitions

AI =




0 0 0
1 0 1
0 1 1


 , bI =




1
1
2


 ,

where 0 in AI is a zero column vector of dimension s, problem (2.2) is relaxed to a
linear SDP:

minimize
∑

(i,j)∈N1

(α+
ij + α−ij) +

∑

(i,k)∈N2

(α+
ik + α−ik)

subject to diag(AT
I Z AI) = bI ,

(
eij

0

)T

Z

(
eij

0

)
− α+

ij + α−ij = (d̂ij)2 ∀ (i, j) ∈ N1,

(
ei

−ak

)T

Z

(
ei

−ak

)
− α+

ik + α−ik = (d̂ik)2 ∀ (i, k) ∈ N2,

(
eij

0

)T

Z

(
eij

0

)
≥ r2

ij ∀ (i, j) ∈ N1,

(
ei

−ak

)T

Z

(
ei

−ak

)
≥ r2

ik ∀ (i, k) ∈ N2,

Z º 0, α+
ij , α−ij , α+

ik, α−ik ≥ 0,

i, j = 1, . . . , s, k = s + 1, . . . , n,

(2.4)

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 7

where the constraint diag(AT
I ZAI) = bI ensures that the matrix variable Z’s lower

right corner is a 2-dimensional identity matrix I, so that Z takes the form of ZI in
(2.3).

Initially, Biswas and Ye [3, 2] omit the ≥ inequalities involving rij and rik, and
solve the resulting problem to obtain an initial solution Z1. (The inequality constraints
increase the problem size dramatically, and Z1 is likely to satisfy most of them.) They
then adopt an “iterative active-constraint generation technique” in which inequalities
violated by Zk are added to the problem and the resulting SDP is solved to give Zk+1

(k = 1, 2, . . .). The process usually terminates before all constraints are included.
Further study of this approach is presented in section 4.1.

2.4. SDP model analysis. Let Z̄ =

�
Ȳ X̄T

X̄ I

�
be a feasible solution of the

relaxed SDP (2.4). Biswas and Ye [2] give conditions under which X̄ and Ȳ solve
problem (2.2) exactly, when exact distance measurements are assumed:

• Z̄ is the unique optimal solution of (2.4), including all inequality constraints.
• In (2.4), there are 2n + n(n + 1)/2 exact pair-wise distance measurements.

These conditions ensure that Ȳ = X̄T X̄. In practice, distance measurements
have noise and we only know that the SDP solution satisfies Ȳ − X̄T X̄ º 0. This
inequality can be used for error analysis of the position estimation provided by the
relaxation. For example, trace(Ȳ − X̄T X̄) =

∑
τi, where

τi ≡ Ȳii − ‖x̄i‖2 ≥ 0, (2.5)

is a measure of deviation of the SDP solution from the desired constraint Y = XT X
(ignoring off-diagonal elements). The individual trace τi can be used to evaluate the
position estimation x̄i for sensor i. In particular, we interpret a smaller τi to mean
higher accuracy in the estimated position xi. Further explanation is given in [2].

3. SpaseLoc: A scalable localization algorithm. When the number of nodes
in (2.4) is large, applying a general SDP solver such as DSDP5.0 [1] or SeDuMi [22]
would not scale well. In this section, we present a sequential subproblem approach
named SpaseLoc to solve the full localization problem iteratively.

3.1. Adaptive subproblem approach. We call the overall sensor localization
problem including all sensors and anchors the full problem. At each iteration, Spase-
Loc selects from the full problem a subset of the unpositioned sensors and a subset
of the anchors to form a localization subproblem. We call the selected sensors in
the subproblem subsensors, and the selected anchors in the subproblem subanchors,
These subsensors and subanchors, together with their known distance measurements
and known anchors’ locations, form a sub SDP relaxation model to be solved using
the same formulation as in (2.4).

In our adaptive approach, the subanchors and subsensors for each subproblem are
chosen dynamically according to rule sets. (Rather than using predefined data, every
new iteration’s subproblem generation is based on the previous iteration’s results.)
The resulting SDP subproblems are of varying but limited size. Currently they are
solved by Benson, Ye, and Zhang’s SDP solver DSDP5.0 [1].

SpaseLoc is a greedy algorithm in the sense that each subproblem determines the
final estimate of the associated sensor positions.

8 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

subproblem_size

C
P

U
 s

e
c
o
n
d
s

Fig. 3.1. SpaseLoc execution time as a function of subproblem size: total nodes = 10000,
anchors = 100, radius = 0.02068.

3.2. The SpaseLoc algorithm. The main steps of SpaseLoc are listed below,
followed by explanations of the steps and definitions of new terms used therein.

A0 Set subproblem size.
A1 Subproblem creation: Select subsensors and subanchors to be included in the

subproblem.
A2 Formulate SDP relaxation model (2.4) based on the chosen subsensors and

subanchors, together with the known distances among them and the suban-
chors’ known positions.

A3 Call SDP solver to obtain optimal solution for the subsensors’ positions.
A4 Classify positioned subsensors according to their τi value.
A5 If all sensors in the network become positioned or are determined to be out-

liers, go to step A6. Otherwise, return to step A1 for the next iteration.
A6 Output all sensor locations and report outliers if any. Stop.

In step A0, subproblem size specifies a limit on the number of unpositioned sensors
to be included in each subproblem. It can range from 1 to an upper limit value
that is potentially solvable by the SDP solver. In our experiments, the upper limit
is 150. The most effective subproblem size seems to change with the full problem
size, the model parameters such as radius, and the SDP solver used. We perform
an approximate linesearch to find subproblem size that corresponds to the minimum
time, since empirically the total execution time with all other parameters fixed is
essentially a convex function of subproblem size.

For example, when full problem size is 10000 with 100 anchors, radius 0.02068,
and no noise, subproblem size 5 seems to give the best execution time with the
DSDP5.0 solver (refer to Figure 3.1). The search time for subproblem size is not
included as part of the SpaseLoc execution time.

Step A1 involves choosing a subset of unpositioned sensors (no more than sub-
problem size) and an associated subset of nodes with known positions. The latter can
include a subset of the original anchors and/or a subset of sensors already positioned
by a previous subproblem (we define them as acting anchors). The rules for choosing
subsensors and subanchors in this iteration are discussed in sections 3.4–3.5.

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 9

In step A4, the error in sensor i’s positioning is estimated by its individual trace
τi as discussed in section 2.4. Subsensors whose τi value is within a given tolerance τ
are labeled as positioned and treated as acting anchors for the next iteration, whereas
subsensors whose positioning error is higher than the tolerance are also labeled as
positioned but are not used as acting anchors in later iterations. These new acting
anchors are labeled with different acting levels as explained in section 3.4. The value
of τ has an impact on the localization accuracy. Bigger values allow more positioned
sensors to be acting anchors, but with possibly greater transitive errors. Smaller
values may increase the estimation accuracy for some of the sensors, but could lead
to more outliers. A rule of thumb is to use a small τ for networks with high anchor
density to achieve potentially more accuracy, and a bigger τ for networks with low
anchor density to avoid potential outliers.

In step A5, an unpositioned sensor is called an outlier when it does not have
any distance information for the algorithm to decide its location. If a sensor has no
connection to any anchors, it is classified as an outlier. In addition, if a connected
cluster of sensors has no connection to any anchors, then all sensors in the cluster will
be outliers.

The next sections explain the subproblem creation procedure used by step A1
above. Section 3.3 lists steps S1–S9 of the creation procedure itself. Section 3.4
presents rules RS1–RS4 for subsensor selection in step S5. Section 3.5 presents rules
RA1–RA3 for subanchor selection in step S8. Section 3.6 illustrates the method for
independent subanchor selection used in rules RA2–RA3. Sections 3.7–3.8 discuss the
routines used in step S7 to localize sensors that have less than 3 connected anchors.

3.3. Subproblem creation procedure. As explained, subproblem size is a
predetermined parameter that represents the maximum number of unpositioned sen-
sors that can be selected as subsensors in a subproblem. When there are more than
subproblem size unpositioned sensors, we have a choice to make among them.

