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ABSTRACT 

We consider semidefinite relaxations of a quadratic optimization 
problem with polynomial constraints. This is an extension of quad- 
ratic problems with boolean variables. Such combinatorial prob- 
lems can in general not be solved in polynomial time. Semidefinite 
relaxations has been proposed as a promising technique to give 
provable good bounds on certain boolean quadratic problems in 
polynomial time. We formulate the extensions from boolean vari- 
ables to quaternary variables using ( i )  a polynomial relaxation or 
( i i )  by using standard semidefinite relaxations of a linear trans- 
formation of boolean variables. We analytically compare the two 
different approaches of relaxation. The relaxations can all be ex- 
pressed as semidefinite programs, which can be solved efficiently 
using e.g. interior point methods. Applications of our results in- 
clude maximum likelihood estimation in communication systems, 
which we explore in simulations in order to compare the quality o f  
the different relaxations with optimal solutions. 

1. INTRODUCTION 

In this paper we consider extensions of quadratic problems with 
boolean variables. The quadratic problem with boolean constraints 
is well-studied in the literature and has important applications in 
e.g. graph assignment theory. A boolean quadratic problem has 
the form 

(1) 
minimize r T A z  - 2bTz  
subject to r: = 1; i = I > .  . . _ n  

where A = Ar E R"X" and b E R". This is a combinatorial 
problem which in general cannot be solved in polynomial time. In 
this work we investigate semidefinite relaxations of the combina- 
torial problem ( I )  and extensions thereof. The semidefinite relax- 
ations yield a bound on the original problem which can be solved 
in polynomial time. In special cases the bound is even provable 
good. 

Although, the combinatorial problems we consider cannot in 
general be solved in polynomial time, far certain combinatorial 
quadratic problems the problem complexity grows polpamially 
with the problem dimensions. This is e.g. the case for minimum- 
capacity-cuts for directed graphs or for maximum likelihood esti- 
mation in multiuser detection with non-positive crosscorrelations 
between waveforms. Both problems can be expressed as quadratic 
problems with boolean constraints, see [ I ]  for further references. 
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The maximum likelihood application will be explored in more de- 
tail in Sec. 4 in our simulations. 

We start, however, by reviewing standard results for the boolean 
quadratic problem. The boolean problem ( I )  is difficult to solve 
due to the non-convex constraints = 1. Instead we find a lower 
bound to the problem (I )  using the dual function. The dual prob- 
lem is 

maximize - l T A -  bT(A+diag (A) ) ' b  
subject to A + diag (A) t 0 (2) 

b E R ( A + d i a g ( X ) )  

in the variable X E R". The dual problem is (always) concave and 
can in this case be solved as a semidefinite program. 

Let f (z) = zTAa - 2hTz denote the primal objective of the 
boolean quadratic problem, and let g(X) denote the dual objective 
in (2) .  From weak duality we have that g(X) 5 f(z). However, 
it is well-known that strong duality fails for this problem, so in 
general the dual problem (2) gives a lower bound on the original 
problem (1). 

An alternative representation of the dual problem can he oh- 
tained by rewriting (2) as 

maximize -lTz 

with the variable z E R"+'. The dual problem of(3) is 

minimize T ~ X  [-$ ;"I 
subjectto X , ; = l .  i = l :  . . . ,  r r + l  (4) 

x n. 

Slater's constraint qualification states that strong duality of the 
convex problem (3) holds provided there exists a strictly feasible 
interior point, which is obviously satisfied. Since strong duality 
holds, we have that g(X') = h ( X ' )  where h(X) denotes the ob- 
jective of (4). i.e. problem (2) and problem (4) obtain the same. 
value at their optimal points. We next recast the original boolean 
quadratic problem ( I  j as 

minimize T ~ x  [-tT i6] 
subject to X = [:] [z' c] ( 5 )  

x,; = 1: i = 1. .. .;n+ 1.  
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with the additional variable c E R. Note that for c = 1 the two 
formulations (1) and ( 5 )  are identical. Then (4) follows from ( 5 )  
if we replace the rank-I constraint by the positive semidefinite re- 
laxation X t 0. This gives an interesting interpretation of the 
Lagrangian dual problem as a semidefinite rank-relaxation of the 
original problem. 

