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1. The problem 

In standard form the linear programming problem can be formulated as follows. 

Consider (n+m) real variables 

Xi, x<?, ..., xn+m 
... (l.l) 

satisfying m linearly independent linear equations. 

The number of degrees of freedom is consequently n and it is always possible at least 

in one way to express all the variables in terms of a set of n basis variables, linearly indepen 

dent amongst themselves. Let 

be such a basis set. The equations may then be written in the standard form 

xj 
= 

&jo + s hkxk (j 
= 1> 2,..., n+m) ... (1.3) 

k-u, v.. AJO 

where the bj0 and bjk are constants. Obviously 

i?k =j 
bjQ 

= 0 and bjk 
= 

otherwise t: 
when j 

= 
u, v ... w. ... 

(1.4) 

If the equations (1.3) are taken for all j 
= 1,2,...,n+m, we get a system of equations 

that are linearly dependent, but if we take (1.3) only for1 j 
? 1,2 ...)u, v ... w(...n+m, 

we get a system of equations that are linearly independent. More precisely : If the 

coefficients bj0 and bjk have any values whatsoever, m equations of the form (1.3) for 

j 
= 

I, 2...) u, v...w(...n-\-m are always linearly independent. 

We consider a linear preference function 

f 
= 

P0+PwV*+Pvtv+ 
? +Puflu> ? (L5) 

where the pk (k 
= 0, u, v ... w) are any given constants positive, negative or zero. 

It does not restrict generality if we assume that only basis variables occur in (1.5). 

Indeed, any linear function of all the n+m variables will assume the form (1.5) when all 

the variables are expressed in terms of the basis variables by means of (1.3). 

The linear programming problem is the problem of determining that one or those 

sets of values of the variables that will maximize (1.5) subject to two sets of conditions. 

In the first place the equations (1.3), and in the second place the non-negativity conditions 

expressed by the inequalities 

xj > 0 (j 
= 1,2,..., n+m). ... (1.6) 

i\Ve use the inverted parenthesis )...( to denote "exclusion of". 
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A great variety of problems can be reduced to this standard form. If there should 

be one of the variables that is not subject to the non-negativity condition, this variable could 

be eliminated and the problem reduced to one with the same number of degrees of freedom 

but one equation and one variable less. A problem containing any linear inequality, that 

is the condition that a given linear function of the variables shall be non-negative, can be 

reduced to the above standard form simply by putting the linear function in question equal 
to a new variable that is entered in the list (1.1). 

The inequalities (1.6) introduce discontinuities in the boundary conditions, and this 

makes the method of Lagrange multipliers, which serves so well in many maximum problems 
with side conditions, inapplicable here. 

The neoclassical method for handling the linear problem is the simplex method 

due to George B. Dantzig. At the Oslo University Institute of Economics, considerable 

effort has been made to handle the problem in a different way in the hope of finding one or 

some methods that may be more advantageous in cases with a great number of variables, 

particularly in problems of the type occurring in macroeconomic planning.1 

It is an easy form of mental exercise to imagine iteration processes of one form or 

another which may look nice on paper, but in most cases such methods do not converge, 
or if they do converge in principle, the convergency will in general be so slow as to make the 

method entirely useless in practice. At the Oslo Institute we have accumulated a consider 

able junk-pile of such methods. Some of the methods we have used, do, however, contain 

features that may make them useful under certain circumstances. Some aspects of methods 

which have actually been used successfully on medium sized examples, are described in a* 

number of mimeographed memoranda from the Oslo Institute of which the following might 
be mentioned here.2 

21 June 1954 : Methods of solving linear programming problems. Synopsis of a lecture 

to be given at the International Seminar on Input-Output Analysis, 
Varenna (Lake Como) June?July 1954. 

18 October 1954 : Principles of linear programming. With particular reference to the double 

gradient form of the logarithmic potential method. 

29 March 1955 : A labour saving method of performing freedom truncations in linear 

programming. Part I. 

13 May 1955 : The logarithmic potential method of convex programming. With particular 

application to the dynamics of planning for national development. Synop 
sis of a communication to be presented at the international colloquium of 

econometrics in Paris 23?28 May 1955. 

The present memorandum describes?without proofs?a method which we have 

recently applied quite successfully to numerical examples of medium size. It may be called 

the multiplex method as distinguished from the simplex method. 

It should always be remembered that any mathematical method and particularly 
methods in linear programming must be judged with reference to the type of computing 

i In a national planning problem of some size, one may easily run into several hundred variables 

and perhaps a hundred or more degrees of freedom. 

2 
Subsequently a great number of other memoranda have been produced. I also discussed 

tha problem in my lectures ?t the Institute for Social Studies, The Hague, in the Spring of 1957. 

330 



THE MULTIPLEX METHOD FOR LINEAR PROGRAMMING 

machinery available. In all our work we have been guided by the possibilities and desi 

derata in a situation where the available equipment consists of desk machines or IBM 602A 

(or its electronic improvement 626, or similar types of calculating punches) or electronic 

automatic computors with a small high speed memory, as for instance the Oslo machine 

NUSSE (whose name academically stands for "Norwegian Universal etc.", but is better 

understood when referred to the meaning of the Norwegian word nusse which can appropriately 
be translated as "small cute girl"). Our outlook may perhaps be changed when we get 
used to the super modern, high capacity electronic computor that will be available here 

from the middle of next year. 

2. The initial point 

Start from a point in the interior of the admissible region, that is such a combination 

of the values of the basis variables (1.2) as will make all the (n+m) variables (1.1) effectively 

positive (not zero). If necessary, use the S(X) method of Section 6 in ''Principles of linear 

programming" for finding such a point.1 , 

From the initial point move by some method in a direction which is influenced by 
the direction of the preference vector, i.e. the vector with components pk (k 

? 
u9v ... 

w). 

A highly effective way of determining the direction of such a movement and at the same time 

taking account of the boundary conditions is the double gradient form of the logarithmic 

potential method, but this does involve a higher computational cost than simply to move, 

say, in the preference direction. At present I cannot say definitely which one of the alter 

natives for the initial step will be computationally most profitable when account is taken 

of what may happen in the subsequent steps. It is, of coursa, always tempting to start in 

the cheapest way. 

The computations involved in a movement in the direction determined by the double 

gradient form of the logarithmic potential method, are described in detail in ''Principles of 

linear programming" (in particular (12.29)?(12.31) and ? 13). A movement in the 

preference direction is simply determined by putting 

s* = 
xl+xVk (k = u9v ...w) ... (2.1) 

xk being the coordinates of the initial point, and letting ? increase from 0 through positive 
values. 

i The S(\) method is well adapted for mechanical computation. It is in essence a method of 

finding solutions to a set of linear inequalities. I suspect that from the procedures involved in the S(\) 
method we can also extract a necessary and sufficient criteria for the case where an admissible region with 

a positive content exists, but I have not had an opportunity to follow up this idea. One of my associates 

in a working team at the Indian Statistical Institute in the winter of 1954-55 suggested that when the 

linear programming problem is transformed into a problem of solving a set of linear inequalities (which 
is possible by a theorem of J. von Neumann), we may solve the whole linear programming problem by 
the S{\) method. I do not know how fruitful this idea is. I suspect it will depend on how large the 

number of degrees of freedom in the optimum point is. The pointset that in the original formulation was 

the optimum point set (possibly only a single point) will appear as the admissible region in the transformed 

problem. In order to apply the S(\) method to (1.6) we do not need to know beforehand the dimensionality 
of the pointset that actually satisfies (1.6). 
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The change in the other variables in the course of this movement is determined by 

x^xV+Adj (j =1,2,..., n+m) ... (2.2) 

where 

i?i is 

dj= S bjkpk (j =1,2,..., n+m). ... (2.3) 
Je=UyV...w 

The largest value permissible for ? when we shall stay within the admissible region 

... (2.4) 

where 

Amax = Min ?j 

J 
-d> 

A?>0 

dj < 0, (2.5) 

The value (2.4) of ? determines the breaking-out-point where we must stop. 

We consider also the values of Aj that are positive larger than Amax, and come closest to 

Amax- This determines the priority order of what may be called the optimum candidates 

determined by the breaking-out-point considered. If j 
= a is the value of j that furnishes 

the minimum (2.4), j 
= 

? the value that gives the next to smallest positive value of A, etc. 

...up to some value j 
= y, we say that the list a, ?...y is the list of optimum candidates cor 

responding to the breaking-out-point considered. The variable xa may be called the leading 
canditate. Some of the candidates may give the same value of A. For instance it may 

happen that A? = 
A^ (in the double gradient form this is always so) which expresses the fact 

that in the breaking-out-point we hit simultaneously two of the boundary planes.2 

3. The number op candidates to consider 

At each breaking-out-point which has been reached through a movement whose 

direction is to a large extent determined by (local) considerations on the maximization of the 

preference function, we pick a certain number of the optimum candidates and make provi 

sionally the guess that there exists at least one optimum point where these candidates are zero. 

Much depends on a happy choice of this number. If we make it too large, we run a great risk 

of making a wrong guess and will then have to face the possibility that to correct the mis 

take we must make additional computations at the end of the work when it turns out that the 

point we have reached is not optimal (compare ? 9 below). And if we make the number 

of variables included in the guess at each step too small, we shall proceed through many cal 

culations that are in fact unnecessary. We can in principle never be completely protected 

against making a wrong guess. Even a leading candidate may finally turn out to be different 

from zero in the optimum point. But if we are willing to run some risk of having to make 

correctional computations in the end, we may very often make short cuts that can save us 

a good deal of work. 

i An indication written after a vertical bar expresses the condition imposed on the suffix over 

which a maximization or minimization shall take place. 

2 The idea of using the values of the \ for ranging the candiates in a priority order was suggested 

some years ago by Mrs. Inger Haugstad, Chief computor in the University Institute of Economics, Oslo, 
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Since we have an exact necessary and sufficient criterion by which to decide whether 
a given point is optimal or not, and since we have a method of proceeding to correctional 

computations at the end if the optimality criterion should turn out in the negative, it is a 

sound procedure to work with guesses on the optimum candidates. 

Empirically we have found that it pays fairly well to include at each round additional 

candidates equal in number to the square root of the number of degrees of freedom with which 
we arrived in the breaking-out-point in question. 

Since this rule will usually give fractional numbers, we use a standard procedure for 

the rounding off to integers. 

We first compute by the following recurrence formulae 

Nt 
= 

Nt_x-VNt~-i (3.1) 

the number of degrees of freedom Nt which should theoretically be retained in round 

number t9 the initial value being N0 
? n. 

These numbers Nt are then rounded off to the nearest integer 

nt = nearest integer to Nt (3.2) 

and nt_x?nt is taken as the number of new candidates to include in our optimality guess 
before we start on round number .. 

Or otherwise expressed : When going from round number . ?1 to round number 

t, we reduce the number of degrees of freedom by 

nt_x?nt. ... 
(3.3) 

For instance, if n = 12, we get the scheme indicated in Table (3.4). 

TABLE (3.4). EXAMPLE OF COMPUTATIONS (3.1)?(3.3) 

round number 

0 

1 

2 

3 

4 

5 

solution of 

(3.1) Nt 

12.0000 

8.5359 

5.6143 

3.2448 

1.4435 

0.2421 

number of j number of 

degrees of i variables to 
freedom ; be put equal 

with which jto zero when 
this round i starting on 

is to be i this round 

performed i 

nt nt?t-i 

12 

9 

6 

3 

1 

0 

Towards the end of the work when the rule indicates that two variables shall be put equal to zero, 

we only take one (the leading candidate), because it will involve no more work to use (4.2) twice than to use 

first (5.2) (to bring one variable to zero) and then (4.2). 
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4. A preference increasing movement 

Consider a point where v( < n) variables 

Xa,X?,...,Xy 
... (4.1) 

?-basis variables or dependent vriables ? are equal to zero, all the other variables being 

effectively positive. That is to say we are in a point on the boundary of the admissible region. 