The subproblem creation procedure makes sure that the choice of subsensors is
based first on the number of connected anchors they have, and second on the type of
connected anchors such as original anchors and different levels of acting anchors as
defined by a priority list (section 3.4), and the choice of subanchors is based on a set
of rules (section 3.5). The main steps are listed below, followed by explanations of
the steps and definitions of new terms used.

S1 Specify MaxAnchorReq.
S2 Initialize AnchorReq = MaxAnchorReq.
S3 Loop through unpositioned sensors, finding all that are connected to at least

AnchorReq anchors. If AnchorReq ≥ 3, determine if there are 3 independent
subanchors; if not, go to next sensor.1 Enter each found sensor into a can-
didate subsensor list, and enter its connected anchors into a corresponding
candidate subanchor list. Each sensor in the candidate subsensor list has its
own candidate subanchor list (so there are as many candidate subanchor lists
as the number of sensors in the candidate subsensor list). Let sub s candidate
be the length of the candidate subsensor list.

S4 If sub s candidate = subproblem size, the candidate subsensor list becomes
the chosen subsensors list. Go to step S8.

S5 If sub s candidate > subproblem size, the choice of subsensors is further based
on subsensor selection rules RS1–RS4 described in section 3.4. After ex-

1See section 3.6 for dependency definition and independent anchor selection.

10 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

actly subproblem size subsensors are selected from the candidate list accord-
ing these rules, go to step S8.

S6 If sub s candidate < subproblem size and the candidate list is not null, go to
step S8.

S7 Now sub s candidate = 0. Reduce AnchorReq by 1.
If AnchorReq ≥ 3, go to step S3 for another round of subproblem creation.
If AnchorReq = 2, apply the procedure in section 3.7 then go to step S3.
If AnchorReq = 1, apply the procedure in section 3.8 then go to step S3.
Otherwise, AnchorReq = 0 and sub s candidate = 0 indicates that there are
still unpositioned sensors left that are not connected to any positioned nodes.
We classify them as outliers and exit this procedure to continue at step A6
of section 3.2.

S8 Now that we have a subsensor list and the candidate subanchor lists, choose
subanchors using selection rules RA1–RA3 presented in section 3.5.

S9 The subsensors and subanchors are selected and the subproblem creation
routine finishes here. Continue at step A2 in section 3.2.

In step S1, MaxAnchorReq determines the initial (maximum) value of AnchorReq.
It is useful for scalability when connectivity is dense. A smaller MaxAnchorReq would
generally cause fewer subanchors to be included in the subproblem, thus reducing the
number of distance constraints in each SDP subproblem and hence reducing execution
time for each iteration. For instance, under ideal conditions (where there is no noise),
even if a sensor has 10 distance measurements to 10 anchors, we don’t need to include
all 10 anchors because we can use 3 to localize that sensor accurately.

In the presence of noise, a bigger MaxAnchorReq should reduce the average esti-
mation error. For example, if there is a large distance measurement error from one
particular anchor, since MaxAnchorReq anchors are all taken into consideration for
deciding the sensor’s actual position, the large error would be averaged out. Another
consideration for setting MaxAnchorReq is the trade-off between estimation accuracy
and execution speed. If we are in a static environment and would like to have sensor
positioning as accurate as possible under noise conditions, we might choose a large
MaxAnchorReq. However, in a real-time environment involving moving sensors, where
speed might take priority, we would consider a smaller MaxAnchorReq.

In step S2, AnchorReq is a dynamic parameter that may decrease in later steps.
In step S6, the subproblem will contain less than subproblem size subsensors,

and this is perfectly acceptable. The alternative is to reduce AnchorReq by 1 and
find more subsensor candidates that have fewer distance connections. However, this
approach might reduce the accuracy of the algorithm, because we do want to localize
the subsensors as accurately as possible as the iteration progresses, and the newly
localized subsensors could be further used as acting anchors for the next iteration.

In step S7, AnchorReq is iteratively reduced by 1 from MaxAnchorReq to 0 even-
tually. This approach allows sensors with at least AnchorReq connections to anchors
to be positioned before sensors with fewer connections to anchors. As we know, un-
der no-noise conditions, a sensor’s position can be uniquely determined by at least
3 independent distance measurements to 3 anchors. If a sensor has only 2 distance
measurements to 2 anchors, there are two possible locations; and if there is only 1
distance measurement to an anchor, the sensor can be anywhere on a circle. In this
situation, we use heuristic subroutines described in sections 3.7–3.8 to include the
sensor’s anchors’ connected neighboring nodes in the subproblem in order to improve
the estimation accuracy.

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 11

Table 3.1
An example: priority list when MaxAnchorReq=3.

Priority Level 1 Level 2 Level 3–7 Level 8–10 Resulting
value anchor anchor anchor anchor level

1 ≥ 3 any any any 2
2 = 2 total ≥ 1 any 3
3 = 1 total ≥ 2 any 4
4 0 ≥ 3 any any 5
5 0 = 2 total ≥ 1 any 6
6 0 ≤ 1 total ≥ 2 if level 2 anchor = 1, else total ≥ 3 any 7
7 total ≥ 3, at least one of the 3 anchors is acting level 8 or 9, or 10 8
8 total = 2 9
9 total = 1 10

3.4. Subsensor selection priority list. In step S5, when the number of sensors
in the candidate subsensor list is bigger than subproblem size, the choice of subsensors
is further based on the types of anchors each sensor is connected to.

First, we introduce the concept of sensor priority. We assign a priority to each
sensor in the candidate subsensor list. A sensor with a smaller priority value is
selected to be localized before one with a bigger priority value. A sensor’s priority is
based on the types of anchors the sensor is directly connected to. Next, in order to
define different types of anchors, we introduce the concept of anchor acting levels. All
anchors including acting anchors are assigned certain acting levels. Original anchors
are always set to acting level 1. Every acting anchor is set to an acting level after it
has been localized as a sensor. The acting level depends on the priority of the sensor
that becomes this acting anchor. Essentially, acting anchors are set with acting levels
depending on the levels of the anchors that localized them.

The priority rules for selecting subsensors from a candidate subsensor list are as
follows:

RS1 When AnchorReq ≥ 3 and a sensor has at least 3 connected anchors that are
independent, the sensor’s priority depends on the lowest acting level among
all the connected anchors and the number of anchors in this level. The lower
the acting level and the larger the number of anchors in that level, the higher
the sensor’s priority.

RS2 If the sensor has 3 connected anchors that are dependent, it is ranked with
the same priority as when the sensor is connected to only 2 anchors.

RS3 Sensors with 2 anchor connections are ranked with equal priority, independent
of the acting levels of the 2 connected anchors. (This can be easily expanded
to be more granular according to the connected anchors’ acting levels.) Sen-
sors in this category are assigned lower priority than any sensors that have
at least 3 independent anchor connections.

RS4 Sensors with 1 anchor connection are ranked with equal priority, indepen-
dent of the acting level of the connected anchor. (Again, this can be more
granular according to the connected anchor’s acting level.) Sensors in this
category are assigned lower priority than any sensors that have at least 2
anchor connections.

Table 3.1 illustrates the priority list for an example where MaxAnchorReq = 3 and
the sensor’s priority is determined by the number of its connected anchors that have
the lowest acting level among all the sensor’s connected anchors. We can certainly

12 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

add more granularity by further classifying the sensor’s second and third connected
anchors’ acting levels. Although more categorizations of the priorities should increase
localization accuracy under most noise conditions, more computational effort is re-
quired to handle more levels of priorities. In Table 3.1, we assume we will generate
only 9 levels of priorities.