2. RANDOMIZED ROUNDING 

If the solution to (4) has rank 1, the optimal solution is read- 
ily observed from X'. Otherwise we need to map the solution 
hack to a boolean vector. In their seminal paper 121 Goemans and 
Williamson proposed to perform this mapping using a randomized 
algorithm. They generate a vector 1, N M ( 0 ,  X')  and estimate xi 
according to the rule 

z j  =sgn(y,) ,  i = l :  . . . :  n 

Under the assumption that the elements of the coefficient ma- 
trix (in our case [ _fT g b ] )  are all nonnegative, Goemans and 
Williams proved that the expected value of the relaxation using 
the randomized rounding technique is within 0.878 of the optimal 
value. 

These results were later extended by Nesterov [3] to the gen- 
eral case without assumptions on the coefficient matrix. For this 
case Nesterov proved that relative accuracy of the semidefinite re- 
laxation is within 0.429 of the optimal solution. Compared to the 
0.878 bound by Goemans and Williams the general 0.429 hound 
seems discouraging, but in practice this worst-case bound is rather 
conservative, see simulation results in Sec. 4. 

To tighten the relaxation the rounding is repeated several times 
and the realization of z that achieves the largest objective of ( I )  is 
chosen as the boolean estimate. The cost of performing the ran- 
domized rounding is in most cases insignificant compared to solv- 
ing the semidefinite relaxations. 

3. HIGHER ORDER POLYNOMIAL CONSTRAINTS 

We next consider extensions to higher order polynomial constraints 
of the special form 

(6) 
minimize z*Aa - 2Reb'i: 
subject to xp = 1: i = 1:. . . , ? I .  

where A = A' E C"x", b E C" and d is a power of two. In 
solving (6) we are faced with the same difficulty as for the boolean 
problem (11, namely that the problem in non-convex and in general 
cannot be solved in polynomial time. 

We consider two different semidefinite relaxations of the prob- 
lem (6). The two methods can thus be interpreted as a straightfor- 
ward extension of the problem (I) to incorporate complex vari- 
ables and special polynomial constraints of the form $ = 1. The 
methods described in the sequel extend to arbitrary values of d, but 
becomes notationally cumbersome for higher values. For purpose 
of exposition and due to space limitations we limit our discussion 
t o d = 4 .  

3.1. Polynomial relaxation 

The constraint z: = 1 implies that a, E 1-1: 1: -j>j}. We 
define the auxiliary variable II, = 3:: so that $ = 1. This in 

tumimpliesthaty, E {-l.+l] andzi  E {- l ; l . - j :+j} .  Let 
U = Rei: and '11 = Imz. Then the above conditions are equivalent 
to 

7,: = 1 
y< = U: - Uf 

UjUt = 0. 

We next recast problem (6) in terms of real variables. For that 
purpose l e t B  = Re A,  C = Im A, c = Re band d = Im b. Then 
an equivalent formulation using real variables is 

U,Ui = 0: i =  1. .... n. 
y: = 1. 

We obtain a semidefinite relaxation by reformulating the problem 
as 

minimize li- [:: 
subject to 

B -C B ]  - 2 [c* d ~ ]  ri] 
diag (XI,) - diag ( X z z )  = y 
diag (Xn) = 0 ;;:I = [:] [U' 4 
diag ( Y )  = 1 
Y = yy7 

and then relaxing the rank-I constraints 

B -C 
minimize Tr [$: 
subject to 

- 2 [c' d'] [z] 
diag (XI,) - diag ( X ~ Z )  = y 
diag (Xlz)  = 0 

["x:.: ;;;j t [I [U= U'] 

d i a g ( Y )  = 1 
y t WT. 

This is turn gives a reduced expression for the relaxation as 

The dual problem of (7) can he written as 

minimize 1 1 ~ 1 1 1  + Y ,,",,. 
diag (y) diag (w)  0 

subjectto 1; % "1 + [.-.(w) diag(y)  01 5 0 
dT 0 0 0 7  

(8) 

3.2. Affine transformation 

For many polynomial constraints we can express the variables as 
an affine transformation of simpler boolean variables. By introduc- 
ing such a transformation the problem then reduces to a boolean 
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quadratic problem where we can use the standard semidefinite re- 
laxation of Sec. 1. 