Consider a movement from this point in the direction 

dt 
= 

Pk+Ba bak+B?b?k+...+Bybyk (k 
= u,v...w) ... (4.2) 

where the B8(s 
= a, ?...y)?independent of k?are the solutions of the system of linear equa 

tions 

M0S+BaMa8+B?M?8 + ...+ByMy8 
= 0 (s 

= 
oc,?...y) 

where Mri brhbi 
k=u, v...u 

}rku$k 

/r = 
0,oc,?...y\ 

\s 
= 

0,<x,?...yj 

... (4.3) 

... (4.4) 

We assume that the boundary vectors bak, b?k...byk are linearly independent so that (4.3) has 

a unique solution. The B are called the regression coefficients. 

With the direction numbers (4.2) we perform a movement 

xk = 
x\+Xdk (k 

= u, V...W) ... (4.5) 

xk being the initial values and A being a parameter that increases from 0 through positive 
values. During this movement all the variables change according to 

where 

Xj 
= 

Xj+?dj 

dj 
= s bjkdk 

k=u, v...w 

(j= 1,2, ...,n+m) 

(j= 1,2, ...,n+m). 

... (4.6) 

... (4.7) 

The preference function will also change. More precisely, for any positive value of A it will 

have increased as compared to its initial value. We have indeed 

f-P = X S pkdk = ?\^M Mt M' 

M* 
Mt 

M0 
Ma 

M0 
Ma? 

M?0 M?a M?? 

y? 
k=u, v... M?? M. ?e 

Mea M?? 

Mya My? 

M? 
Ma 
M, ?y 

Jf-v 

Mtt 
M? 

M^ 

(4.8) 

By (4.4) the expression to the right in (4.8) is the ratio between two moment matrices 

and hence positive definite. 
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All the variables xa,x?, ..., xy on the contrary will remain unchanged during the ? 

variation because by (4.2) and (4.3) 

xs?x?s = X 2 b8hdk 
A*=-M, V...W 

= 
X(M08+BaMa8+B?M?g + ...+ByMy8) {s 

= 
a,?...y). ... (4.9) 

The parenthesis to the right in (4.9) is zero by (4.3). 

Since the rest of the variables are all effectively positive, we can let ? increase a cer 

tain non-zero amount before we hit any boundary plane. Its maximum value will be deter 

mined in exactly the same way as in (2.4)?(2.5) and we will consequently have a new 

determination of some basis candidates, their number being determined as explained in ? 3. 

This guess being made, we try to move to a new point where these new variables are 

zero as well as those that were previously brought to zero. In doing so we retain the same 

basis form of the equations, that is to say we retain the same basis variables (1.2), the reduc 

tion in the number of degrees of freedom being produced by conditions imposed on the 

direction of the movement. This is done as follows. 

5. A VARIABLE-ANNIHILATING MOVEMENT 

Suppose that we are in any point xk in the admissible region and want to move 

towards a direction point where the v variables xa9 x?i ...9xy have reached prescribed (posi 

tive, negative or zero) increments 

Aza, Ax?9 ..., ?xy 
... 

(5.1) 

the direction of the movement being further specified by the requirement that it shall have 

components of the form 

4 
= 

Cabak+C? b?k+...+Cybyk (k 
= u, v...w) ... (5.2) 

where Ca9C?, ..., Cy 
are constants independent of k. 

The values of these v constants will be determined by the requirement that the v 

increments (5.1) shall have prescribed values. Indeed the coefficients C must then be 

solutions of the system 

CaMas+C?M + ...+CyMy8 
= Ax$ (s 

= 
a,?,...,y). ... (5.3) 

We assume that the matrix in the left member of (5.3) is non-singular so that the 

system has a unique solution. 

Inserting the C values thus obtained into (5.2), we get a set of well defined direction 

numbers, and can proceed to a movement of the type indicated by (4.5)?(4.7). In particular 
we may choose the increments (5.1) as 

A*f=- -ai (s 
= 

a,?}...9y) 
... 

(5.4) 

in which case all the v variables xa,x?, ...,xy will be zero in the direction point. 

As ? increases from 0 to 1, we pass from the initial point to the direction point where 

the prescribed increments (5.1) are reached. Two cases are now to be distinguished : We 

may be able to proceed unhindered up to the point ? = 1 where the increments (5.1) are rea 

lized, or we may en route be stopped by the boundary plane of a variable which is not in 

the set xa9 x?, ..., xy. 

335 



Vol. 18 ] SANKHY? : THE INDIAN JOURNAL OF STATISTICS [ Parts 3 & 4 

If the set xa, X?, ..., xy has been successfully selected, we will as a rule have the first 

alternative. In this case all is well, and we can proceed from the point thus obtained by using 

(4.2)?(4.3). Computationally this is now an extremely simple matter if the system (5.3) 

has been solved by the Gaussian elimination-algorithm.1 The computation of the Bs 

(s = a, ? ... y) that satisfies (4.3) will then only be a matter of one more back solution. 

In the other case we will meet (at least) one other boundary plane before reaching 

A= 1. In this case we start from the point reached and use (4.2) with a set xa,X?, ..., Xy 

that contains all the variables that are zero in this point. This is the variable which just 

stopped us together with those variables that remain zero during the movement up to the 

point where we now are. In the breaking-out-point to which this will lead us, a new selec 

tion of candidates can be made according to the standard rules of ? 3 and ? 4. Since 

the last movement was made by (4.2)?not by (5.2)?we will be justified in counting it as a 

round which means that a correspondingly larger number of variables will be included in the 

optimum group in the next round. In any case should the total net number of degrees of 

freedom nt to be used in round number t be taken according to the rule of ? 3. 

6. The accuracy of the computations 

As we 
proceed in the work the number of variables entering into the set xa, X?, ..., xy 

will increase. This means that the order of the system of linear equations?that is (4.3) 

or (5.3)?will increase. Since we do not need to consider an entirely new system at each 

round, but only have to add a certain number of rows and columns, the computational cost 

involved will not be prohibitive if the Gaussian algorithm is used. But some attention must 

be paid to the accuracy of the results. In general one will need all the more decimal-places 

the higher the system. One may find for instance that the variables that should in principle 

be maintained exactly equal to zero under the A variation, do not arrive in the point A = 1 

with a value which is sufficiently close to zero. This is annoying for the subsequent work. 

The simplest way to handle this situation is to start by computing the moments (4.4) with 

great accuracy and in the subsequent work to make it a standard procedure at each step 

to improve the Gaussian algorithm values obtained for the Bs or Cs by at least one round of 

an iteration process. 

Letting Bs and Cs be the values obtained through the Gaussian algorithm, the 

improved values B's and C8 are then computed by 

~-M0S- 2 B'rMr8- S BrMrt 

B's =-^-^? 
(s = 

x,?...y) 
... (6.1) 

&xs? S C'rMn? E CrMrs 

CZ=-^-TT^-(* 
= 

*,/?... y). 
... (6.2) 

i And the elimination is performed in such a way as to store the triangular matrix obtained. This 

is always the case if the computations are done on desk machines, but it is not necessarily so when elec 

tronic automatic computors are used. 
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To perform one such iteration round is equivalent to testing the solutions by inserting 
in the original equations. The iteration is therefore also a reliable check. If judged neces 

sary by the change produced from the uncorrected to the corrected values, one more iteration 

round may be performed. The computational cost involved in one iteration round is of the 

same order as that involved in the back solution by which B8 or C8 is obtained. 

7. Sufficient criteria for optimality 

In the work as here outlined each round will consist of two movements : First one 

of type (5.2) through which certain additional variables are brought down to zero, and next 

one of type (4.2) where all previous 0-variables are maintained as 0-variables and (usually) 
one more 0-variable is introduced, and at the same time a selection is made of certain vari 

ables which one will in the next step try to bring down to zero. 

If the Gaussian elimination algorithm is used, each round will involve adding to the 

previous matrix as many rows and columns as there are variables which now are to be forced 

down to zero, elimination-treating these added rows and columns and then performing two 

back solutions of the complete system. 

When (5.2) is used, the fact that the computation of the solution of (5.3) for the C8 

(s 
= oc, ? ... y) in the case where not all Axs are zero, proceeds regularly and does not by (5.2) 

give 
a set of dk (k 

= u, v ... 
w) that are all zero, assures us that the variables xa9 x?i...9xy are 

not linearly dependent. 

When we reach a stage where all the dk defined by (4.2) turn out to be zero for k = u9 

v ... w, we must consider the possibility that we have reached a point in the optimum region. 

If all the coefficients Ba, B?,...,By entering into the dk in question are non-negative, 
we can say immediately that we have actually reached an optimum point and that there 

exists a (n?v) dimensional region of such points, v being the number of variables in the set 

**_? %?> ? %y 

This is seen simply by noticing that if all the dk defined by (4.2) are zero? a fact that 

only expresses a feature of the boundary vectors b8k and the preference vector pk and has 

nothing to do with the particular point, i.e. the particular values of xU9 xv, ..., xW9 which we 

may happen to consider ? we get by equating (4.2) to zero 

f = p0+ S PkXh = Po- s s -BA*ak=_?o? S Bs(Xs-b80) 
k=u,v...w * = ?,/?....7 k~u,v...w s=a ?...y 

that is f=\po+ S B8b80]- 2 B8x8. ... (7.1) 
L s=a,?...y J s = a, 0...Y 

Since this formula holds good for any values of the basis variables inside or outside 

the admissible region or on its boundary, we can immediately conclude that if all the co 

efficients B8(s 
= a9 ? ... y) are non-negative, we can nowhere in the admissible region find 

a point which produces a value of/ larger than the value obtained by putting 

xa 
? 

x? 
= ... -= 

xy 
= 0. (7.2) 

ilf N of the coefficients B are actually zero, there even exists an (n 
? 

v+N) dimensional region 

of such points. The corresponding _V conditions in (7.2) can then be dropped. 
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This optimum value for the preference function is 

fopt 
= 

_?o+ s ?Ao- (7-3) 
-=a, ?...y 

If the computation of the coefficients Ba,B?, ..., By has proceeded regularly, the 

boundary vectors bak, b?k, ..., byk cannot be linearly dependent. Hence the linear manifold 

defined by (7.2) must be of dimensionality n?v where v is the number of variables in 

(7.2). That is to say there exists (at least) one set of n?v of the variables which are linearly 

independent and will, as they vary within the confines defined by the admissible region, 

generate a linear manifold where every point is optimal, i.e. produces the preference value 

(7.3). 

If all the dk defined by (4.2) are zero for k = u, v ... w, but one or more of the coeffi 

cients B are negative, we may have one or the other of the following two situations : 

(I) We are actually in an optimal point, and if so, it must be possible to transform 

the expression (7.1) in such a way as to obtain a linear form with only non-negative co 

efficients B. This is the case where the optimum region is multiply determined, that is there 

exists at least one other set of v variables such that the condition that these v variables shall 

be zero, is equivalent to the condition (7.2).1 

(II) We are not in an optimal point. One or more of our guesses of optimum 
candidates must then have been wrong, and in order to proceed towards the optimum point, 

we must again let loose one or more of the variables we have tentatively fixed at zero value. 

Case (II) is discussed in ? 9. In the present section we shall consider case (I). A 

few simple graphical illustrations will indicate the possiblities and what can be done in 

order to bring the expression (7.1) over into a form with only non-negative coefficients B so 

that a sufficient criterion for optimality emerges. 