Each item in the table represents the number of anchors with different acting
levels that is needed at each priority. The last column represents the resulting acting
anchors’ acting levels for subsequent iterations. For example, if a sensor has at least
three independent connections to anchors, and if 2 of the anchors are original anchors
(acting level 1) and at least 1 of the connected anchors is at any acting level from
2 to 7, this sensor belongs to priority 2 as listed in row 2 of the table. Also, when
this sensor is positioned, it becomes acting anchor level 3. The sensors that connect
to two anchors belong to the second last priority (8 in the table), and sensors that
connect to only one anchor belong to the last priority (9 in this case). In addition, if
a sensor connects to at least 3 independent anchors, among which at least one anchor
belongs to level 8, 9, or 10, this sensor will be classified as the third last priority as
listed in row 7.

3.5. Subanchors selection. In step S8, for each unpositioned subsensor, only
AnchorReq of the connected anchors are allowed to be included in the subproblem.
We use the following rules to select subanchors from a candidate subanchor list that
contains more than AnchorReq anchors.

RA1 Original anchors are selected first, followed by acting anchors with lower
acting level.

RA2 The subanchors chosen should be linearly independent.
RA3 Among independent anchors in the candidate subanchor list, we use distance

scale-factors to encourage selection of the closest subanchors.
Rules RA2 and RA3 are implemented as in section 3.6. Rule RA3 is based on the

assumption that under noise conditions, we trust the shorter distance measurements
more than the longer ones. This is specially true for ranging devices based on RF
(radio frequency) strength.

For certain applications, it may be beneficial to choose MaxAnchorReq large in
order to increase the localization accuracy, though it could impact the algorithm
speed.

3.6. Independent subanchors selection. Suppose sensor i is connected to
K (K > 3) anchors at locations aik with corresponding distance measurements d̂ik

(k = 1, . . . , K). Define the matrices

A =
(

1 1 . . . 1
−ai1 −ai2 . . . −aiK

)
, D1 = diag(1/

√
1 + ‖aik‖2), D2 = diag(1/d̂ik).

We select an independent subset by a QR factorization with column interchanges
[10]: B = AD1D2, BP = QR, where Q is orthogonal, R is upper-trapezoidal, and
P is a permutation chosen to maximize the next diagonal of R at each stage of
the factorization. (D1 normalizes the columns of A, and D2 biases them in favor of
anchors that are closer to sensor i.) If the 3rd diagonal of R is larger than a predefined
threshold (10−4 is used in our simulation), the first 3 columns of AP are regarded
as independent, and the associated anchors are chosen. Otherwise, all subsets of 3
among the K anchors are regarded as dependent. (In Matlab, R and P are obtained
by a command of the form [Q,R,P] = qr(B).)

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 13

3.7. Geometric subroutine (two connected anchors). This section illus-
trates the heuristic techniques used in step S7 of section 3.3 to localize sensors con-
nected to only two anchors.

When a sensor’s connected anchors are also connected to other anchors, this
subroutine may improve the accuracy of the sensor’s positioning, as illustrated by an
example in Figure 3.2.

±°
²¯
s1 ±°

²¯
a3

±°
²¯
a4 ±°

²¯
a5

±°
²¯
a6 ±°

²¯
a7 ±°

²¯
s2

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)
b

(6, 0)

(0, 1)

(0, 2)

(2, 3)b

(5, 2)b

Fig. 3.2. Sensors with connections to at most two anchors.

In this example, assume s1 and s2 are sensors with unknown locations, and
a3(1, 3), a4(1, 2), a5(2, 2), a6(4, 1), a7(5, 1) are anchors with known positions in brack-
ets. Assume that the sensors’ radio range is

√
2, and we are also given two distance

measurements d̂13 = 1 and d̂14 =
√

2 for sensor s1 and one measurement d̂27 = 1 for
sensor s2.

Given two distances d̂13 and d̂14 to two anchors a3(1, 3) and a4(1, 2), we know that
s1 should be either at (0, 3) or (2, 3). If we only use s1, a3(1, 3), a4(1, 2) in an SDP
subproblem, SDP relaxation will give a solution near the middle of the two possible
points, which would be very close to point (1, 3). If there is any anchor (a5) that is
near s1’s connected anchors (a3 and a4) with any of the two possible sensor’ points
within their radio range (point (2, 3) is within a5’s range), that point (2, 3) must not
be the real location of s1, or else s1 would be connected to this anchor (a5) as well.
Thus we can infer that s1 must be at the other point (0, 3).

Inspired by the above observation, when a sensor has at most 2 connected anchors,
we include these anchors’ connected anchors in the subproblem (we call them the
connected anchors’ neighboring anchors) together with the sensor and its directly
connected anchors. By including the neighboring anchors, we might hope that the
inequality constraints in the SDP relaxation model (2.4) would push the estimation
towards the right point. However, because of the relaxation, enforcing inequalities
in (2.4) is not equivalent to enforcing them in the distance model (2.2). The added
inequality constraints only push the original solution near (1, 3) a tiny bit towards
s1’s real location (0, 3), and the solution essentially stays at around (1, 3).

Given the ineffectiveness of the SDP relaxation approach under this condition, we
propose instead a geometric approach as illustrated in Figure 3.3. Assume s1(xx, xy)
has measurements d̂12 to anchor a2(a2x, a2y) and d̂13 to anchor a3(a3x, a3y). We also
assume d̂12 ≤ d̂13 (we can always swap the two indexes otherwise). Let al (l = 4, . . . , k)
be a2 and/or a3’s neighboring anchors with radio range r1l (l = 4, . . . , k), and let d23

be the known (exact) Euclidean distance between a2 and a3.

• If two circles centered at a2 and a3 with radii d̂12 and d̂13 intersect each other
(d̂12 + d̂13 ≥ d23 and d̂13 − d̂12 ≤ d23) as in Figure 3.3(a):

14 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

&%

'$
aal

ÁÀ

Â¿
a

a2

"!

#Ã
a
a3a

x

ka
a2

&%

'$
a
a3

ax µ´
¶³

a
a2

&%

'$
a

a3

a
x

(a) (b) (c)

Fig. 3.3. (a) Sensor with two anchors’ circles intersecting. (b) Sensor with two anchors, a2’s
circle in a3’s. (c) Sensor with two anchors’ circles disjoint.

– Two possible locations of s1 are given by solutions x∗ and x∗∗ of the
equations

‖x− a2‖2 = d̂ 2
12 , ‖x− a3‖2 = d̂ 2

13 .

– Sensor s1’s position is selected from x∗ and x∗∗, whichever is further
away from any neighboring anchor. Thus, for l = 4 to k,

if ‖x∗ − al‖2 < r2
1l, then x = x∗∗ and stop

else if ‖x∗∗ − al‖2 < r2
1l, then x = x∗ and stop.

Otherwise, x = (x∗ + x∗∗)/2 and stop.
• Under noise conditions, the a2 circle may be inside the a3 circle (d̂12 + d̂13 ≥

d23 and d̂13 − d̂12 > d23) as in Figure 3.3(b).
– The solutions x∗ and x∗∗ of the following equations give two possible

points for s1 on the a2 circle:

(xx − a2x)2 + (xy − a2y)2 = d̂ 2
12,

(a2x − a3x)(xy − a2y) = (a2y − a3y)(xx − a2x),

where x is on the line through a2 and a3 represented by the second
equation.

– If ‖x∗ − a3‖ < ‖x∗∗ − a3‖, then x = x∗∗; otherwise x = x∗. This
guarantees that the point further from a3 is chosen. Note that we base
the sensor’s estimation on the closest anchor (a2 here since d̂13 ≥ d̂12),
assuming that a shorter measurement is generally more accurate than
longer ones, given similar anchor properties.

The same approach applies when the a3 circle is inside the a2 circle (d̂12 −
d̂13 > d23).

• Under noise conditions, the a2 and a3 circles may again have no intersection
(d̂12 + d̂13 < d23) as in Figure 3.3(c).

– The solutions x∗ and x∗∗ of the following equations give two possible
points for s1 on the circle for the anchor with smaller radius. Let’s
assume d̂12 ≤ d̂13:

(xx − a2x)2 + (xy − a2y)2 = d̂ 2
12,

(a2x − a3x)(xy − a2y) = (a2y − a3y)(xx − a2x),

where x is on the line through a2 and a3 represented by the second
equation.

