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11.1 Outline

• SDP Duality

• SDP Example: Combinatorial Optimization

11.2 SDP Duality

The standard model for the Semi Definite Programming (SDP) is

min cT x

s.t. F (x) = F0 +
m∑

i=1

xiFi º 0,

where each of the Fi’s are symmetric matrices.
We define the Lagrangian:

L(x, Z) = cT x−Tr(ZF (x)),

where the dual variable Z is a psd matrix.
The Lagrangian is constructed so that

max
Zº0

L(x, Z) =

{
cT x if F (x) º 0,
+∞ otherwise.

Thus, we can express p∗ as the solution to an unconstrained problem:

p∗ = min
x

max
Zº0

L(x, Z)

The dual problem is
d∗ = max

Zº0
min

x
L(x, Z).

The minimum over x is simple to obtain:

min
x

L(x, Z) =

{ −TrF0Z if TrFiZ = ci, i = 1, . . . , m,
−∞ otherwise.
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We obtain

d∗ = max
Z

−Tr(F0Z)

s.t. Z º 0

Tr(FiZ) = ci, i = 1, 2, . . .m.

We always have p∗ ≥ d∗. If, in addition, the primal problem is strictly feasible, then equality
holds (strong duality).

11.3 An Example: Combinatorial Optimization

Let W = W T ∈ Rn×n. Consider the problem

p∗ := max
x

xT Wx : x2
i = 1, i = 1, . . . , n. (11.1)

11.3.1 Application: Maximum Cut Problem

The above problem arises in many problems of combinatorial optimization. Consider for
example the problem of maximum-cut of a graph. An undirected graph is given, with weight
ωij ≥ 0 given to edge (i, j), with the convention that ωij = 0 if no edge connects nodes i and
j. The maximum-cut problem is to cut the graph in two (that is, separate the nodes into
two classes) so that the total weight of the cut (the weight of any edge that links two nodes
that are in different classes) is maximized. Denote by x a vector of boolean variables xi that
takes the value 1 if the node i is in class A and −1 if it is in class B. The weight of the cut
corresponding to x is then

1

4

∑
i,j

ωij(1− xixj).

Maximizing the cut corresponds to a problem of the form (11.1), with W set to

Wij = −1

4
ωij, i, j = 1, . . . , n.

11.3.2 Inequality form

Without loss of generality, we can assume W Â 0. Indeed, if this is not the case, we can
always add αI to W to make it p.d.; the objective is simply changed by adding a constant
nα.

When W Â 0, we can express the problem in the equivalent form:

p∗ := max
x

xT Wx : x2
i ≤ 1, i = 1, . . . , n. (11.2)

In this problem, the non-convex constraints are relaxed to convex ones, but the problem is
still not convex, as the objective is convex but has to be maximized (if we had a min instead
of the max in the above, problem (11.2) would be convex, and in fact, trivial).
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Figure 11.1: Geometric Intuition of Combinatorial Optimization

To see why the problem above is equivalent to our original problem, observe that the
maximum of a convex function f over an arbitrary set C is the same as the maximum over
its convex hull. Indeed, for every point z ∈ CoC, there exist points xk ∈ C and a vector
θ ≥ 0,

∑
k θk = 1, such that z =

∑
k θkxk. By convexity of f , we have

f(z) = f(
∑

k

θkxk) ≤
∑

k

θkf(xk) ≤ max
x∈C

f(x),

hence,
max
z∈CoC

f(z) ≤ max
x∈C

f(x),

while the converse inequality holds trivially since C ⊆ CoC.

Geometric intepretation

With the inequality form in place, due to our assumption W Â 0, we can interpret our
problem geometrically, as follows.

For t ≥ 0, define the ellipsoid Et = {x : xT Wx ≤ t}. It turns out that the problem (11.2)
can be restated as

min
x,t

t : Et ⊇ B, (11.3)

where B is the unit ball for the l∞-norm:

B :=
{
x : x2

i ≤ 1, i = 1, . . . , n
}

.