Fig. (7.4) illustrates a case where the admissible region is two-dimensional (being 

generated by the two basis variables xu, xv). The optimum region is the point A(v = n ? 
2). 

The two straight lines that pass through A and actually form the boundary in the vicinity of 

A, are the two lines numbers (1) and (4), representing the conditions xx = 
x? 

= 0. There are, 

however, also two other lines passing through A, namely the lines numbers (2) and (3), repre 

senting the conditions x2 = 0 and x3 = 0. These two lines are situated entirely outside of the 

admissible region?with the exception of the point A ? and the solution of the linear pro 

gramming problem would have remained completely unchanged if one of or both the lines (2) 
and (3) had been omitted. They only add an unnecessary and undesirable complication 
in the picture. The optimum point can now be determined by putting any two of the four 

variables xv x2, x%, x? equal to zero. This might not be discovered until we get towards the 

end of the calculations and this is what causes the undesirable complication. 

If the two lines numbers (2) and (3) had not been present, the situation in fig. (7.4) 
would have been very simple. The necessary and sufficient condition for the point A to be an 

optimum point, would then obviously have been that the preference vector pk had been 

situated in the convex angle (the two-dimensional case of a convex polyhedral cone) between 

the two negative boundary vectors (?blk) and (~b^k). They are denoted 1 and 4 and drawn 

iWhen a region (in the special case v=n, a point) is multiply determined, it is customary to speak 
of "degeneracy". This term is not a happy one. It seems more appropriate and suggestive to speak of 

"a multiply determined" region. 
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X 
u 

Fig. 7.4 

ADMISSIBLE REGION 

Fig. 7.5 
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as light arrows in fig. (7.4). This is the same as to say that the preference vector could 

have been expressed as a linear form in the two negative boundary vectors and with non 

negative coefficients, i.e. as a linear form in the boundary vectors themselves, blk and b^. 
and with non-positive coefficients. It is easily seen by a graphical inspection that this is the 

necessary and sufficient condition that there are no points that fall on the desired side of the 

preference plane through A and at the same time in the admissible region. 

As the situation actually is in fig. (7.4) the preference vector may in 
( 

<* 
j 

=6 ways 

be expressed as a linear form in two boundary vectors bakf b?k(a -^ ?)9 but not all these ways 
will give both coefficients of the boundary vectors non-positive. For instance, if we use the set 

3, 4 the coefficient of bsk will be negative but that of bAk positive. If we use the set 2, 3 both 

coefficients will be negative, so that 2, 3 will actually furnish a sufficient criterion for opti 

mality. Geometrically : If the preference vector pk is situated in the angle 2, 3 it must 

a fortiori be situated in the angle 1,4. If we use the set 1,4 we will also get a sufficient cri 

terion. This latter set-being characterized by the fact that all the boundary vectors in A 

are included in the convex angle (1, 4) ?has a further property not shared by any of the 

other sets, namely of furnishing a necessary criterion for optimality. 

The above considerations show that if we are in an optimum point and this point 
is multiply determined, it will in general be possible to transform the expression for the 

preference in different ways to a linear function where all the coefficients of the variables are 

non-negative. Any of these transformations will give a sufficient criterion for optimality. 
The special set 1, 4 has the property of furnishing the weakest possible of the sufficient criteria 

?or optimality. The preference vector in fig. (7.4) may indeed change to any direction between 

1 and 4 without depriving the point A of its character of optimum point. The set of boun 

dary vectors which has this property, we may call the minimum set. And the same designa 
tion may be used on the corresponding set of variables, that is xx and x?. 

Finally fig. (7.4) suggests that if we express the preference vector in terms of a set 

(d, S) which is not a minimum set and by so doing we get a positive coefficient of one of the 

vectors, say b?k and a negative coefficient for the other?in fig. (7.4) for instance d =4, 8 = 3 

?and we want to retain only minimum vectors, that is vectors permitting to express the 

optimum condition in its weakest form, it is not the variable x$ whose vector b?k got a posi 
tive coefficient, that should be eliminated, but we should eliminate the variable which is such 

that the inclusion of its vector caused some coefficient or coefficients to become positive. For 

instance in fig. (7.4) if pk is expressed in terms of b4k and b^ we will find that b4k gets a posi 
tive and bzk a negative coefficient. In this case it is #3 that should be eliminated, not #4, 
if we want to work towards a minimum set. 

The situation is analogous if we have an optimum region of higher dimensionality. 

Fig. (7.5) illustrates the case v = 2, n = 3. There are four planes, any two of which define 

the optimum region, which is now one-dimensional, namely the segment of straight 
line BC. 

The two planes (1) and (4) (shaded in fig. (7.5)) form the minimum set, while (2) and 

(3) only introduce unnecessary and undesired complications. Any two of the four planes 
will define the straight line that carries the segment BC which forms the optimal region. 
The vectors b^fi^, bzk9 b^ that are normal to these four planes, will?when translated to 

a common point on BC?be in a plane that is perpendicular to BC9 and in this plane the situa 

tion is similar to the one exhibited around the point A in fig. (7.4). 
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This suggests the following heuristic rules for handling the case where we have reached 

a point which we suspect of being optimal and multiply determined. 

Suppose that a movement is made by (4.2) and that the breaking out point to which 

this leads is determined by the fact that a certain number o> of the variables, namely 

x9 ...x$ (<f>... ijr being 
__ 

affixes) 
... (7.6) 

become zero 
simultaneously. 

Also suppose that a further movement of the form (4.2) but now with a subset 

X? ... xd (6 ... S being fi affixes amongst those in (7.6)) ... (7.7) 

included, ie., 

4 = 
Pk+BJ>ak+...+Bybyk+B0bek+...+B?b?k (k = u,v ... w) ... (7.8) 

makes all the dk for k = u, v ... w equal to zero, but at least one of the B negative. 

Regardless of the signs of the B, we know that if all the dk are zero, the preference 

function can be written in the form 

f=\p0+ 
S 

BJ>?] 
- S Bsxs. ... (7.9) 

L s=?,#...7,0...- J *=?, ? ...y, 0...? 

In the case now considered at least one B is negative. 

We want to replace one or more of the variables numbers a, ? ... y, d ... d in (7.9) 

by an equal number of variables chosen among a, ?...y,$ ... i?r (compare (7.6) ) in such a 

way as to obtain an expression for the preference function with only non-negative 

coefficients JE?. 

In principle this can be done by testing all possible (VJ_ J 
combinations of 

(v+fi) variables picked in the set consisting of the v variables numbers a, ? ... y and the 

variables (7.6). Since this may involve a tedious or even prohibitive work if done in a 

random order, we try to test the most promising combinations first. 

For instance if one of the v variables number a, ? ... y is such that in the course of 

the previous work its inclusion produced one or more negative coefficients B, we may try to 

take this variable out. And then in a systematic way test one by one the I w__ _ i 
) 

alterna 

tives obtained by adding (ji+l) of the variables (7.6). 

In so doing we need to express some of the (v+o.) variables in terms of (v+fi) of them. 

In the multiply determined optimum region now considered, we can assume that any 

(v+fi+l) boundary vectors from the set of (v+w) boundary vectors numbers cc,?...y, 

<f> ... i?r, are linearly dependent. For instance let numbers a, ? ... y, d ... S, k be linearly 

dependent. That is we have 

S D8b8k =0 for all k = u,v... w ... (7.10) 
*=?, ? ...7, es, k 

where the coefficients D are independent of k and not all zero. 

They can be determined from the non-homogeneous system of order (v+p) 

S DrMr8 =0 (s 
= 

a,?...y,6...d) 
... 

(7.11) 
*-=?, ?...y,0...?, k 

with the convention DK = 1. ... (7.12) 
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If the matrix Mr8 of rows and columns ( 
~~ ' 

\_ 
" * ̂ ' > 

" ' 
* ) is non-singular, 

\s 
= cl, p ... y, u ... o I 

D 

(7.11) in conjunction with the convention (7.12) will determine the coefficients D uniquely. 
This assumption amounts to the same as to say that the (v+p+1) set (a, ? ... y9 6 ... 89 k) 
is linearly dependent but the (v+p) set (a, ? ... y, d ... 8) is not. 

If (7.10) holds, we have 

__ D8(x8-b8o) 
= 0 ... (7.13) 

_=a, ?...y, 9...?, k 

Indeed, the left member of (7.13) is equal to 

S xk 2 D8bsk 
k=uyv...w 8=a,?...7,0...?,K 

and the last sum in this expression is zero for all k by (7.10). 

Through the regression equation (7.13)?which holds good for any point inside or out 

side of the admissible region or on its boundary?any of the variables that appear with a non 

zero coefficient in (7.13) can be expressed in terms of the others. Choosing the affixes 6 ... 89k 

differently, we obtain the necessary formulae for testing the various combinations and see 

if any of them can produce an expression of the form (7.9) with all the coefficients B non 

negative. The first combination that yields this result, is sufficient to prove that the point 
considered is an optimum point. 

A numerical example where the above method rapidly yields a sufficient criterion 

for optimality, is given in ? 10. 

If there is no combination that makes the sufficient optimality criterion verified, 

the region considered cannot be optimal. 

If at any stage we find that by using (4.2) no boundary plane intervenes to stop the 

increase of ? to infinity, the linear programming problem is such that the preference func 

tion can be rendered arbitrarily great. In practice this is a trivial case. 

8. Continuous work with non-negative regression coefficients 

In some cases the concrete setting of the problem may be such that it is not ab 

solutely necessary to verify exactly that an optimum point has been reached. It may be 

sufficient to note that a high value of the preference function has been reached. If so, one 

does not need to worry about the trouble that may be involved in finding a sufficient criterion 

for optimality in the case where the optimal region is multiply determined. But if it is neces 

sary to make definitely sure that no better solution exists, it may pay already from the 

start to be prepared for a very difficult case of a multiply determined optimal region, and 

to proceed accordingly. One way to do this is to try to work throughout only with non 

negative regression coefficients.1 

Suppose that one move of the kind (4.2) has been made and that all the coefficients 

B in (4.2) have?through the solution of (4.3)?turned out to be non-negative. And further 

suppose that when the move (4.2) with these B coefficient is performed, we reach a breaking 

out point indicating that the additional set 6 ... 8 shall be included, so that the next move 

that contains the preference function, will be of the form (7.8). Finally, suppose that one 

ilntuitively one would think that this is always possible because the admissible region is convex, 

but I have not gone through an exact proof. 
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or more of the coefficients B in (7.8) turn out to be negative. We may then decide not to make 

the move according to (7.8), but instead drop one or perhaps more of the variables numbers 

0 ... 8, and see if this should produce a determination of the direction numbers dk which 

involve only non-negative coefficients B. We may first try to drop the variable that was 

the last candidate in the priority order for the variables numbers 6 ... 8, and next?if 

necessary?try to drop that variable which was next in priority order, and so on. Finally 
?if necessary?we may try to drop 

more than one of the variables numbers 6 ... 8. As soon 

as a set is found that gives only non-negative B, we proceed. 

In the new breaking out point thus determined, the number of new candidates to 

include in the optimum set may be determined by starting a new count on the basis of the 

square root rule formulated in the beginning of ? 3. 

By following the above rule in all the rounds of the work it will usually be easier to 

handle the optimality criterion at the end. This is illustrated in the example in ? 10. 

It is interesting to note how the value of the preference function is gradually in 

creased. Towards the end the rate of increase gradually decreases from round to round 

in such a way that most of the increase can be realized without carrying the work through 
to the exact optimum. In many practical cases this may be of considerable value. 