– If ‖x∗ − a3‖ > ‖x∗∗ − a3‖, then x = x∗∗; otherwise x = x∗. This
guarantees that the point closer to a3 (in between a2 and a3) is chosen.

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 15

&%

'$
a

b ÁÀ

Â¿
a
a

a
x∗

&%

'$
ab

ÁÀ

Â¿
aa a x∗

&%

'$
a
c

1

23 4

(a) (b)

Fig. 3.4. (a) Sensor with one anchor connection a and one neighboring anchor b. (b) Sensor
with one anchor connection a and two neighboring anchors b, c.

3.8. Geometric subroutine (one connected anchor). Similar inefficiency
occurs in the SDP solution when a sensor connects to only one anchor. The SDP
solver under this condition gives a solution for the sensor to be in the same location
as the sensor’s connected anchor. In reality, the sensor could be anywhere on the
circle. The SDP gives an average point, at the center of the circle, and that is where
the connected anchor is. Even if the anchor’s neighboring anchor is included in the
SDP subproblem, the inequality constraints are not active most of the time because
the SDP solution may not provide optimal solutions all the time.

We propose a heuristic for estimating a sensor’s location with only one connecting
anchor. The idea is to use one neighboring anchor’s radio range information to elimi-
nate the portion of the circle that the sensor would not be on, and then calculate the
middle of the other portion of the circle to be the sensor’s position. For the example
in Figure 3.2, because we know the distance between s2 and a7 is 1, we know that
s2 could be anywhere on the circle surrounding a7 with a radius of 1. Knowing a7’s
neighboring anchor node a6 is not connected to s2, we know that s2 would not be
in the area surrounding a6 with a radius of

√
2. Thus, s2 could be anywhere around

the half circle including points (5, 2), (6, 1), (5, 0). The heuristic chooses the middle
point between the two circles’ intersection points (5, 2) and (5, 0), which happens to
be (6, 1) in this example. The heuristic gives better accuracy for the sensor’s location
than the SDP solution under most conditions. The procedure follows:

• Assume s has one distance measurement d̂ to anchor a, and b is the closest
connected neighboring anchor to a with radio range r (refer to Figure 3.4(a)).
We assume a = (ax, ay), b = (bx, by), x = (xx, xy).

• The solutions x∗ and x∗∗ of the following equations give two possible points
s on the circle:

(xx − ax)2 + (xy − ay)2 = d̂ 2,

(ax − bx)(xy − ay) = (ay − by)(xx − ax),

where x is on the line through a and b represented by the second equation.
• If ‖x∗ − b‖ < r, then x = x∗∗; otherwise x = x∗. This guarantees that the

point further from b is chosen.
The above heuristic provides a simple way of estimating a sensor’s location when

the sensor connects to only one anchor. A more complicated approach can be adopted
when the connected anchor has more than one neighboring anchor, which can increase
the accuracy of the sensor’s location. We call it an arc elimination heuristic. The idea
is to loop through each of the neighboring anchors and find the portion of the circle
that the sensor won’t be on, and eliminate that arc as a possible location of the
sensor. Eventually, when one or more plausible arcs remain, we choose the middle
of the largest arc to be the sensor’s location. For example, assume we add one more

16 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

neighboring anchor c to sensor s’s anchor a from the previous example in Figure
3.4(a). The new scenario is shown in Figure 3.4(b). First, we find the intersections
(points 1 and 2) of two circles: one at a with radius d̂, the other at b with radius r.
We know that the 1–2 portion of the arc closer to point b won’t be the location of
s. Second, we find the intersections (points 3 and 4) of two circles: one at a with
radius d̂, the other at c with radius r. We know that the arc 3–4 closer to point c
won’t be the location of s. Thus we deduce that s must be somewhere on the arc 1–4
further away from b or c. The estimation of s is given in the middle of the arc 1–4. As
we see, this method should provide more accuracy than the one-neighboring-anchor
approach.

4. Computational results. This section explains the simulation method and
the setup for experimenting with the SpaseLoc algorithm, then presents results for
various parameter settings.

For the simulation, a total number of nodes n (including s sensors and m anchors)
is specified in the range 50 to 10000. The positions of these nodes are assigned with
a uniform random distribution on a square region of size r × r where r = 1, or put
on the grid points of a regular topology such as a square or an equilateral triangle
on the same region. MaxAnchorReq = 3 is used in the simulation. The m anchors
are randomly chosen from the given n nodes. We assume all sensors have the same
radio range (radius) for any given test case. Various radio ranges were tested in the
simulation.

Euclidean distances dij = ‖xi − xj‖ are calculated among all sensor pairs (i, j)
for i < j. We then use d̂ij to simulate measured distances, where d̂ij is dij times
a random error simulated by noise factor ∈ [0, 1]. For a given radius ⊆ [0, 1] it is
defined as follows:

• If dij ≤ radius, then d̂ij = dij(1+rn∗noise factor), where rn is normally dis-
tributed with mean zero and variance one. (Any numbers generated outside
(−1, 1) are regenerated.)
In practical networks, depending on the technologies that are being used to
obtain the distance measurements, there may be many factors that contribute
to the noise level. For example, one way to obtain the distance measurement
is to use the received radio signal strength between two sensors. The signal
strength could be affected by media or obstacles in between the two sensors.
In this study, noise factor is a normally distributed random variable with
mean zero and variance one. This model could be replaced by any other
noise model in practice.

• If dij > radius, the bound rij = 1.001 ∗ radius is used in the SDP model.
In the simulation, we define the average estimation error to be 1

s

∑s
i=1 ‖x̄i−xi‖, where

x̄i is from the SDP solution and xi is the ith node’s true position. In a practical setting,
we wouldn’t know the node’s true location xi. Instead, we would use the node’s trace
τi (2.5) to gauge the estimation error.

To convey the distribution of estimation errors and trace, we also give the 95%
quartile.

Factors such as noise level, radio range, and anchor densities can directly impact
localization accuracy. The sensors’ estimated positions are derived directly from the
given distance measurements. If the noise level in these measurements is high, the
estimation accuracy cannot be high. We also need sufficiently large radio range to
achieve accurate positioning, because too small a range could cause many sensors to
be unreachable. Finally, more anchors in the network should help with the estimation

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 17

accuracy because there are more reference points.
In the following subsections, we present simulation results (most results averaged

over 10 runs) to show the accuracy and scalability of the SpaseLoc algorithm. We
observe the impact of various radio ranges, anchor densities, and noise levels on the
accuracy and performance of the algorithm. Computations were performed on a
laptop computer with 2.4GHz CPU and 1GB system memory, using Matlab 6.5 [15]
for SpaseLoc and a Mex interface to DSDP5.0 (Benson, Ye, and Zhang [1]) for the
SDP solutions.

4.1. Effect of inequality constraints in SDP relaxation model. As we
discussed in section 3.7, because of the Y º XT X constraint relaxation, enforcing the
r2
ij and r2

ik inequality constraints in (2.4) is not equivalent to enforcing them in the
distance model (2.2). In order to observe the effectiveness of including these inequality
constraints, we conduct simulations with the following three strategies, according to
the number of times we check for violated inequality constraints and then include
them to obtain new solution.

I2 corresponds to solving the SDP problem with all equalities (and no inequal-
ities), and then adding violated inequality constraints and re-solving one or
more times until all inequalities are satisfied. The final solution is an optimal
solution to problem (2.4).

I1 corresponds to solving the SDP problem with all equalities and then adding
all violated inequality constraints at most once.

I0 corresponds to solving the SDP problem with equality constraints only. (No
inequality constraints are ever added.) The final solution is optimal for prob-
lem (2.4) without the inequality constraints involving r2

ij and r2
ik.

Our experimental results show that the added inequality constraints do not al-
ways provide better positioning accuracy, but greatly increase the execution time. In
this section, we illustrate the inequality constraints’ impact through two simulation
examples: one with no noise but low connectivity; the other with full connectivity
but with noise.