The geometric interpretation is therefore that we are seeking to deflate ellipsoids Et (of
shape determined by W , and size determined by t) so that they contain the unit ball B.
The deflation process stops when the ellipsoids touch at least one of the vertices of B. This
interpretation is displayed in figure 11.1.
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11.3.3 Lagrangian dual

The Lagrangian for problem (11.2) may be expressed as

L(x, λ) = xT Wx +
m∑

i=1

λi(1− x2
i )

As usual, we have
p∗ = max

x
min
λ≥0

L(x, λ)

and
d∗ = min

λ≥0
max

x
L(x, λ)

The dual objective is given by by

g(λ) = max
x

L(x, λ) = max
x

xT (W −D(λ))x + Tr(D(λ))

where D(λ) = diag(λ1, λ2, . . . , λn).

For a given symmetric matrix A, we have

max
x

xT Ax =

{
0 if A ¹ 0
+∞ otherwise.

Hence,

g(λ) =

{
TrD(λ) if W ¹ D(λ)
+∞ otherwise.

Therefore,
d∗ = min

D
TrD : D diagonal, D º W. (11.4)

The above problem is an SDP, which provides an upper bound for our original (non-convex)
problem.

The Lagrangian relaxation above has a geometric interpretation in terms of the formula-
tion (11.3). For a diagonal p.d. matrix D, we define the ellipsoid ED = {x : xT Dx ≤ TrD}.
This ellipsoid is oriented parallel to the axes, and in addition, by construction it contains
the unit ball B, since

xT Dx =
∑

i

Diix
2
i =

∑
i

Dii = TrD

This means that if, instead of solving the (hard) geometric problem (11.3), we instead seek
to solve

min
t

t : Et ⊇ E(D), (11.5)

we will obtain an upper bound on the original problem.
The condition Et ⊇ E(D) is equivalent to

t ≥ max
x
{xT Wx : xT Dx ≤ TrD} = (TrD)λmax(D

−1/2WD−1/2),

11-4



EE 227A Lecture 11 — October 3 Fall 2006

where λmax denotes the largest eigenvalue. In turn, the above is the same as tD º (TrD)W .
By homogeneity with respect to D in problem (11.5), we can assume t = TrD, hence the
latter problem becomes

min
t,D

t : D diagonal, t = TrD, D º W,

which is exactly the same as the dual (11.4).
Geometrically, the SDP relaxation is based on inserting and object simple to handle (an

ellipsoid parallel to the axes) between the ball B and the ellipsoid Et.

11.3.4 The bidual

Taking the dual a second time will not, in general, result in the original problem, since the
latter is not convex.

In this case, taking the dual of the dual gives us another problem, which is equivalent to
the dual. To obtain the bidual, we express the dual in an unconstrained way, as usual:

d∗ = min
D diagonal

max
Xº0

L(D,X)

where L(D, X) := Tr(D) + Tr(X(W −D)). The bidual is

p∗∗ := max
Xº0

min
D diagonal

L(D, X).

Note that the problem of computing d∗ is convex, and satisfies Slater’s condition (strict
feasibility), hence strong duality holds:

p∗∗ = d∗.

The (bi-)dual function is here

g(X) := min
D diagonal

L(D,X) =

{
TrWX if Xii = 1, i = 1, . . . , n,
−∞ otherwise.

The bidual has the expression:

p∗∗ = d∗ = max
X

TrWX : X º 0, Xii = 1, i = 1, . . . , n. (11.6)

We can see that analogy between the primal problem p∗ and the dual d∗ as obtained in (11.6)
by rewriting the primal as a rank-constrained problem:

p∗ = max
X

TrWX : X º 0, Xii = 1, i = 1, . . . , n, RankX = 1. (11.7)

This is obtained by setting X = xxT . Relaxing (that is, ignoring) the rank constraint in the
above leads directly to the upper bound (11.6).

It has been shown that the quality of the approximation obtained by the SDP is inde-
pendent of problem size. Precisely,

2

π
d∗ ≤ p∗ ≤ d∗.

In fact, one can find in polynomial time, an x ∈ {−1, +1}n such that xT Wx ≥ (2/π)d∗.
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