9. Correctional computations in the case where the 

optimality criterion turns out in the negative 

If we have reached a corner on the boundary, that is with v ? n linearly independent 
variables xa, X?, ..., xy equal to zero, or we have reached a 

stage where (n?v) is equal to the 

dimensionality of the optimum point, as we happen to know it beforehand, and if in either 

case the optimality criterion turns out in the negative, we must at one stage or another have 

made at least one wrong guess. At least one of the vriables must therefore be set free from 

the condition of being zero. The same applies in the case (II) of Section 7. 

Sometimes the general aspect of the numerical results will give an indication of which 

one or which ones of the variables in the set xa,X?,...,xy should be set free from the condi 

tion of being 0. 

One way to set a variable free is, of course, to all make the computations over again 
with this variable kept out of the set xa, x?, ..., xy. This may easily be done if the variable 

in question was one of the latest to be included in the set xa, X?, ..., xy. Only a slight recompu 

tation will then be needed.1 But if the variable in question occurs somewhere in the first 

1 If the computations have been made in such a way as to store the triangular matrix which is 

obtained in the course of the work or the computations proceed by means of the inverse. This will often be 

the case when one works with an automatic electronic oomputor. If JV is the order of the inverse which 

the machine can handle directly and the order of the matrix n is larger than N, perhaps very much larger, 

the best procedure is probably to increase stepwise the order of the matrix by means of formulae similar 

to those of ? 4 in "Principles of linear programming". One will then begin by computing the inverse 

of the upper left N xN corner directly, end then compute the inverse of the 2_V x 2_V upper left corner 

by means of one new N xN inversion and some extra work. Further the inverse of the upper left 3IV x 3?V 

corner is computed by means of one new N xN inversion and some extra work. And so on. As one 

proceeds, the extra work needed becomes larger and larger in proportion to the N xN inversion, but even 

so this procedure is probably the most effective when the capacity of the machine is not sufficient to handle 

the whole inversion directly. The procedure is particularly adapted to the method of the present paper 

which proceeds in any case by adding rows and columns round by round. Inversion formulae are given 

in section 13. 
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part of the list, the recomputation will virtually mean to start afresh. The problem there 

fore arises if it should be possible to perform the operation of setting one or more variables 

free by a computational procedure that permits us to use most of the previous results. This 

is done as follows. 

Suppose that by an application of (5.2)?-with not all the Ax8 in (5.3) equal to 0? 

we have reached a point where all the variables xa,x?, ..., xy have actually been reduced to 

zero, and suppose that we subsequently decide that we should have wanted to make this 

movement without making any assumptions about a certain subset xB 
... 

x? of the variables 

in the set xa9 x?, ..., xy. 

To do this we insert in the v dimensional system (5.3) not the values AxQ 
... Ax? that 

were prescribed in the movement as first defined, but such values Axe 
... Ax? as will make 

C0 
... Cd vanish in (5.2). These values of AxQ 

... Ax8 are determined by the system of equa 
tions 

C'r+C\ Ax$+ 
... 

+C?r &x? 
= 0 (r = 6...8) ... (9.1) 

where C's (s = a, ? ... y) is the solution of (5.3) for Ax$ 
= ... = 

Ax? 
= 0 and all the other 

Ax, inserted with the values they have in the movement now wanted made, C&8 (s = tx, ? ... y) 

the solution of (5.3) for Axg 
= 1 and all the other Axg equal to zero, and similarly for C\ etc. 

Having determined the solution Ax$ 
... Ax? of (9.1) the direction (5.2) with 

C8 
= 

C'8+(?s Ax$+ 
... +C?8 Ax? (s 

= 
oc,? ... y) 

... (9.2) 

is the direction that would have been obtained by setting xQ 
... x? free. 

Obviously if the C8 are determined by (9.2) the direction thus obtained will by (9.1) 

not contain the terms Ce bgk+...+Cybyk. 

Similarly, from a 
point where the variables xa, x? 

... 
xy are all zero, we may have 

made a movement by (4.2) but afterwards decide that we should have wanted to do it 

without including certain variables x? 
... 

x? that form a subset within the set xa, x?, ..., xy. 

To handle this case we first consider the problem of moving from a given point in 

a direction 

dk 
= 

A,pk+Aabak+A?b?k+...+Aybyk (4 
= 1,2...?) ... (9.3) 

where the constants A are determined in such a way that the preference function / as well 

as the variables xa,x?, ..., xy assume given positive, negative 
or zero increments 

A/, Axa, Ax?... Axy. 
... 

(9.4) 

In order to achieve this it is obviously necessary and sufficient that _40, Aa, A?,...,Ay 

form the solution of the (v+1) order system 

AQMQ8+AaMa8+A?M?8+...+AyMy8=Ax8 (s 
= 0, a, ?, ..., y) ... (9.5) 

where for simplicity we have denoted the preference function / by x0. 
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If we are only interested in the direction of the movement, not in the absolute values 

of the components (9.3), it makes no difference whether all the coefficients A are multiplied 

by a common positive factor. We may for instance normalize the solution by putting A/, 
that is AxQ, equal to such a number as will make _40 

= 1. If we do this, and put 

Axa 
= 

0, Ax? 
= 0... Axy 

= 
0, ... 

(9.6) 

we get the coefficients Ba, B? 
... By that satisfy (4.3). 

This being so, consider the case where we want to determine the direction that would 

have been obtained if we had not imposed the 0-condition on the particular subset xQ 
... x?. 

We do it simply by not putting Ax0 
... Ax? equal to zero but to such values as will make 

AQ 
... A? vanish. In other words we consider the system (9.5) for 

Ax0 
= 

magnitude to be disposed of so as to make A0 
= 1 

Ax8 
= 0 for s = 

a, ?...)6 
... 

8(...y 
... 

(9.7) 

Axg 
... 

Ax? magnitudes to be disposed of so as to assure 
A9 

= ... = 
A? 

= 0. 

For a moment we may disregard the equation s = 0 in (9.5) and only consider the 

equations s = a, ? ... y. These equations are completely specified by the data written in 

two last lines of (9.7). We may (if we take account of the condition _40 
= 1) write these v 

equations 

M08+AaMas+A?M?S+...+AyMy8 
= 

Ax8 (s 
= 

a,?...y) ... (9.8) 

where the Axs are given by (9.7). 

Let, as before, B8(s 
= oc, ?...y) be the solution obtained by putting a., the Axs in (9.8) 

equal to zero?compare the previously considered system (4.3) and let A% (s = a, ? ... y) 

be the solution obtained by putting Axg 
= 1, but all the other Axs 

= 0, A?s the solution 

obtained by putting Ax? 
== 1 but all the other &x9 

? 0 ... etc. The general solution of 

(9.8) can then be written 

_4, = 
B8+A?s Axe+...+A?s &x? (s = 

oc,?... y). ... (9.9) 

The conditions 
Ag 

= ... 
=A? 

= 0 are 
consequently expressed by the system 

B8+A6S &xg+ 
... + A?8 Ax? 

= 0 (s = 6 ... 8). ... (9.10) 

The order of this system is not v but equal to the number of variables we want to set free. 

When &xf? 
... Ax? are determined from (9.10) the direction numbers to use will be 

4 =Pk+AJ>?k+ ) AQbek+-+Anb?k(...+Aybyk (k = u,v ... w) ... (9.11) 

where the As (s 
? oc, ? ... )0 ... 8(... y) may be determined, either by inserting AxQ 

... Ax? 
into (9.9) or by performing one back solution of (9.8) with the values for AxQ 

... Ax? in the 

right member. 
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The computational cost involved in this procedure consists in : 1) As many back 

solutions of (9.8) as there are variables to be set free, and 2) one back solution to obtain the 

A8 (s = a, /?...) 6 ... 8(...y), or the corresponding work involved in using (9.9). The Bs can 

be assumed known from the previous work. 

Once the back solutions needed to compute the A8(s 
= a, ? ...)6 ... 8(...y) are avail 

able, we may work with the number of degrees of freedom thus established in the same way 
as we proceeded originally to find our way towards a set of optimum candidates. 

If no specific variable or variables in the set xa, x?, ..., xy distinguish themselves as the 

ones that need to be set free, one may make a small move into the interior of the admissible 

region?even at the cost of some decrease in the preference function ? and from the point 
thus obtained make a fresh start. If the move into the interior of the admissible region is 

made in reasonable way, one will get a new starting point from where it is possible to make 

a much more rapid progress than from the original starting point. 

If xa, x?, ...,xy are the zero variables, all of which one now wants to set free, one may 

decide on a set of effectively positive increments (5.1) which are chosen in the light of the 

values that were encountered in the previous work. An application of (5.2) with the coeffi 

cients C determined by (5.3) will then lead to this direction point, or possibly to some new 

boundary plane that prevents us from reaching the chosen direction point. If so, we may 
decide to stop, say, half way before this new boundary plaice is reached. 

No matter how the new initial point is determined, we start from it in one of the 

ways described in ? 2. When deciding upon optimum candidates, we will now most 

probably notice such a conspicuous distribution of the values of the Xj defined by (2.5) as to 

make it possible to jump more or less directly to an optimum point. Perhaps the distribution 

of the Xj will point out fairly clearly that particular or those few particular variables that 

should be let loose from their zero values and also point out some other that should be equal 
to zero. If so, we may revert to the point where we were before the movement into the 

interior of the admissible region took place, and from this point make a new movement 

utilizing (9.1)?(9.2), or a generalization of these formulae to the case where additional 

conditions are imposed in the form of prescribed increments for some further variables. 

10. A NUMERICAL EXAMPLE 

As an example we consider a problem in optimal blending of aviation gasolines. 
The problem is a small one, containing only 22 variables and 10 linearly independent equa 

tions, i.e. 12 degrees of freedom. The example is not given here in order to give a fair illus 

tration of the amount of work involved in the multiplex method as compared to that involved 

in other methods. Such a comparison can only be made on really large examples. The 

purpose of the present example is only to illustrate the principles underlying the multi 

plex method. The computations are given in details so that anyone who is interested may 
check for himself how the computations proceed. The form of the intermediate results 

given, is that which appears when the work is done on desk machines. The tables can simply 
be looked upon as working sheets to be used for this kind of machines. When the work is 

done on more or less automatic computors, intermediate results are either stored on cards 

or tapes or not stored at all. 
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The concrete nature of the problem is described in an article in Econometrica1 and 

will not be considered here. We simply take as our starting point the equations expressed 
in basis form. They are given in Table (10.1) on page number 20. The cells of that table 

give the coefficients bjk of (1.3). All the 22 variables are subject to the condition of being 

non-negative. The problem is to maximize the linear preference function given in the 

bottom row of Table (10.1). The cells of this bottom row give the coefficients pk of (1.5). 

As a starting point in the interior of the admissible region we use in this example 
the centre of the admissible region, i.e. the point where the logarithmic potential is (approxi 

mately) maximum. This was done simply because the example has also been handled by 
the logarithmic potential method. We could just as well have determined an initial point 

by the S(?) method or simply by guesswork. The way in which the initial point is chosen is 

irrelevant for the application of the multiplex method and will not be further discussed 

here. The initial point from which we start in the present example is given in column 0 in 

Table (10.2). 

We shall describe how the work is done in the case where we decide to work throughout 
with non-negative regression coefficients and also in the case where we work without any 

sign condition on the regression coefficients. We shall describe these two alternatives inde 

pendently. This will lead to some repetitions in the tables, but the explanations can then 

be given in a clearer and simpler form. 