In our first example, we run simulation results on a network of 100 randomly
uniform-distributed sensors with radius 0.2275 and 10 randomly selected anchors.
One of the sensors happens to be connected to only two other nodes. The sensors are
localized with the full SDP and with SpaseLoc, using each of the I2, I1, I0 strategies
in turn. And for SpaseLoc, we also examine each case with or without our geometric
routines. The results are shown in Figure 4.1 and Table 4.1.

Figure 4.1 shows there is a sensor (s) that is connected with only 2 anchors. For
full SDP shown in (a), no violated inequalities are ever found, so full SDP with I2,
I1, or I0 has only one SDP call and always generates the same results. For SpaseLoc
in (b) with I0 and no geometric routine, SDP is called 46 times (with no subsequent
check for violated constraints). It produces the same estimation accuracy as the full
SDP approach but with much improved performance. In (c), SpaseLoc with I2 or
I1 produces the same results, which means violated inequalities are found only once.
Comparing (b) and (c), we see that including violated inequalities does improve the
estimation accuracy. Best of all in (d), SpaseLoc with I0 and our geometric routines
localizes all sensors with virtually no error.

Table 4.1 shows that adding violated inequalities increases execution time slightly
for SpaseLoc.

18 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

Full SDP with I2, I1, or I0

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

SpaseLoc with I0 and no geometric routines

(a) (b)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

SpaseLoc with I2, or I1 and no geometric routines

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

SpaseLoc with I0 and geometric routines

anchor position
true position
estimated position
errors

(c) (d)

Fig. 4.1. Inequality impact on accuracy: 100 nodes, 10 anchors, no noise, radius 0.2275.

Table 4.1
Inequality impact on accuracy and speed: 100 nodes, 10 anchors, no noise, radius 0.2275.

Methods Error 95% Error Time SDP’s
Full SDP with I2, or I1 or I0 1.80e-3 1.74e-10 11.63 1
SpaseLoc with I0 and no geometric routines 1.80e-3 1.09e-08 0.40 46
SpaseLoc with I2 or I1 and no geometric routines 4.01e-4 1.09e-08 0.44 47
SpaseLoc with I0 and geometric routines 1.28e-7 8.78e-09 0.41 45

In our second example, in order to observe the effectiveness of the inequality
constraints under noise conditions, we run simulations for a network of 100 nodes
whose true locations are at the vertices of an equilateral triangle grid. 10 anchors
are positioned along the middle grid-points of each row, and the radius is 0.25. A
noise factor of 0.1 is applied to the distance measurements. The sensors are localized
with either full SDP or SpaseLoc using I2, I1, I0 in turn without geometric routines.
(Although we do not activate the geometric routines in this experiment, they are not
a factor here because the localization error is not caused by low connectivity but by
the noisy measurements.) The results are shown in Figure 4.2 and Table 4.2. Figure
4.2 (b) and (c) correspond to strategy I2 for full SDP and SpaseLoc.

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 19

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Full SDP with no inequalities

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Full SDP with all violated inequalities

(a) (b)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

SpaseLoc with all violated inequalities, no geometric routine

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

x

y

SpaseLoc with no inequalities, no geometric routines

anchor position
true position
estimated position
errors

(c) (d)

Fig. 4.2. Inequality impact on accuracy: 100 nodes, 10 anchors, noise factor 0.1, radius 0.25.

Table 4.2
Inequality impact on accuracy and speed: 100 nodes, 10 anchors, noise factor 0.1, radius 0.25.

Methods Error Time SDP’s
Full SDP with I2 0.1403 134.50 4
Full SDP with I1 0.1292 34.20 2
Full SDP with I0 0.1268 13.87 1
SpaseLoc with I2 0.0154 0.71 48
SpaseLoc with I1 0.0154 0.65 46
SpaseLoc with I0 0.0165 0.42 30

As we can see, adding violated inequalities for full SDP not only increases the
execution times dramatically, but also increases the localization error. For SpaseLoc,
adding violated inequalities improves the estimation accuracy slightly. Note that I2
had 2 more SDP calls but did not improve the accuracy over I1.

In summary, the first experiment shows that when the errors are caused by low
connectivity, SpaseLoc with geometric routines and no inequality constraints (I0) out-
performs SpaseLoc with inequalities (I1 or I2) and all of the full SDP options. Given
this observation, from now on we only use SpaseLoc with geometric routines, which

20 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

means the geometric routines are used instead of SDP to localize sensors connected
to fewer than 3 anchors.

The second experiment indicates that under noise conditions, although adding
violated inequalities does not seem to improve the estimation accuracy for full SDP,
it does improve accuracy for SpaseLoc.

In the subsequent sections, we continue to examine the inequality constraints’
effects on accuracy and speed.

4.2. Accuracy and speed comparison: Full SDP vs SpaseLoc. For very
small networks, the full SDP solution is both accurate and efficient. (This is vital
to the performance of SpaseLoc, as many small subproblems must be solved using
SDP.) However, the performance of the pure SDP approach deteriorates rapidly with
network size.

Table 4.3 shows the localization results using full SDP (a) and using SpaseLoc
(b) for a range of examples with various numbers of nodes whose true locations in
the network are at the vertices of an equilateral triangle grid. Anchors are positioned
along the middle grids of each row. A noise factor of 0.1 is applied to the distance
measurements.

Let’s first look at the impact of I2, I1, and I0 on estimation accuracy. As we can
see from Table 4.3 (a), for full SDP, 5 errors with I2 are bigger than with I1, and 8
errors with I1 are bigger than with I2. Comparing I2 with I0, we see that for each
strategy, 8 errors are bigger than the errors for the other strategy. It appears that
full SDP with added inequalities does not improve the estimation accuracy in this
simulation. For SpaseLoc, I2 and I1 generate almost equivalent estimation accuracy,
I0 has 8 errors that are bigger than with I1, and at the same time, I1 has 7 errors that
are bigger than with I0. It is therefore hard to judge the effectiveness of the added
inequalities.

Now let’s compare full SDP with SpaseLoc. Figures 4.3–4.4 plot results for full
SDP with I0 and SpaseLoc with I0 for two of these examples: 9 and 49 nodes, including
3 and 7 anchors positioned at the grid-point in the middle of each row. As we can
see from these two figures and Table 4.3, for localizing 4 and 9 nodes, full SDP
and SpaseLoc show comparable performance. Beyond that size, the contrast grows
rapidly. For localizing 49 nodes, SpaseLoc is more than 10 times faster than the full
SDP method, with more than 4 times better accuracy. For 400 nodes, SpaseLoc is
about 1000 times faster and 20 times more accurate with strategy I0, about 2000 times
faster with I1, and 6000 times faster with I2, with similar accuracy improvements.
Thus, the full SDP model becomes less effective as problem size increases. In fact, for
problem sizes above 49 nodes, the average estimation error becomes so large that the
computed solution is of little value.

It may seem non-intuitive that SpaseLoc’s greedy approach could produce smaller
errors than the full SDP method. However, all of the SDP problems and subproblems
of the form (2.4) are relaxations of Euclidean models of the form (2.2). It shows
experimentally that the relaxations are tighter in SpaseLoc’s subproblems than in the
single large SDP.

In the following sections, we run more simulations only with SpaseLoc.

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 21

Table 4.3
Accuracy and speed comparison between full SDP and SpaseLoc.