We first ~ecas t  the problem in terms of real variables as 

minimize 

subject to 
PI [c B -C ] [.I U - 2 [c' d*]  [XI 

( U ;  + U,)' = 1_ i = 1 : .  ..in 
(ffl ,-v,)Z=l.  i = l  ...., 71. 

We obtain a semidefinite relaxation by first reformulating the prob  
lem as 

and replacing the rank-l constraint by a semidefinite constraint 

minimize Tr [:E n -C [. - 2 [c' d'] [:] 
subject to diag (XI1 + 2XI2 + X Z 2 )  = 1 

diag (XI1 - 2Xm + Xzz) = 1 

XT? X?* 
The constraints obviously imply that diag (Xn) = 0 so we get a 
reduced semidefinite relaxation 

minimize Tr [:E 
subject to 

[. B -C - 2 [e' PI [E] 
diag (Xll) + diag ( X Z 2 )  = 1 

which has a dual problem 

minimize I'Z + 

At this point i t  is instructive to compare the relaxation in (7) 
with the relaxation in (9). We infer that the relaxation in (9) is 
better (tighter) since the constraint 

diag ( X U  + X Z Z )  = 1 

is embedded in the larger constraint set 

-1 5 diag(Xil  - X Z l )  5 1 

This important and interesting relationship is consistently supported 
by our simulations in Sec. 4.2. Comparing the two initial relax- 
ations, it is not obvious which is better. 

4. MAXIMUM-LIKELIHOOD ESTIMATION 

We explore the application of the semidefinite relaxations for max- 
imum likelihood estimation for communication systems. The pur- 
pose of this investigation is two-fold; it extends previous results 

reponed in [4,51 and it gives a useful scenario for testing the qual- 
ity of the different relaxations. Polynomial constraints as consid- 
ered in Sec. 3 have nice interpretations as different memory-less 
modulation schemes, e.g. the constraint z:" = 1 corresponds to 
M-PSK. 

In general maximum-likelihood estimation is a very difficult 
problem. Here, we consider a single user communication systems 
with a time-dispersive propagation channel modeled as B time- 
invariant transversal filter. For this specific scenario with lim- 
ited channel memory, the optimum solution to the combinatorial 
quadratic optimization problem can be obtained in polynomial time 
using the classic Viterbi maximum-likelihood sequence estima- 
tor [6]. This is useful since it allows us to investigate the qual- 
ity of the relaxations for larger problem dimensions with moderate 
computational efforts. 

4.1. Signal model 

We consider the discrete-time signal model 

y ( t )  = H ( t ) z ( t )  + v ( t J  (11) 

where y E C"' is the observed signal, H E C 'I' is the system 
transfer matrix, z E C" is the transmitted signal and II E C"' 
is an unknown noise or perturbation vector. We assume that z is 
an M-PSK signal with x:" = 1 where M is a power of 2. We 
make no assumptions on the structure of H and we assume that U 
is circularly symmetric zero-mean additive white Gaussian noise 
with covariance g21. 

In maximum-likelihood estimation we estimate z ( t )  given the 
likelihood function of y ( t ) .  For ease of notation we drop the time- 
dependency in the following. For the simple signal model (1 1)  the 
likelihood function takes the form 

The maximum likelihood estimation problem is then easily recast 
as an equivalent minimization problem 

minimize z'H'H2 - 2Rey'Hz 
subject to z:' = l1 (12) i = 1.. . . ~ 11.. 

For A = H'H and b = H ' y  we have a similar problem as (6). 

4.2. Simulation results 

We consider a single-user QPSK communication scenario with 
z: = 1 and a typical channel model with a 5 taps, where each 
tap is Rayleigh distributed with exponentially decaying powers. 
All channel realizations are normalized to unit energy and we con- 
sider a data-burst length of 100 symbols. 