Working throughout with non-negative regression coefficients : From the initial point 

given under 0 in Table (10.2) we move in the cheapest way, i.e. by putting dk 
= pk and com 

pute the other dj by (2.3). These numbers are given in the first of the columns in the column 

sector 1. The magnitudes A? defined by (2.5) are listed in the next columns with the priority 
order indicated in the small column to the right of the figures for Aj. The value of the vari 

ous Aj (for negative dj) need only be computed with an accuracy sufficient to determine 

their ranking order, but Amax as defined by (2.4) is computed with great accuracy and listed 

at the bottom of the A^ column. By means of this value and (2.2) the values of the variables 

in the breaking out point are computed. They are listed in the last column under 1. By 
the rule illustrated in (3.4) we shall pick the first three candidates. They are?as will be seen 

from the Aj column in the column ? 1?the variables numbers 21, 20, 22, taken in this order. 

We are therefore led to using (5.2) with the set a, ? ... y made up of numbers 21, 

20, 22. This means that we must solve the system (5.3)? which now consists of three 

equations. The matrix of the coefficients are given in the upper left 3x3 corner of Table 

(10*3). Since the matrix is symmetric only a triangle is filled in. Usual sum checks for this 

3x3 matrix are run and listed in a column in the right part of the table. 

The solution of this 3x3 matrix by the Gaussian algorithm is given in the triangle 
above the principal diagonal in the upper left 3x3 matrix in Table (10.4). The numbers listed 

below the diagonal in this 3x3 matrix are the multipliers used in working out the solution.2 

The right member as given by (5.4) is listed in its original form as the first three elements 

in the column marked 2 in the right hand part of Table (10.3), and the corresponding elimina 

tion treated numbers are listed in the same place in Table (10.4). The result of the back 

solution in the form of C20, C21, C22 are listed on the line 2 in the lower left part of Table (10.4). 

i W. W. Cooper and B. Mellon : Blending aviation Gasolines, Econometrica, April 1952. 

2 A detailed description of the work sheet for the Gaussian algorithm in the symmetric case is given 

in Section 17 of Principles of Linear Programming. 
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TABLE (10.1) BASIS EQUATIONS IN THE LINEAR PROGRAMMING PROBLEM FOR THE 

BLENDING OF AVIATION GASOLINE. 

3 - 

i+ _ 

5 _ 

6 . 

7 ? 

8 . 

9 - 

10 _ 

u . 

Constant 
tern 

Bas la variable No.: 

21 . 

22 ? 

3800,00 

2652.OO" 
M081.00 

1300,00 

16.5 

-13.6 

fSeok II833.00 3.*+ 

-3.0 

3.0 
- 3.0 
-3.0 

26.0 

31.5 

pre.a 
fUnctlon 0.88844d l.?tJ3W 1.493446 

TABLE (10.2). STEP BY STEP TABLE WHEN WORKING CONTINUOUSLY WITH 
NON-NEGATIVE REGRESSION COEFFICIENTS. 

1L2.812J 

I1? .36?5 

IO72.2365 

116.2668 

lHO.3808 

190.6608 

114.5645 

143.4271 

53.657. 

20,5147 

20,04O0 

54.0105 

2474.5787 

:22H.6?l6 

376..3505 

I205.H3W 

I5**fl*5l|,5 

2363.8300 

?81.075 

a?. 

255.6770 

1270.5521 

3.93,000 

0.36OOJ2 

1.^3^16 

0.360032 

0.8884't. 

1.4>34'j6 

0.3600^2 

0.88844. 

1.4934?, 

0.3600J2 

0.86841-, S 

1.4*3446 

2,74*198?? 

. 2.7419?4 

1,7*0. ? 

. 2,74_9?4 

5.362:?* 

*7.J8C"9 

- 6.720; 7 

3.56 .'il 

8.795?15 

-14.785.U5 

3.482293 

:5*w.7?4? 

Jn the ini 
tia steps 

502.5 

8II.3 

439.6 

.79.4 

35.2 

29.1 

85.9 

29?o6879o 

123.2803 

166.1555 

1115.6516 

_26.7342 

166.2068 

214.0735 

125.0319 

169.2531 

97.0706 

30.9821 

45.8?60 

97.4232 

2394.8726 

2144,9855 

3689,6444 

H25.7287 

1820,6675 

3177.3503 

6386.3406 

36.0606 

8.0606 

0.2001! 

4.6667 

0.5-77 

12.3030 

2.4745 

57.6970 

8,4063 

. 4,8668 

12,8307 

60.1715 

36,0442 

0 

528.3944 

36.?606 

138.4 

236.9 

440,7 

16.7 

122.9346 

166.1955 

1107,5910 

126,9343 

166,2068 

213//402 

124,5042 

I69.253I 

84.7676 

33.^566 

45.8?60 

155.1202 

2403.2789 

2140.1187 

3702.4751 

1065.5572 

1856.7117 

3177.3503 

6914.7350 

2378I.7570 

0.3942679 

0,9727674 

1.6351673 

0,3403059 

0.8396283 

1.4113852 

0.4122553 

1.0171472 

I.7Q97881 

0.1154642 

0.2648819 

O.4788763 

- 3,0022226 

- 2.5913194 

- 3.1351506 

- 0.8792224 

5.7550555 

18.5043222 

-16^)120266 

?.25I355I 

300.5 

825.5 

1175.4 

1212,0 

131.0 

i 

431,84?334 

253.I.77 

5O6.23I5 

I8I3 .7406 

273,8942 

528.7972 

82C.2417 

302.5351 

608<5044 

823,1333 

83.3191t 

168.8?12 

361,9212 

1106.7801 

1021.0669 

2346.8-71 

665.8682 

4361.0316 

11168.374Q 

27362.4054 

7735*5824 
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TABLE (10.2). (Continued). 

O? 

rtnoe 

377. Wtt 

377.^1 

-351.8120 

332.7853 

332.7853 

355.4963 
- 5.2663 

- 5.2663 

27.7391 

24.6973 

24,6973 

26.31101 

-1106.780J 

-1021.0669 

|- 17.2065 

- 75.706?? 

6685.191^ 

7334.9783 

l4o20#1698 

57.?* 

115.5 

13*.M6 

\ - 
m__ 

1.0000 

67O.68I? 

963.7656 

21*5.5526 

606.6795 

661.5825 

U83.7380 

297.2688 

603.2381 

850.672UJ 

108.0167 

W3.5885! 

388.2330 ! 

|- 0.852842 

0,274343 

1.127185' 

'[- 0,305514 

0.193809 

O.III705 

0.437137 

1,042029 

0.794432 

- 0.001223 

0.168194 

0.315708 

2329.6206 

610.1618 

11046,2230 

i8503?3523 

41382.5752 

9788.0899 

2,263598j 

0.4?2679 

|-15.497504 

5.4478481 

-20,545352 

786.4 

3513.0 

1029,2 

1264.1 

712.8 

3396e5 

712.774328 

62.79781 

768.2212 

2968.98IO 

388.9170 

999.7245 

1263.3585 

608.8488 

1345.9696 

1409.9955 

107.1446! 

313-4731! 

613.2615 

716.1861 
I 

266,1206 

62.7978 

73.2700 

136.0678 

361.1075 

?7.9571 

273.1504 

130.48641 

557.9044 

28?.768I 

65.8048 

115.8429 

102.6781 

716.I86I 

152.7162 

26453.26611 

694.9512 

3105.0488 

750.0245 

9H.7674 

990.2081 

478.3624 

1903.8740 

I698.7636 

41.3400 

429.3160 

715.9396 

113,4044 

' 12973.IO82 

13679.8885 

TABLE (10.2). (Continued). 

reno? 

Pf 

0.57222052 

0.57222062 

0.37308526 

0.11367714 

0,25920804 

0.44929401 

0,18818327 

0,26111073 

0.06562935 

0,04902594 

0.11465529 

0,59206603 

10.8000583. 

1214.5 

629.9 

8756.9 

P9.901104 

334.5088 

3465.4912 j 

515.0177 

983. 

II53.4.36 

195.3517| 

2022.4108 

1663.2375 

0 

396.4345 j 

788,1611 

113.4044j 

372.9^31 

6170,1395 

16376.063? 

0.53965451 

0.53965460 

0.50113147 

0.11+912033 

O.35207108 

0,19010748 

0.0167214o 

0.17338^23 

0 

0.083(101 

0.08368866 

. 0.36292953 

lu.09905022 

1027.6 

611.0 

4.6002 

3795.1996 

208.O0?6 

1074.6056 

1368.5853 

79.2032 

2032.6269 

1969.1699 

0 

347,1817 

833.4139 

113.4044 

151.2080 

\__ 

6IO.962354! 

0.00526710 

0.00526725 

0,36441190 

0.2/564854 

0,08876325 

0.13822554 

0.191*30674 

0.0560?I17 

0 

0.01840212 

0,01840195 

\ - 
max 

573.0010 

I.782I 

3798.2179 

I232.5527 

1419.4473 

2143.9647 

I937.O353 

357.7261 

828.8695 

a 

s 
c! 

i?1 

X 

M 
O 
U 

*? 
O 

_=} 
> 

W 
O 
Q 
W 
> 

05 
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Using these three C-values the dk are computed by (5.2) and the other dj by (4.7). The 

result is given in the first column under column section 2 in Table (10.2). Using (4.5) we find 

that we can unhindered reach the direction point where the three variables Nos. 20, 21, 22 

are zero. The rest of the variables in this point ar obtained by puting ? = 1 in (4.6). The 

result is listed in the last column under column section 2. 

TABLE (10.3). MATRIX DATUM TABLE (MOMENT TABLE) WHEN WORKING 
CONTINUOUSLY WITH?NON-NEGATIVE REGRESSION COEFFICIENTS. 

Sum oheok? for left aoabtra in move No.: 

15 (17) 10 

21 

22 

15 

13 
14 

1 

15 

158.15 

1-124.5*1 
338.25 

-2.90 

-2.50 

-2.50 

13.00 

13--0 

- 14,00 
- 3.00 

14,00 

6.00 

466.00 

o -213.65 

I6.5O 

I- 2.00 

158.19 

I58.I5 

I58.I5 

I57.35 

I57.35 

72.84 

213.20 
10.20 

?.JO 

''A 
1.00 

4.00 

0 

581.25 

1.71 

154.49 

65.54 
226.20 

-25.20 

10.30 

15.30 

13.30 

270.50 

182.75 182.75 181.69 3.5649108 

194.49 -1J.16 -I9.I6 8.7956154 

69.5*+ 65.51* -65.54 14.7851154 
226.20 226.20 226.20 6.7205O7O 
-11.20 -27.70 -27.70 2.7419840 

13.30 II.30 IO.3O 2.741984o 

I.50 I.50 I.50 - O.360O52O 

7.30 II.30 II.30 2.7415840 

12.60 -12.60 - O.360092O 

353.10 353.IO -27.9860490 
- t.io - 0.3600520 

36.O606 

7/ 
12.60 

-1106.7601 

-1021.0669 

62.7578 

716.1861 

554.57 683.52 77^02 672.12 757.07 753.87 3.6<33836 

TABLE (10.4). MATRIX SOLUTION TABLE WHEN WORKING CONTINUOUSLY WITH 

NON-NEGATIVE REGRESSION COEFFICIENTS. 

13 15 

0.00958676 
-0.00555023 
-O.O0558676 
0.01463242 
O.95554585 
O.O6862IO2 

0 
O.OO555623 

O.OO958676 
I-O.OO555023 

0.01463242 

*u0780059$ 

O.OQ5158676 
I-O.OO555023 

158.15 ? 

0,01463242 

124.55 
259.578126811? 