(a) Full SDP

Number Radio Error Time (sec) SDP calls
of nodes range I2 I1 I0 I2 I1 I0 I2 I1 I0

4 2.24 0.0317 0.0317 0.0317 0.01 0.01 0.01 1 1 1
9 1.12 0.0800 0.0800 0.0704 0.05 0.07 0.02 2 2 1

16 0.75 0.0680 0.0703 0.0837 0.35 0.21 0.10 3 2 1
25 0.56 0.1170 0.1170 0.0938 1.26 0.80 0.37 3 2 1
36 0.45 0.0561 0.0618 0.0719 3.02 1.88 0.81 3 2 1
49 0.40 0.1190 0.1190 0.1190 5.42 5.33 2.10 2 2 1
64 0.40 0.0954 0.0919 0.1218 21.60 9.21 3.43 4 2 1
81 0.40 0.0885 0.0894 0.1380 59.05 19.66 7.26 5 2 1

100 0.25 0.1403 0.1292 0.1268 140.26 34.20 13.87 4 2 1
121 0.40 0.1091 0.1088 0.1157 182.74 81.62 23.24 3 2 1
144 0.21 0.1891 0.1899 0.1480 584.23 168.43 37.76 4 2 1
169 0.40 0.1217 0.1141 0.1283 692.12 278.72 71.87 4 2 1
196 0.18 0.1286 0.1275 0.1404 1081.35 461.97 151.52 4 2 1
225 0.40 0.1571 0.1589 0.1568 2408.67 752.75 232.31 5 2 1
256 0.15 0.1370 0.1375 0.1429 3260.33 1089.52 356.86 5 2 1
324 0.14 0.1685 0.1685 0.1685 2620.20 2659.18 962.66 2 2 1
361 0.13 0.1833 0.1842 0.1734 15281.26 5051.05 1391.04 4 2 1
400 0.12 0.1968 0.1970 0.1819 20321.60 5950.34 1662.22 4 2 1

(b) SpaseLoc

Number Radio Error Time (sec) SDP calls
of nodes range I2 I1 I0 I2 I1 I0 I2 I1 I0

4 2.24 0.0317 0.0317 0.0317 0.01 0.01 0.01 1 1 1
9 1.12 0.0766 0.0766 0.0670 0.11 0.32 0.03 3 3 2

16 0.75 0.0599 0.0599 0.0612 0.07 0.07 0.04 7 7 4
25 0.56 0.0495 0.0495 0.0516 0.11 0.11 0.08 10 10 7
36 0.45 0.0250 0.0250 0.0262 0.22 0.21 0.12 17 17 10
49 0.40 0.0283 0.0283 0.0282 0.21 0.21 0.19 15 15 14
64 0.40 0.0193 0.0193 0.0202 0.41 0.38 0.25 28 27 19
81 0.40 0.0186 0.0187 0.0192 0.56 0.53 0.31 41 40 24

100 0.25 0.0154 0.0154 0.0165 0.71 0.65 0.42 48 46 30
121 0.40 0.0152 0.0152 0.0143 0.86 0.82 0.51 58 57 37
144 0.21 0.0133 0.0133 0.0123 0.99 0.93 0.61 65 63 44
169 0.40 0.0108 0.0108 0.0110 1.22 1.16 0.74 81 80 52
196 0.18 0.0113 0.0112 0.0100 1.30 1.24 0.86 85 83 61
225 0.40 0.0099 0.0099 0.0097 1.88 1.68 0.96 126 118 70
256 0.15 0.0075 0.0075 0.0077 2.01 1.79 1.10 136 126 80
324 0.14 0.0075 0.0075 0.0075 1.64 1.64 1.48 102 102 102
361 0.13 0.0073 0.0073 0.0069 2.20 2.16 1.65 139 139 114
400 0.12 0.0070 0.0070 0.0064 3.31 2.98 1.78 217 204 127

22 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Full SDP

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

x

y

SpaseLoc

anchor position
true position
estimated position
errors

Fig. 4.3. 9 nodes on equilateral-triangle grids, 3 anchors, 0.1 noise, radius 1.12.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Full SDP

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

x

y

SpaseLoc

anchor position
true position
estimated position
errors

Fig. 4.4. 49 nodes on equilateral-triangle grids, 7 anchors, 0.1 noise, radius 0.40.

4.3. Scalability. Table 4.4 shows simulation results for 49 to 10000 randomly
uniform-distributed sensors being localized using SpaseLoc with strategies I2, I1, and
I0. The node numbers 49, 100, 225, . . . are squares k2, and the radius is the minimum
value that permits localization on a regular k×k grid. The number of anchors changes
with the number of sensors in order to maintain the same anchor density. Noise is
not included in this simulation.

We find that the three strategies I2, I1, I0 produce the same results. This is
because the inaccuracy of the positioning estimation is purely caused by low con-
nectivity, not by noisy distance measurements. Empirically we see that the program
scales well: almost linearly in the number of nodes in the network. Indeed, the com-
putational complexity of the SpaseLoc algorithm is of order n, the number of sensors
in the network, even though the full SDP approach has much greater complexity, as
we now show.

We know that in the full SDP model (2.4), the number of constraints is O(n2),
and in each of iteration of its interior-point algorithm the SDP solver needs to solve
a sparse linear system of equations whose dimension is the number of constraints.
Figure 4.5 plots the CPU time for strategy I0 from Table 4.3 (a) as well as three
curves of the form time = apn

p for p = 2, 3, 4, where ap is determined by a least-

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 23

Table 4.4
SpaseLoc scalability. Strategies I2, I1, and I0 generate same results.

Nodes Anchors radius sub size Error 95% Error Trace 95% Trace Time SDP’s
49 7 0.3412 2 1.40e-08 9.86e-10 6.28e-09 4.10e-10 0.21 21

100 10 0.2275 2 1.28e-07 8.78e-09 2.68e-08 2.36e-09 0.45 45
225 15 0.1462 3 6.98e-07 7.74e-08 8.75e-08 1.19e-08 0.80 70
529 23 0.0931 3 2.87e-06 9.42e-08 2.68e-07 1.03e-08 1.99 169

1089 33 0.0620 3 2.50e-06 1.65e-07 1.27e-07 1.12e-08 4.12 350
2025 45 0.0451 3 2.70e-05 2.41e-07 2.28e-07 1.41e-08 8.55 658
3969 63 0.0330 3 6.32e-06 3.53e-07 1.30e-07 1.39e-08 19.51 1302
5041 71 0.0292 3 6.70e-06 5.06e-07 1.44e-07 1.80e-08 25.57 1656
6084 78 0.0266 3 6.95e-06 5.47e-07 1.50e-07 1.84e-08 33.38 2000
7056 84 0.0247 4 5.92e-06 6.43e-07 1.35e-07 1.90e-08 41.58 1743
8100 90 0.0230 5 3.92e-06 6.42e-07 8.23e-08 1.78e-08 50.34 1602
9025 95 0.0218 5 8.38e-06 6.74e-07 1.17e-07 1.74e-08 57.34 1788

10000 100 0.0207 5 4.70e-06 7.63e-07 1.12e-07 1.94e-08 65.08 1981

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

1600

1800

2000

n

ti
m

e

Full SDP times

SDP data
Quadratic
Cubic
Quartic

Fig. 4.5. SDP computational complexity

squares fit. It appears that the SDP complexity with strategy I0 lies somewhere
between O(n3) and O(n4).

In SpaseLoc, we partition the full problem into p subproblems of size q or less,
where p × q = n. We generally set q to be much smaller than n, ranging from 2 to
around 10 in most of our simulations. If τ represents the execution time taken by the
full SDP method for a 10-node network, in the worst case the computation time for
SpaseLoc is τ × O(p). Thus, SpaseLoc is really linear in p in theory. Since we can
assume q to be a parameter ranging from 2 to 10, with worst case 2, we know that
O(p) = O(n/q) ≤ O(n/2) = O(n). Now we can see that SpaseLoc’s computation time
is O(n).

In the remaining subsections we choose the middle network size from Table 4.4
(nodes = 3969) to observe the effect of varying radio range, noise factor, and number
of anchors.

24 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

4.4. Radio range impact. With a fixed total number of randomly uniform-
distributed nodes (3969, of which 63 are anchors), Table 4.5 shows the direct impact
of radio range on accuracy and performance. (Noise is not included.) When radius
is reduced to 0.02, the number of unreachable sensors (outliers) reaches 302, which is
unacceptable. Clearly, the simulation could assist sensor network designers in selecting
a radio range to achieve a desired estimation error and algorithm speed.