4.2.1. Tighrness of the semidefinite relarnrion 

We Stan by investigating the tightness of the semidefinite relax- 
ation. Let q ( x )  = z'Az - 2Re b-3: denote the primal objective 
and q ( X )  denote the objective of the relaxations as a function of 
X, i.e. the objective of either (7) or (9). We define the relative er- 
ror in percent between the optimal quadratic objective y ( 2 )  and 
the semidefinite relaxation q ( X * )  as 
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In Fig. l a  we plot the relative error between the optimal soh-  
tion (obtained by the Viterbi algorithm) and standard semidefinite 
relaxation of the affine transformation (9) and in Fig. Ib  we plot the 
relative error between the optimal solution and the polynomial re- 
laxation (7). We see that the polynomial relaxation is looser which 
supports our claim from Sec. 3. 
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Fig. 1. Tightness of relaxations for the constraint z: = 1 using 
the two relaxations in Sec. 3 for a fixed SNR=7dB averaged over 
different channel realizations. Top: relative error of affine trans- 
formation, Bottom: relative error of the polynomial relaxation. 

4.2.2. 6it-error-probubili~y test 

We next investigate the average bit-error-probability achieved with 
the maximum-likelihood approximation. We use the same chan- 
nel model described above where a different channel realization 
is chosen for each data-burst of 100 symbols and assumed to be 
time-invariant for the duration of a single data-burst. However, we 
restrict our attention to the boolean case 2 = 1 instead of the 
quatemary case z: = 1. We do this to test the original rounding 
procedure of Sec. 2. Also, the superior relaxation based on the 
affine transformation in Sec. 3.2 is easily rewritten as a standard 
boolean problem; this is not shown here due to space limitations. 
The results on the quality of the bounds are thus valid for the relax- 
ation in Sec. 3.2. Fig. la shows that the ,429 bound by Nestorov is 
in fact quite conservative in practice. 

Fig. 2 shows the simulated bit-error-probalitities. For refer- 
ence we also plat the lowest bound achievable obtained with un- 
coded BPSK modulation in the absence of 1SI. 

S. CONCLUSION 

In this work we considered extensions of the well-known quadratic 
problem with boolean variables. The extensions replace the re- 
striction of boolean variables with general polynomial constraints 
where we considered the polynomial constraint P = 1. 

Recent methods based on semidefinite programming are known 
to give a provable good hound on the problem solvable in polyno- 
mial time using e.g. interior point methods. We considered two 
different semidefinite relaxations of the problem with higher di- 
mensional constraints. One method applies the standard semidefi- 

Fig. 2. Simulated hit-error-probabilities. 20000 bursts of I00 hits 
were demodulated at each SNR. 0: BPSK lower bound, 0: optimal 
ML solution, 0: threshalded last column of X‘, A: 20 randomiza- 
tion steps, *: 100 randomization steps. 

nite relaxation to an affine transformation of simpler boolean vat-  
ables, and another relaxation is based on a semidefinite polynomial 
relaxation. For the special cases with z4 = 1 we showed that the 
polynomial relaxation is in fact a further relaxation of the semidef- 
inite relaxation of the affine transformation. Applications of the 
results include maximum-likelihood estimation in communication 
systems, where the relaxations offer relatively easily computed ap- 
proximations of the global optimum. We investigated this applica- 
tion in simulations in order to compare the quality of the different 
relaxations. 

6. REFERENCES 

[ I ]  S.  Verdli, Multiuser Detection, Cambridge University Press, 
I st edition, 1998. 

[2] Michel X. Goemans and David P. Williamson, “Improved Ap- 
proximation Algorithms for Maximum Cut and Satisfiahility 
Problems Using Semidefinite Programming,” J. Assoc. Com- 
put. Mach., vol. 42, pp. I 1  15-1 145, 1995. 

[3] K. E. Nesterov, “Semidefinite relaxation and nonconvex 
quadratic optimization,” CORE paper, Louvain-la-Neuve, 
Belgium, 1997. 

[41 W. K. Ma, T. N. Davidson, K. M. Wong, 2. Q. Luo, and P. C. 
Ching, “Quasi-maximum-likelihood multiuser detection us- 
ing semidefinite relaxation with application to synchronous 
CDMA,“ IEEE Trans. on Signal Processing, vol. 50, no. 4, 
pp. 912-922, April 2002. 

[ 5 ]  P. H. Tan and L. K Rasmussen, “The application of semidefi- 
nile programming for detection in CDMA,” IEEE JSAC, vol. 
19, no. 8, pp. 1442-1449, August 2001. 

161 I. G. Proakis. Digital Communications, McGraw Hill. 3rd 
edition, 1995. 

[7] S. Boyd and L. Vandenherghe, “Convex optimization:’ Course 
reader. 

VI - 724 