O.03344139 
0.02958434 

0 
- _.04_994l2 

-1.90 
-I.50 
--.JO 

-8.69403096 
2.6^61499 
000680803 
O.369&4?88 
-0.10938J64 
5.90924408 
O.?49U444 
6.98715683 

?__?357___ 

WO 
1.10 
1.10 

7.69128110 
o_28684344 
2.7*27.4.8 

1.30 

-0*03536202 
0.11532215 
0.06263805 

-0.03293387 
-o.44__o6l4 
0.36461678 

-0.98178516 
0.05628067 
0.615276I9 
-0.23778269 
16.25352355 

-0.12838009 
11421847845 

06765705 

-2.90 
-2.90 
-2.50 

11.177.3166 
0.29038738 

-0.3135*537 
0.14630203 
2.28536641 
1.0645U53 
0.084j8_46 

-2.0455OB35 
O.06087078 

198.10 

-15.85913716 
0.17054564 

10.02501712 
2.43707525 
_. 

0.13037554 
0.08566551 
0.078989a 
0.19318008 

18.54821127 
1.20400097 > 6.90246868 
4.68289975 

-O.OIO54544 
-0.55*7*032 
ou>4_75085 

-0.1353555 
'/////////, '////////s V///////? 
] O.O3O55557 0.33065128 -0.06042504 

-_0.68134__7 
1.95156726 

0.3306512e 
130.25654555 1.76416557 

0.47872348 
0.01758734 
0^)2656730 
-0^>673^?3 
0.03-30304 
oaB-36532 
0.12147286 
0_2>flte509 

0.04437971 
0.05255568 
0.070430H2 
0.06853176 

?06088875 
0.149354-8 

0.07460071 
O.13660615 
O.I3355525 
O.13355507 
0.13165051 
O.I6435892 
0.14935469 

0 .005013-1 
0.05242820 
O.05544278 
0.047551? 
0.09042917 

I.26341199 
I.58137588 
I.55163686 
1.5635*37 
2.47867547 
2.28138660 

0^3638157 
OCI?OS 
0_65874352 
O.66068096 
O.55088375 
0.85860020 

2^64?4227 
I.17206506 
o.85735,'ll 
1.88778900 
1.46752691 

0.53260-73 
0.90016483 
l__7J06065 
0.85058883 
1.05-68523 

? 08683532 

0.76121572 
0 in 
m 
No.: 

-O.I81550 
-I.815575? 

_5_.108lll! 
-I.815575' 
-8.517857? 

-4.242428 
-3.671656 
6.613869 

-2.9528421 
24.0783371 

-380.934473 
57.O86OJ6 

-330.7877731_ 
57.326728^52.5316551 -582.6062531 
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TABLE (10.4) (continued). W 
H 

cl 

M 

S" 

Hi 
M 
O 
? 

O 
w 

O 
Q 
W 

? 

h-* 

sum checks for left members in move no.: 

6 9 10 

right members : 

0 

03 

5 = 20 

21 

22 

19 

13 

14 

1 

15 

(17) 

10 

18 

4 

198.19 

198.19 

198.19 

197.39 

197.39 

72.84 

258.97537730 

2.94345730 

2.72271404 

- 1.71 

194.49 

69.94 

270.15290896 

-13.64707762 

2.33445969 

10.78659495 

4.72644114 

6.81829506 

182.79 

194.49 

69.94 

270.15290896 

2.12167960 

2.59467485 

0.84056705 

2.09618581 

0.03095581 

182.79 

-19.16 

69.94 

270.15290896 

-16.42659168 

3.79867582 

- 6.06189564 

6.77908560 

0.36160709 

130.25653890 

! 181.69 

i 

1-19.16 

I 69.94 
I 

270.15290896 

-16.43707711 

2.80592850 

- 
6.02014479 

6.63973008 

0.30118205 

132.02070854 

0.47872294 

3.56491080 

8.79561549 

14.78511540 

16.01202589 

3.53768715 

1.73268546 

0.85284213 

2.06080713 

(-0.59206893) 

0.06562927 

10.09904824 

0.36441184 

- 36.0606 

0 

-840.8068 

0 

0 

0 

0 

-1106.7801 

- 900.6405 

0 

0 

0 

0 

0 

0 

- 62.797800 

-701.253870 

1769.69587 
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From the point thus obtained we perform a preference increasing movement, holding 
constant the three variables which have now reached zero, namely numbers. 20, 21, 22. To do 

this we have to use the same 3x3 matrix which w? just used, but now with the right member 

given as the first three elements in the column marked 0 in the right hand part of Table (10.3) 
and Table (10.4).1 The result is listed as the three coefficients B on line 3 in the lower left part 
of Table (10.4). Since all these three regression coefficients B turn out to be non-negative, 
we proceed. The coefficients dj now to be used are listed in the first column in column section 

3 in Table (10.2) and the ?j listed in the subsequent column. The breaking out point defines 
a certain priority order of the remaining candidates. By (3.4) we shall also now pick 
three such candidates. They turn out to be numbers 19, 13, 14, taken in this order. 

We are thus led to consider the 6x6 system in the upper left corner of Table (10.3) and 

Table (10.4) with a right member which have the first four items equal to zero and the fol 

lowing two equal to the values listed on the fifth and sixth place in the right member column 

marked 4 of Table (10.3). The corresponding elimination treated elements are listed in the 

same places in Table (10.4). The back solution yields the six coefficients C listed on line 4 in 

the lower left part of Table (10.4). Computing the dj 
? listed in the first column under 

column section 4 in Table (10.2)?we find that we can unhindered reach the direction point 
where all six variables numbers 20, 21, 22, 19, 13, 14 are zero. The values of all the 

variables in this point are listed in the last column in column section 4 in Table (10.2). 

From the point thus obtained we want to perform 
a 

preference increasing move 

ment holding constant all the six variables that have so far reached zero, namely numbers 20, 

21, 22, 19, 13, 14. To do this we have to use the same 6x6 matrix as we just used, but now 

with the right member given as the first six elements in the column marked 0 in the right 
hand part of Tables (10.3) and (10.4). The result is listed as the six coefficients B on line 5 

in the lower left part of Table (10.4). Since all these six regression coefficients B turn out to be 

non-negative, we proceed. The breaking out point is determined through the dj built on 

these six B and through the corresponding A,. The values of the x3 in this breaking out point 
are listed in the last column in the column section 5 of Table (10.2). We select againt hree new 

candidates, namely numbers 17, 1, 15, of which the last two have to be forced down to zero. 

This is done by a 9 X 9 system with the right member indicated in column 6 in the right hand 

part of Tables (10.3) and (10.4). The resulting nine C coefficients are given on line 6 in the lower 

left part of Table (10.4). Using (4.5) we find that we can unhindered reach the direction point 
where all the nine variables numbers 20, 21, 22, 19, 13, 14, 17, 1, 15 are zero. The values of 

all the variables in this point are listed in the last column in column section 6 in Tab. (10.2). 

From the point thus obtained we attempt again a preference increasing movement. 

This time, however, we find that not all the corresponding regression coefficients ? 
namely 

the nine coefficients B listed on line 7a in the lower left part of Table (10.4)?are non-negative. 
We therefore decide that the preference increasing movement shall not be carried through 
with all the above nine variables equal to zero. The first candidate which came into the pic 
ture and produced some negative numbers in the list qf regression coefficients was the leading 
candidate in the last breaking out point, namely number 17. This variable was also the only 

1 If the work is done on desk machines and the tables actually used as work sheets, the paper is folded 

so that the right member column to be used always comes in convenient proximity to the other columns 

used. 
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one of the newly added variables that got itself a negative regression coefficient. We there 

fore decide to throw number 17 out of the set of nine zero variables and perform the 

preferenc increasing movement by keeping only the remaining eight variables equal to zero, 

namely numbers 20, 21, 22, 19, 13, 14, 1, 15. 

To do this we must use an 8 X 8 system. It so happens that number 17 was added 

as the last row and column in the Tables (10.3) and (10.4). To carry the computations 

through without number 17 is therefore an easy matter. The result is the eight regression 
coefficients listed on line 7b in the lower left part of Table (10.4). Since all these eight 
coefficients turn out to be non-negative we proceed. 

To decide on the number of degrees of freedom to retain in the next round we note 

that in the last breaking out point?the one built on the JE? coefficients on line 7b?we arrived 

with 12?8 = 4 degrees of freedom. According to the square root rule we should consequently 
in the next move put 2 variables equal to zero. As it involves just as much work first to force 

one variable to zero (the leading candidate is already zero) and next to make a preference 

increasing move?-as to make two separate preference increasing moves, the latter alternative 

is chosen. This leads through the moves whose column sections in Table (10.2) are designated 

7, 8 and 9 to the final attempt number 10 which produces a situation where all the dk are 

zero, see the column number 10 in Table (10.2). Since the eleven coefficients B that lead to 

these zero dk are all non-negative ?as will be seen from line 10 in the lower left part of 

Table (10.4)?we can conclude that an optimal point has been reached. 

Since exactly eleven B coefficients in this last round are effectively positive, we know 

that the optimal region is 12?11 = 1 dimensional. This one dimensional region may be 

generated in different ways. In Table (10.5) we have used the variable No. 6 to generate the 

TABLE 10.5. OPTIMAL SOLUTION OF THE PROBLEM OF BLENDING AVIATION 
GASOLINES. ONE DEGREE OF FREEDOM GENERATED BY x6, WHERE 

x6 IS LYING IN THE INTERVAL (10.6) 

constant 
term 

X{; 

variable 
no. 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

values of the variables 

in the lower and upper 
endpoints of the interval 

(10.6) 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

0 
-65.3310 
3865.3310 

0 
2652.0000 

0 
0 

1131.6719 
2949.3281 

0 
17.6853 

1168.9103 

0 
0 
0 

113.4044 
0 
0 
0 
0 
0 
0 

0.047281 
-0.047281 

0 
-1.000000 

1.000000 
0 

0.713160 
-0.713160 

0 

0.239559 
-0.239559 

(1) 

0 
0 

3800.0000 
0 

1270.2399 
1381.7601 

0 
2117.0879 
1963.9121 

0 
348.6984 
837.8972 

(2) 

0 
0 
0 

113.4044 
0 
0 
0 
0 
0 
0 

0 

60.0582 
3739.9418 

0 
0 

2652.0000 
0 

3022.9722 
1058.0278 

0 
652.9958 

533.5998 

0 
0 
0 

113.4044 
0 
0 
0 
0 
0 
0 

20 
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optimum region. It is easy to see that when the eleven variables specified in the last move 

shall be zero, the point will be situated in the admissible region when and only when xe lies 

between the limits 

1381.76 < x& < 2652.00 ... (10.6) 

In other words we can attribute to #B any value between the limits (10.6) and then by Table 

(10.5) compute the corresponding values of all the variables. Any such point will be situated 

in the admissible region and will produce the same value of the preference function, namely 

/ 
= 15242.29 and in all other admissible points than those generated in this way, will the 

preference function be actually less than the value indicated. 

In the present example we did not need to use the procedure suggested in ? 9. 

In parameter form the solution (10.5)?(10.6) can be expressed by considering the two 

endpoints of the interval (10.6). In the lower endpoint, denoted (1), the variable x2 is zero 

and in the upper endpoint, denoted (2), the variable x5 is zero. The complete list of the values 

of all the variables in these two points are given in columns (1) and (2) in Table (10.5). Any 

point on the straight line segment generated by the variation of x6 between the two limits 

considered can be expressed by introducing two non-negative parameters tx and t2 subject 
to the condition 

tx+t2=l. (10*7) 

If x^ and x^f are the values of the variable Xj (j 
= 1, 2, ... n+m) in the two 

endpoints of the segment, i.e. the values read off in columns (1) and (2) respectively in 

Table (10.5), any point on the optimal segment can be expressed in the form 

Xj 
= 

t{ xW+t2xf (j= 1,2. ..n+m). ... (10.8) 

That is to say if we choose any two non-negative numbers tx and t2 satisfying (10.7) and insert 

them in (10.8) we get a point on the optimal segment. Conversely any point on the optimal 

segment can be expressed in the form (10.8) where tx and .2 are two non-negative numbers 

satisfying (10.7). 