Strategies I2 and I1 produce the same results. I2, I1, and I0 generate the same
results except for radius of 0.020, 0.028, and 0.030, when I2 and I1 have more SDP
calls than I0. I2 and I1 produce slightly reduced average error for radius of 0.028 and
0.030 but the same 95% error, and obviously, I2 and I1 take more time than I0.

Table 4.5
Radio range impact: nodes = 3969, anchors = 63, no noise.

rad- sub Out- Error 95% Error Time SDP’s
ius size liers I2 I1 I0 I2 I1 I0 I2 I1 I0 I2 I1 I0

0.020 28 302 5.26e-3 5.26e-3 5.26e-3 3.77e-3 3.77e-3 3.77e-3 8.40 7.72 7.30 390 390 388
0.022 13 68 2.93e-3 2.93e-3 2.93e-3 1.49e-3 1.49e-3 1.49e-3 10.92 10.48 9.79 539 539 539
0.024 9 17 1.38e-3 1.38e-3 1.38e-3 2.28e-4 2.28e-4 2.28e-4 12.94 13.02 11.95 684 684 684
0.026 6 7 4.36e-4 4.36e-4 4.36e-4 1.36e-6 1.36e-6 1.36e-6 14.90 14.77 13.49 783 783 783
0.028 3 2 1.20e-4 1.20e-4 1.21e-4 1.01e-6 1.01e-6 1.01e-6 16.31 16.36 14.79 1295 1295 1294
0.030 3 0 3.04e-5 3.04e-5 3.08e-5 6.69e-7 6.69e-7 6.69e-7 18.12 18.15 16.23 1303 1303 1302
0.032 3 0 1.06e-5 1.06e-5 1.06e-5 4.10e-7 4.10e-7 4.10e-7 18.22 18.22 18.22 1302 1302 1302
0.033 3 0 6.32e-6 6.32e-6 6.32e-6 3.53e-7 3.53e-7 3.53e-7 19.51 19.51 19.51 1302 1302 1302

4.5. Noise factor impact. With constant radius (0.033) and the same ran-
domly distributed nodes (3969), Table 4.6 shows the impact of noise conditions on
accuracy and performance. We see that more noise in the network has a direct impact
on estimation accuracy. Simulations of this kind may help designers determine the
measurement noise level that will give an acceptable estimation error.

We also see that strategies I2 and I1 (with added inequality constraints) provide
consistent improvement for both average and 95% error, at the price of increased
execution time.

Table 4.6
Noise factor impact: nodes = 3969, anchors = 63, radius = 0.033, subproblem size = 3.

noise Error 95% Error Time SDP’s
factor I2 I1 I0 I2 I1 I0 I2 I1 I0 I2 I1 I0

0.1 2.57e-3 2.58e-3 3.18e-3 1.99e-3 2.00e-3 2.23e-3 31.93 30.45 22.00 1907 1860 1303
0.2 4.55e-3 4.60e-3 5.60e-3 3.76e-3 3.79e-3 4.40e-3 43.21 37.52 22.61 2520 2310 1303
0.3 6.49e-3 6.60e-3 8.04e-3 5.49e-3 5.58e-3 6.63e-3 52.96 42.43 23.86 2879 2471 1301
0.4 8.25e-3 8.45e-3 1.01e-2 7.06e-3 7.21e-3 8.62e-3 66.46 48.19 26.07 3075 2533 1302
0.5 1.00e-2 1.03e-2 1.23e-2 8.56e-3 8.78e-3 1.07e-2 86.74 56.13 29.45 3278 2571 1302

4.6. Number of anchors impact. With constant radius (0.033) and the same
randomly distributed nodes (3969), Table 4.7 shows the impact of the number of
anchors on accuracy and performance. (Noise is not included.) As we can see, when
the radio range is sufficiently large, the number of anchors in the network has a very
slight impact, improving the estimation accuracy in general, with no obvious impact
on algorithm speed. This analysis is beneficial for designers to avoid the cost of
deploying unnecessary anchors.

Strategies I2 and I1 produce identical results. I2, I1, and I0 achieve exactly the
same 95% error, although when there are fewer than 30 anchors, the added inequality
constraints improve the average error consistently.

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 25

Table 4.7
Number of anchors impact: nodes = 3969, radius = 0.033, no noise, subproblem size = 3.

Anchors Error 95% Error Time SDP’s
I2 I1 I0 I2 I1 I0 I2 I1 I0 I2 I1 I0

5 1.97e-5 1.97e-5 2.09e-5 4.06e-7 4.06e-7 4.06e-7 22.01 22.21 19.05 1320 1320 1319
10 1.98e-5 1.98e-5 2.10e-5 4.10e-7 4.10e-7 4.10e-7 21.77 21.83 19.07 1319 1319 1318
20 2.00e-5 2.00e-5 2.14e-5 3.65e-7 3.65e-7 3.65e-7 22.12 21.80 19.11 1315 1315 1314
30 5.53e-6 5.53e-6 8.24e-6 3.99e-7 3.99e-7 4.01e-7 21.93 21.87 19.30 1314 1314 1313
40 4.15e-6 4.15e-6 4.15e-6 3.62e-7 3.62e-7 3.62e-7 21.97 21.92 19.29 1309 1309 1309
50 3.64e-6 3.64e-6 3.64e-6 3.73e-7 3.73e-7 3.73e-7 22.02 22.23 19.36 1306 1306 1306
60 6.23e-6 6.23e-6 6.23e-6 3.60e-7 3.60e-7 3.60e-7 22.11 22.13 19.49 1303 1303 1303

4.7. Number of anchors impact with noise. With the same radius (0.033)
and the same randomly distributed nodes (3969), Table 4.8 shows the impact of the
number of anchors on accuracy and performance when a noise factor of 0.1 is included
in the simulation. With this radio range (sufficiently large), more anchors give only
slightly better estimation accuracy, with no obvious impact on algorithm speed in
general. Compared with Table 4.7, the presence of noise does add execution time and
cause more errors on average.

Regarding strategies I2, I1 and I0, the inequality constraints provide consistent
improvement for both average and 95% error at the price of increased execution time.
I2 requires more SDP calls than I1, but the improvement in estimation accuracy is
very minimal.

Table 4.8
Number of anchors impact: nodes = 3969, radius = 0.033, noise factor = 0.1, subprob size = 3.

Anchors Error 95% Error Time SDP’s
I2 I1 I0 I2 I1 I0 I2 I1 I0 I2 I1 I0

5 2.71e-3 2.72e-3 3.31e-3 2.13e-3 2.14e-3 2.35e-3 32.61 30.80 21.93 1958 1920 1323
10 2.68e-3 2.68e-3 3.23e-3 2.06e-3 2.07e-3 2.28e-3 32.19 30.61 21.96 1916 1877 1321
20 2.66e-3 2.66e-3 3.27e-3 2.10e-3 2.10e-3 2.34e-3 32.09 30.42 21.93 1923 1881 1318
30 2.58e-3 2.59e-3 3.15e-3 2.01e-3 2.02e-3 2.22e-3 31.84 30.28 21.97 1885 1842 1313
40 2.61e-3 2.62e-3 3.29e-3 2.02e-3 2.03e-3 2.26e-3 32.41 30.51 22.27 1925 1862 1309
50 2.58e-3 2.60e-3 3.09e-3 2.03e-3 2.03e-3 2.21e-3 31.44 30.01 22.37 1856 1822 1307
60 2.56e-3 2.58e-3 3.18e-3 2.01e-3 2.02e-3 2.25e-3 32.04 30.42 21.90 1911 1870 1304

4.8. Anchors impact with noise and lower radius. With the same ran-
domly distributed nodes and the same noise level but lower radius (0.026), Table 4.9
shows the impact of the number of anchors on accuracy and performance. Increased
number of anchors results in slightly better estimation accuracy with no obvious im-
pact on algorithm speed in general. In addition, decreased radio range reduces the
execution time and causes more errors on average compared with Table 4.8. At the
same time we start to see outlier sensors.