This parameter form has certain advantages for some practical purposes, for instance 
if one wants to add certain secondary preference considerations for comparing alternative 

points within the optimum region. If the optimum region is of dimensionality 8 a similar 

expression with (??+1) non-negative parameters adding up to unity, applies. 
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TABLE (10.9). STEP BY STEP TABLE WHEN WORKING WITHOUT 

SIGN CONDITIONS ON THE REGRESSION COEFFICIENTS. 

rene? 

W 

694.9512 

3105.0488 

750.0245 

911.7674 

990.2081 

478.3624 

1903.8740 

I6J8.7636I 

41.3400 

429.3160] 

715.W6 

12973.IO82 

2460*0082 

13679.8885 

O.559116 

O.559116 

0.481042 

O.I56363 

0.324779 

O.306806 

O.IOOO91 

O.206715 

O.026514 

0.069408 

0.095922 

1-10.493167 

10,493187 

1559.2 

6185.4 

1236.3 

J 

3.6957 

3796.3043 

155.2949 

1104,9604 

1391.7447 

99.0469 

2027.6207 

1954.3324 

8.5596 

343.5047 

834.5313 

113.4044 

1-833,0000 

1236.33632 

1,00419965 

1.00419976 

1,34063860 

1.28003680 

1.06080173 

'.21738513 

1.25534942 

1.03796329 

1.018786331 

?,03121257 

1.0121+2615 

>o 

455.6 

455.6 

455.6259 

I.7822 

3798.2178 

1232.5525 

1419.4475 

2143.9647 

1937.0353 

357.7260 

828.8696 

113.4044 

II833.OOOO 

15242,2878 

TABLE (10.10). MATRIX DATUM TABLE (MOMENT TABLE) WHEN WORKING WITHOUT 

SIGN CONDITIONS ON THE REGRESSION COEFFICIENTS. 

Sua _? ?? for l?ft aenbars In aove No.: 

13 13 14 

198.19 124.55 

338.25 

I.90 

1.90 

I.90 

-7.50 

3.001 

-2.90 

-.90 

-2.90 

13.00 

108.19 

198.19 

19?.19 

- 1..M 

3.00] 

14.00 

6.001 

466.00 

I6.50 

2.00 

581.25 

197.39 

!l97.39 

72.84 

213.20 

10.20 

13.30 

-1.00 

-6.O0I 

- I.7I 

I94.49 

69.94 

226.20 

-25.20 

IO.3O 

I5.9O 

13.30 

27O.9O 

- 1.71 

19.16 

69.94 

226.20 

-41.70 

8.30 

15.90 

17.3OJ 
270.90 

353.IOI 

594.57 683.92 

2.81 

-19.16 

69.94 

226.20 

-41.70 

7.3O 

I5.9O 

17.3OI 

273.90 

353.10 

1.90 

901.87] 

0.O9] 

19.16 

69.94 

226.20 

-41.70 

7.30 

15.90 

I6.30 

267.90] 

[353.10; 

1.90 

1897.771 

-36.?606 3.5649108 

8.7956154 

14.7851154 -840.8068j 

6.7205070 

2.7419640 

2.74198401 

0.36OO920 

2.741984o 

9.3623920 

27.9860490I 

0.3600920j 

4.0234756 

IIO6.7801] 

1021.0669 

62.7978 

716.I86I 
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TABLE (10.11). MATRIX SOLUTION TABLE WHEN WORKING WITHOUT SIGN 
CONDITIONS ON THE REGRESSION COEFFICIENTS. 

14 15 

0.00958676 
-0.00555023 
-O.00958676 
0.01463242 
0.99954509 

0,00958676 
-c.00555023 

0.C1463242 
0 

1.07500595 

198.19 I -124.55 
0,62843736 259.97812681 
0.00958676 

-O.00555023 
0.03344139 

-O.02956434 

- 1.90 
- 1.90 
- I.90 

-8.69403098 
2.65461499 

-0.10680803 
0.36984088 

-O.IO938964 
5.9?924408 
6.98715683 
0.00397249 

1.?0 
1.10 
1.10 

7.69128IIO 
0.28884344 
2.72271428 

-O.03536202 
O.II532219 
O.O6263809 

-0.44220614 
0.36461678 

).98178516 
).09628o67 
).6l5276l9 
).2377B269 
5.29352355 
L.21847845 
J.06785709 

- 2.90 
- 2.90 
- 2.90 

II.17753166 
0.29038738 

-0.31398937 
0.14630203 
2.28936641 

-I.O6451953 
-2.04550035 
O.06087078 

-198.IO 

I5.899137I6 
O.17054564 

IO.02501712 
2.43707525 
6.81829629 
0,51830367 
-O.I8233803 

-18.54821127 
1.20400097 - 6.90246268 
4.68289979 - 3.53394800 

131.95669090 
- O.OI336137 

-O.OIO54544 
-O.99274732 
0.04175065 

-O.13935552 
I.24323472 
I.7631222I 
0.37031.806 

0,02780160 
-O.OI912070 
-O.OI684329 
-0,95880719 
-1.64089851 
I.12451007 
O.23613718 0.01798734 

0,02656730 
-O.06734733 
-0.02245731 
-0.21596752 

0.04437971 
0.05295968 
0.07043042 
0;16243177 
0.14935465 

0.0.460071 
0.13660615 
O.I3359925 
0.16626987 
0.14935466 

0.08501321 
0.05242.20 
O.09442476 
O.O6722218 

I.26341199i 
I.58I37988 
2.51334469 
2.28138607 

O.63638197 
O.654710O6 
O.58877409 
0.85860046 

2.56494227 
2.83459944 
5.40906583 

O.99260273 
O.78607003 
1.05268608 

O.08683532 
0.04561985 - O.2198I668 

O.07951.92 
0.06722219 0.92039421" 0.181950 

-1.815979 
291.108111 

-I.815979 
-6.517857 

-4.242428 
-3.671656 
6.613869 

-2.952842 
24.078337 

380.934473 
57.O86056 

330.787773 
97.326728-4192.531659 -562.6O6293I 259.551037 

l4j O.39370065 
0.02647735 0.14935465 0.14935466| 

-b.f&vrn 0.35695544 

i.QW(*tofy////////\ 0.0672-2-9" 
-0.63779547 

0.858600461 1.87098707 0.527^3347 

TABLE (10.11). Continued. 

158.19 
1*8.1$ 

Sum cheeks for left member? in move No.: 

197.39 
I97.39 
72.84 

258.97537730 
2.9-+3I45730 
2.7227140". 

- 
I.71 

?9 ?94 
270.15290896 
-13.64707762 

2.33445969 
10.78659495 
4.72644ll4 
6.81829560 

12 

- 
I.71 

-19.16 
69.9*+ 

27045290896 
-32.19528890 

3.53846066 
3.88413226 
9.4093409*4 
3.28434770 

131.95667757 

13 

- 2.81 
-19.16 
69.94 

270.15290896 
-32.20583433 

2.5457-334 
3.92588312 
9.26998541 
4-52758233 

133.71979994 
0.37031837 

14 

0.09 
-19.I6 

69.94 
270,15290896 

-32.17'8032?3 
2.52659264 
3.90903983 
?.31117822 
2.88668382 

134.84431001 
0.60650555 

Right members: 

3?56491080 
8.7956I540 

14.785II540 
16.01202589 

3.53768715 
1.73268546 
0.85284213 
2.06080713 

-0.59208893 
10.49318537 
0.34083860 

- 
36.0006 

0 

-640.8068 

0 
0 
0 
0 

1106.7801 
900,6405 

- 62.797800 
-701.253870 
1769.695876 

Working without any sign conditions on the regression coefficients: We will then show 

how the solution of the problem (10.1) can be obtained by working without any sign 
condition on the regression coefficients until we reach the last stage. 

From the point listed in the last column in the column section 6 in Table (10.2) we now 

proceed, regardless of the fact that not all the nine regression coefficients on line 7a in the 

lower left part of Table (10.4) are non-negaive. That is, we make a preference increasing move 

ment with the nine variables 20,21, 22, 19, 13, 14, 17, 1, 15 equal to zero. The correspond 

ing computations are given in the column section 11 of Table (10.9). This leads to a breaking 
out point where the Xj have the values listed in the last column in the column section 11. 

According to the standard rule?see line . = 4 of Tab. (3.4)?we shallnow pick two optimum 
candidates, As before we pick instead only one since the total work involved will not be any 
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larger than by picking two. This leads through the move number 12?see Table (10.9), 

(10.10) and (10.11)?to the final attempt No. 13 where the eleven variables 

numbers 20, 21, 22, 19, 13, 14,17, 1,15, 18, 4 ... (10.12) 

are zero and all the dk eure zero. 

From the solution obtained by the first method we know that the point we have now 

reached?and listed in the last column in the column section 12 in Table (10.9)? is actually 
an optimum point, but by the method now followed we have not yet got a sufficient criterion 

for the optimality of the point reached because not all the eleven coefficients on the line 

13 of Table (10.11) are non-negative. These coefficients are now the B of (7.9). 

Looking back we see by the same reasoning as in the first method that number 17 is a 

black sheep. In the expression for the preference function now obtained ?compare (7.9) 
?we therefore wish to express number 17 in term of eleven other variables, namely the ten 

variables that are left in the set (10.12) when No. 17 is taken out and another variable 

added so as to retain the total number eleven. 

As such a variable to be added we pick the next candidate in the priority order in 

the last breaking out point, namely the variable number 7. In other words we wish to 

express number 17 in terms of the 11 variables 

numbers 20, 21, 22, 19,13, 14, 1, 15,18, 4, 7. ... (10.13) 

To do this we must consider the equation between the corresponding twelve boundary vectors, 

namely the boundary vector for No. 17 and those in (10.13) or ? which is the same ? the 

boundary vector for No. 7 and those in (10.12). Compare (7.10) where now k = 7. This 

is done by the previously used 11x11 system and with a right member consisting of the 

moments defined through the newly added boundary vector No. 7. See (7.11) and (7.12) 
with k = 7. Doing this we find the set of twelve D coefficients listed on line 14 in the lower 

left part of Table (10.11). Using these coefficients to express the variable No. 17 in terms of 

those indicated in (10.13) 
? 

compare (7.13)?and inserting this expression for No. 17 in the 

expression for the preference function?compare (7.9)?we get the set of eleven B coefficients 

listed on line 15 in the lower part of Table (10.11). Since all these are non-negative we know 

that an optimum point has been reached. We also see that the optimum region is one di 

mensional and can be expressed in any of the two forms indicated in (10.5)?(10.8). 

This example shows that we will as a rule actually reach an optimum point quicker 

by going ahead without paying any attention to the sign of the regression coefficients, but 

in return we have to make a transformation at the end if we are absolutely set on~getting 
a sure optimality criterion. When a successful transformation is found so immediately as 

in this example, it will probably pay to go ahead regardless of the signs of the ^-coefficients, 
but in more complicated cases where a high degree of freedom in the optimum region is to be 

expected and we are set on getting an optimality criterion, it may be safest to work with 

non-negative regression coefficients throughout. 

357 



Vol. 18 ] SANKHY? : THE INDIAN JOURNAL OF STATISTICS [ Parts 3 & 4 

11. Illustration of the reversal technique 

In the example described in ? 10 of the present paper we did not need to use 

the technique developed in ? 9. The numerical material in the example can nevertheless 

be used to illustrate how the formulae of ? 9 work. 

Consider for instance the point listed in the last column of column ? 6 of Table (10.2) 
Here the following nine variables 

20,21,22,19,13,14,1,15,17 (11.1) 

are zero. 

The moment matrix for the boundary vectors of these variables are given in the first 

nine rows and columns of Table (10.3), and the corresponding matrix solution table is given 

by the first nine rows and columns of Table (10.4). 

The set (11.1) we now consider as the set a = a, ? ... y within which the formulae 

(9.1) and 9.2) are to be applied. We let the set 0 ... 8 be the set of the three variables 

1, 15, 17. (11.2) 

To determine the nine numbers G8 (s 
= a, ? ... y), we use (5.3) with all the Ax8 equal 

to zero except Axs for s = 13 and s = 14, these two Ax8 being put equal to minus the values 

which the variables Nos. 13 and 14 had in the point from which we started when we wanted 

to force Nos. 13 and 14 down to zero. This is the point listed in the last column of column 

section 3 in Table (10.2). In other words we put 

A#13 

Axu 

-1106.7801 

-1021.0669. (11.3) 

To compute the numbers Cs under these conditions is an easy matter because the first nine 

rows and columns of Table (10.4) have been computed. The result is given on the first line 

in Table (11.4). 

TABLE (11.4). ILLUSTRATION OF THE USE OF THE TECHNIQUE OF SECTION 9. 

?.20 

-105.643766 

-2.68356216 

-0.17116544 

0.16661973 

-1.B15999 

0.995615^2 

0.02656738 

-I.935616 

0.04550475 

0.00790334 

-0.00253122 

-I.815971 

0.04l 44721 

O.O5295965 

22 

-12,664797 

0.01151729 

-0.01024472 

0.00066853 

-3.671672 

0.17209648 

0.13660623 

19 

-17.072793 

-O.05408250 

-0,02827807 

0.00509160 

-2.952867 

0.15980034 

0,08501332 

13 

-631.283421 

0.35136164 

-0.11051708 

0.01732396 

-380.934230 

2.17313214 

I.26341130 

14 

-351.543053 

-I.26329507 

-O.02512556 

O.07437287 

-330.787728 

O.96500944 

O.63638162 

901.027409 

39.J8586322 

2.4oo474oo 

-2.35255233 

15 

147.97-676 

2.40047400 

0.60300222 

-O.15612690 

17 

-95.U3408 

-2.35255240 

-0.15612691 

0.14666420 

0 

0.86725465 

Similarly to determine C] we use (5.3) but now with all the Ax8 == 0 except Axx 
? 1. 

Further G?5 is determined by (5.3) with all the Ax8 = 0 except Ax15 
= I, and similarly for 

C]7. The result is given on the lines Nos. 2, 3, 4 in Table (11.4). 

Next the system (9.1)?which is now of order 3 ?is solved, giving 

Axx 
= 377.484406, Ax15 

= -77.206269, Ax17 
= 6685.195685. ... (11.5) 
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By (9.2) this gives the values Gs listed on line 5 in Table (11.4). These values are?apart 
from rounding errors in the last decimal places?identical with the values G listed on the 

next to last line in Table (10.4). 

We can also illustrate the method (9.7)?(9.11). The solutions A], Af, A]7 of (9.8) 
are identical with the solutions C], C}b, C]7 listed on lines Nos. 2, 3, 4 of Table (11.4). Hence 

the matrix of the system (9.10)?now of order 3?is the same as the one we just used to get 

(11.5), but Bs in (9.10) is not the same as G8 in (9.2). B8 is obtained by putting all the Ax8 
in (9.8) equal to zero except Axr = Mor for r ? 0 ... ?". The result is given on the next to 

last line in Table (11.4). By (9.10) this gives 

Ax? 
= -1.21293526 Ax15 

= 0.47838524 Ax17 
= -24.85991535. (11.6) 

Finally by (9.9) we get the values of A listed on the last line of Table (11.4). These values 

are?apart from rounding errors in the last decimal places?identical with the values B on 

the line marked 5 in Table (10.4). 

12. The regressionall y transformed problem 

Once the equations have been brought over into any basis form, the number of equa" 
tions does not have a very great influence on the amount of work involved in the multiplex 

method. It is primarily a large number of degrees of freedom that will entail a heavy 

computational cost. In many practical problems, not least in macroeconomic planning, the 

number of degree of freedom, although great from the viewpoint of desk machine computa 

tion, will be moderate from the viewpoint of automatic computors, while the number of equa 
tions may be extremely large. Furthermore the situation will often be such that the way 
in which the equations can be brought over into some basis form will follow without too much 

difficulties from the already established theory and practice of the concrete problem at 

hand. For instance, there may be a certain number o? parameters of action or steering para 

meters, which will determine the constellation of the system and the way these steering para 
meters?to a linear approximation?determine a multitude of variables describing the system, 

may be known. To such cases the multiplex method is well adapted. Even if some basis 

form of the original equations is not already available, it may be reached through a hierarchic 

order of partioning of the equations or similar devices. Very seldom will all the variables 

occur in all the equations. 

In the opposite case, i.e., when the number of degrees of freedom is very large and 

the number of equations moderate, we can transform the problem into a linear programming 

problem where the number which was originally the number of degrees of freedom now appears 
as the number of equations and vice versa. 

In essence this is the same as to pass to what is generally called the dual problem. 
When looked upon from the viewpoint of (4.2) and (7.1) where the Bs are regression coefficients, 

we may speak of the regressionally transformed problem. 

To formulate this problem we first note that in the original problem we can, if we 

want to, define the preference function in the form 

f=P0+HPjxj 
... (12.1) 
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where the P are any set of (n+m+1) given weights, positive, negative or zero. The passage 

from this form to (1.5) is obvious, when the equations are given in a basis form. 

This being so, consider the following problem. Let B (j 
= 1, 2, ..., n+m) be a set 

of n+m magnitudes subject to the conditions of : (1) being non-negative, and (2) satisfying 
the n equations 

n+m 

^+S% 
= 0 (k 

= u9v...w) ... (12.2) 
i=i 

where the pk and bjk are the coefficients in the original problem. Compare (1.3) and (1.5). 

To determine that or those sets of values of the magnitudes Bj which satisfy these two sets 

of conditions and maximize the linear function 

n+m 

F = X B3bj0 
... (12.3) 

3=1 

where the bj0 (j 
= 1, 2, ..., n+m) are the constant terms?positive, negative or zero?in the 

basis form of the equations, i.e. in (1.3). 

This obviously is a well defined linear programming problem where the number 

of variables is the same as in the original problem, namely (n+m), but the number of equations 

is now n and the number of degrees of freedom is now m. 

We know that the problem now formulated has at least one solution where at least 

m of the Bj are zero, hence at most n of them different from zero (and then necessarily posi 

tive). Inserting these in (4.2) we find that all the n dk are zero, hence the original preference 

function/ can be written in the form (7.1) with all the Bs non-negative. We therefore have 

a solution of the original problem. 

Thus, a large number of equations need not worry us, provided we can in some way 

without prohibitive work bring the equations over into any basis form, nor need a large 

number of degrees of freedom do so, if in the regressionally transformed problem we can 

in some way bring the equations over into any basic form. 

13. Solving linear equations and inverting matrices 

when high speed memory is limited 

The following are explicit formulae that can be used in the case where the capacity 

of the automatic machinery is not large enough to handle the whole problem in one stroke. 

The essence of this method is that one proceeds step by step as one would with a desk machine 

and a work sheet, eliminating, however, not one single variable at each step, but eliminating 

as many variables at a time as is determined by the order of an inverse which the machine 

can handle directly in one stroke. While each step in the ordinary Gaussian elimination 

algorithm involves one division, i.e., the formation of one reciprocal number (and several 

multiplications), each step in the extended algorithm involves the formation of one inverse 

matrix (and some matrix multiplications). This procedure may, for instance, be used when 

we want to work the equations of a linear programming problem over into a basis form and 

there is available automatic machinery with a capacity large enough to handle a good sized 

inversion but not large enough to make the whole of the desired inversion in one stroke. 
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Let 

n+m 

ai0+ E a?jXj 
- 0 (i 

= 1, 2, ..., m) ... (13.1) 
i=i 

be m linearly independent equations connecting the n+m variables xv x2, ..., xn+m, the a 

being given constants. 

We pick a set of v variables (v < m) , let it be Nos. a ... y, and also pick a set of v 

equations, let it be Nos. a! ... y', and use these equations to express the v variables in terms 

of the other n+m?v variables. To do this we consider the matrix 

/ aa>a ... aa*y \ fall ... 
??J, \ 

(. I and its inverse I . 
J 

. ... (13.2) 
\ay'a (h'v / V a'y\, ... 

ay\, ! 

In terms of this inverse, we have 

x, = 
&&> + S bftxj (r 

= 
oc...y) ... (13.3) 

j=k, 2..)a. .7(. .n+m 

/ 
r = 

oc...y \ 

where 6g> 
- - S a;) ?Vj ( ) 

. ... (13.4) 
r -?'---v' 

\ j 
___ 

0, l...)a 
... 

y(...n+m] 

Inserting (12.6) in all the equations (12.4) except the equations Nos. a! ... y(, we get 

a$ + S a?> s, 
= 0 (i 

= 1, 2...)a' ... y'(...m) ... (13.5) 
i=l,2..)o..7(..n+f? 

/ 
i = 

1,2...)<%' ...y'(...m \ 

a$ 
= 

ai3+ 2 aif6g) ( 
.... (13.6) 

r==a-y 
\ j 

= 
0, 1 ...)a 

... 
y(... m+r./ 

where 

We next pick a new set of variables, now ju in number, (/. ̂  m?v), let it be Nos. 

6 ... 8, and also pick ?i equations in (13.5), let it be Nos. 6' ... 8'. None of the variables Nos. 

6 ... 8 occur in the set a ... 
y, and none of the equations Nos. 0' ... 8' occur in the set a' ... 

y'. 

Through the equations Nos. 0' ... 8 in (13.5) we express the variables Nos. 6 ... 8 in terms of 

the other n+m? v? ?i variables. To do this we consider the matrix 

(?(i) ?CD \ A.-1*1* /_.;1(1>\ aee a8? \ /aeef ao*' \ . 
) 

and its inverse I . I . ... (13.7) 

a% ... ayJ \a$P ... a;aW 

In terms of this inverse we have 

?r = 
6<20)+ 2 V$>x} (r = .....) ... (13.8) 

i-l,2...)a..7,9..?(..?+>? 

/r = ..... \ 

S a??<?o# 
... 

a'--*' 
\i 

= 
o, i ...)<x... r,0.... (...?+?)/ 

where 6<f> 
= - S ^?o?? 

... (13.9) 
r--e'..6' 

\ 

' - - ' " " ' -' 
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Inserting (13.8) in the right member of (12.6) we get 

xr=--KV+ S bffxj (r = 
a...y) ... (13.10) 

i=l, 2..)a..y,$..d(..n+m 

where 6<f> 
= 

&<-}> + S 6<J> 6<|> 
(T~CL'7 

) 
... (13.11) 

s=e..8 
\j 

= 
09l...)a...y9d...8(...n+mJ 

Through (13.10) and (13.8) the v+p variables Nos. ce ... y, d ... 8 are expressed in terms 

of the remaining n+m?v? p variables. 

In this way we can continue until we are left with only n variables in the right member. 

The equations are then brought over into a basis form. 

A possibility that might be considered is to express all the variables linearly in some 

other set o?n parameters tl912 ... tn. The whole programming theory could easily be expressed 
in this way. Practical experience will decide if any such transformation will pay. 

Paper received : October, 1955. 
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