The same conclusion can be drawn for I2, I1, and I0 as in section 4.7.

Table 4.9
Number of anchors impact: nodes = 3969, radius = 0.026, noise factor = 0.1, subprob size = 5.

Anchors Out- Error 95% Error Time SDP’s
liers I2 I1 I0 I2 I1 I0 I2 I1 I0 I2 I1 I0

5 3 3.32e-3 3.33e-3 3.96e-3 2.44e-3 2.45e-3 2.81e-3 24.43 23.10 15.28 1437 1399 920
10 2 3.19e-3 3.19e-3 3.77e-3 2.39e-3 2.39e-3 2.75e-3 24.66 23.28 15.24 1470 1434 929
20 9 3.17e-3 3.18e-3 3.81e-3 2.30e-3 2.31e-3 2.66e-3 24.59 23.11 15.29 1452 1408 930
30 4 3.13e-3 3.14e-3 3.65e-3 2.30e-3 2.30e-3 2.61e-3 24.49 23.15 15.33 1429 1401 931
40 2 3.09e-3 3.09e-3 3.65e-3 2.30e-3 2.30e-3 2.63e-3 24.17 22.85 15.22 1389 1355 901
50 2 3.15e-3 3.16e-3 3.59e-3 2.28e-3 2.29e-3 2.56e-3 24.05 22.70 15.16 1397 1360 904
60 7 3.01e-3 3.02e-3 3.51e-3 2.22e-3 2.23e-3 2.51e-3 24.71 23.30 15.33 1429 1385 911

26 H. H. JIN, M. W. CARTER, M. A. SAUNDERS, and Y. YE

5. Summary and extensions. We have shown that SpaseLoc achieves the aims
of accuracy, speed, and scalability with a single processor on very large networks. It
takes full advantage of the recent semidefinite programming (SDP) approach of Biswas
and Ye [2]. The latter has computational complexity O(np), where n is the network
size and p is between 3 and 4, but we use it on multiple tiny subproblems to obtain an
algorithm with essentially linear complexity. On a 2.4GHz laptop with 1GB memory,
SpaseLoc maintains efficiency and provides accurate position estimation for networks
with up to 10000 sensors.

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

Sensors in network

M
ea

n
lo

ca
liz

at
io

n
er

ro
r

SDP errors
SpaseLoc errors

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

Sensors in network

C
P

U
 s

ec
on

ds

SDP time
SpaseLoc time

Fig. 5.1. Accuracy and performance comparison.

Figure 5.1 compares localization results for our SpaseLoc algorithm and the full
SDP approach [2] for various sized networks. The left-hand figure shows a comparison
in terms of estimation accuracy for localizing various sizes of networks when sensors
are placed at the vertices of an equilateral triangle grid with 0.1 noise factor added to
distance measurements (refer to section 4.2). It shows clearly that SpaseLoc provides
much improved positioning accuracy.

The right-hand graph summarizes results in terms of execution time on various
network sizes. Data for the full SDP method is taken from Table 4.3, and data for
SpaseLoc is taken from Table 4.4. The figure confirms near-linear complexity for
SpaseLoc.

In Jin [13], SpaseLoc is used as a building block for more general localization
algorithms. A dynamic version can estimate moving sensors’ locations in real time,
and a 3D version extends its utility further. For clustered and distributed environ-
ments, it is shown how to use SpaseLoc in parallel (on multiple large subproblems) to
obtain essentially linear complexity on clustered networks of unlimited size. Finally, a
preprocessor for SpaseLoc has been developed in [13] to localize sensors in anchorless
networks.

Acknowledgements. We gratefully acknowledge valuable technical advice from
Profs. Henry Wolkowicz, Scott Rogers, Daniel Frances, and two perceptive referees.
Thanks also to Dr. Steve Benson for his expert advice on using the DSDP5.0 solver,
and to Prof. Kenneth Holmström’s for his help in fine-tuning some portions of the
Matlab implementation of SpaseLoc.

SPASELOC: A SCALABLE SENSOR LOCALIZATION ALGORITHM 27

REFERENCES

[1] S. J. Benson, Y. Ye, and X. Zhang. DSDP website, http://www-unix.mcs.anl.gov/˜benson/
or http://www.stanford.edu/˜yyye/Col.html, 1998–2005.

[2] P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor network localiza-
tion, IPSN 2004, Berkeley, CA, April 26–27, 2004.

[3] P. Biswas and Y. Ye. A distributed method for solving semidefinite programs arising from ad
hoc wireless sensor network localization, Working Paper, Depts of EE and MS&E, Stanford
University, CA, October 30, 2003.

[4] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory, SIAM, Philadelphia, 1994.

[5] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor localization for very
small devices, Technical Report 00-729, Computer Science Department, University of
Southern California, CA, April 2000.

[6] D. Culler and W. Hong. Wireless sensor networks. Comm. ACM, Vol. 47, No. 6, June 2004,
pp. 30–33.

[7] L. Doherty, L. El Ghaoui, and K. Pister. Convex position estimation in wireless sensor
networks. Proc. IEEE Infocom 2001, Anchorage, AK, April 2001, pp. 1655–1663.

[8] A. Dragoon. Small wonders. CIO Magazine, January 15, 2005.
[9] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. An

empirical study of epidemic algorithms in large-scale multihop wireless networks. Report
UCLA/CSD-TR-02-0013, Computer Science Department, UCLA, CA, 2002.

[10] G. H. Golub and C. F. Van Loan. Matrix Computations, The Johns Hopkins University
Press, Baltimore, MD, 3rd edition, 1996.

[11] J. Hightower and G. Boriello. Location systems for ubiquitous computing, IEEE Computer,
34(8) (2001), pp. 57–66.

[12] A. Howard, M. J. Mataric, and G. S. Sukhatme. Relaxation on a mesh: a formalism for
generalized localization, in Proc. IEEE/RSJ International Conf. on Intelligent Robots and
Systems (IROS01), 2001, pp. 1055–1060.

[13] H. H. Jin. Scalable Sensor Localization Algorithms for Wireless Sensor Networks, Ph.D. the-
sis, University of Toronto, Toronto, Canada, 2005. (Joint research conducted at Stanford
University.)

[14] M. Lawlor. Small systems, big business, Signal Magazine, January 2005.
[15] Matlab 6.5, Release 13 with Service Pack 1. The MathWorks, Inc., Natick, MA, 2003.
[16] D. Niculescu and B. Nath. Ad hoc positioning system, IEEE GlobeCom, November 2001, pp.

2926–2931.
[17] A. Ricadela. Sensors everywhere, Information Week, January 24, 2005.
[18] C. Savarese, J. Rabaey, and K. Langendoen. Robust positioning algorithm for distributed

ad hoc wireless sensor networks, in USENIX Technical Annual Conf., Monterey, CA, June
2002.

[19] A. Savvides, C.-C. Han, and M. B. Srivastava. Dynamic fine-grained localization in ad
hoc networks of sensors, in ACM/IEEE International Conf. on Mobile Computing and
Networking (MOBICON), July 2001, pp. 166–179.

[20] A. Savvides, H. Park, and M. B. Srivastava. The bits and flops of the n-hop multilateration
primitive for node localization problems, in 1st ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA’02), Atlanta, GA, 2002, ACM Press, pp. 112–
121.

[21] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization from mere connectivity,
MobiHoc 2003, Anapolis, MD, June 2003, ACM Press.

[22] J. F. Sturm. Let SeDuMi seduce you, http://fewcal.kub.nl/sturm/software/sedumi.html, Oc-
tober 2001.

[23] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin.
Habitat monitoring with sensor networks. Communications of the ACM, Vol. 47, No. 6,
June 2004, pp. 34–44.

[24] P. Tseng. SOCP relaxation for nonconvex optimization, presented at ICCOPT 1, RPI, Troy,
NY, August 2–5, 2004.

