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ABSTRACT

We obtain the spectral decomposition of four linear mappings. The first, Ie, is a
mapping of the linear hull of all centered inner-product matrices onto the linear hull
of all the induced squared-distance matrices. It is based on the natural generalization
of the cosine law of elementary Euclidean geometry. The other three mappings
studied are ,,- 1, the adjoint ,,*, and (" *)- 1. Extensions and applications, particularly
to multidimensional scaling, are discussed in some detail.

1. INTRODUCTION

Consider a collection X = {x j : i = 1, ... , n} of n > 2 points in a real
inner-product space I. Suppose that X is centered (that is, LX j = 0), and let
Bx == (b jj ) and Dx == (d jj ) be the matrices defined by

bjj=(Xj,Xj)I and djj=llxj-xjlly,

where 11'11 I is the nonn on I induced by the inner product ( " . ) I' Then it is
clear that these two fundamental matrices are related by

(lK)

and also, after a little algebra, by

(IT )

with a dot denoting addition over an omitted subscript.
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Let B and D denote respectively the sets of all such matrices Bx and Dx ,
and let S denote the vector space of all n X n real, symmetric matrices. Then
(1) establishes a natural one-to-one correspondence between B and D, which
we extend to the smallest subspaces of S containing them. Denoting these
subspaces by Sc and SH respectively, this extension of (1) is given by the pair
of mappings IC: SC -+ SHand 7": SH -+ Sc defined by

IC( C) = (C * 1)InI~ + InI~(C *1) - 2C,

7"(H) = - t(I - J)H(I - J),
(2)

where In denotes the n X 1 vector of ones, J= n -1InI~, and * is the
Hadamard matrix product defined by (A * Z)ij = (A)iiZ)ij' We use the
symbol IC to connote the fact that the first equation in (1) is just an
application of the cosine law to the triangle with vertices 0, Xi' and X j' The
symbol 7" is used in honour of Torgerson (1958), who gives an historical
account of its derivation in the special case I = R n -1, (x i' X j ) I = xix j' The
letter B is traditional in this case, while D connotes (squared) distance. We
use C as a mnemonic for centered (zero row and column sums), and H as a
mnemonic for hollow (zero diagonal entries).

We introduce the inner product on S defined by (51,52 ) = tr(5152 ),

which induces the Euclidean norm and its associated metric. Thus, S is a
Hilbert space of dimension m + n, where m == tn(n -1), and is isomorphic
to E(m+n) in the obvious way. Similarly, each of its subspaces is a Hilbert
space in the inherited inner product and is isomorphic to Euclidean space of
the same finite dimensionality.

Observing that IC and 7" are linear operators between Hilbert spaces, we
introduce their adjoint operators IC *:SH -+ Sc and 7" * :Sc -+ SH defined by
the relationships

and

<C, 7"( H » = <7" *(C ), H) ,

(3a)

(3b)

which are to hold for all H in SHand for all C in Sc'
The objective of this paper is to give an essentially complete account of

these two pairs of operators by obtaining their spectral decompositions. This
is done for IC and 7" in Section 2. Their adjoints, for which we obtain explicit
expressions, are dealt with in Section 3. Matrix representation of all four
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mappings are derived and studied in Section 4. Extensions and applications
are discussed in the final section.

2. THE OPERATORS 7" AND K

The subspace Se comprises all centered matrices, and SHall hollow ones.
That is:

PROPOSITION 2.1.

In particular, dim(Se) = m = dim(SH)'

Proof. For each i < j let Xi j denote a collection in which Xi = - X j "* 0
while x k = 0 for all k"* i or j. It is easy to see that the m members Dx of D
are linearly independent and that the subspace {H E SIH * I = O} '~hich
they generate contains D and is the smallest subspace of S with this property.
The proof for Se is similar. •

Throughout the paper, we use C and H to denote general members of Se
and of SH respectively. The next result is of central importance.

THEOREM 2.2. The mappings K and 7" are linear and mutually inverse.

Proof. Linearity is immediate from (2). Suppose H = K(C). Noting that
(I -l)l n = 0 and (I -l)C = C, we have from the first equation in (2) that
(I -l)H(I -l) = - 2C. That is, C = 7"(H). Conversely, suppose C = 7"(H).
Using h .. =O and C··= --21 {h.. -n- 1h. -n- 1h .+n-2h } and simplify-.. '} '} .. .} ..
ing, we find Cii + cjj - 2cij = hij' •

The fact that K and 7" are mutually inverse is particularly convenient and
is exploited as follows. Given a result about either SH or Se' we at once write
down an equivalent result for the other space. A result about H in SH [C in
Se] is immediately translated into one for C in Se [H in SH] by writing
H = K(C) [C = 7"(H)] and using C = 7"(H) [H = K(C)]. Pairs of such equiv­
alent results are stated in {(a),(b)} form. Naturally, only one of them need be
proved.

The spectral decompositions of the linear operators K and 7" are of
fundamental interest. We say that two members of S are equivalent, written
Sl - S2' if they have the same off-diagonal elements. Then, in a slight
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generalization of the usual definitions, we say that A is an eigenvalue and H
is an eigenmatrix of T if T(H) - AHand H * O. The members of the spectral
decomposition of IC are similarly defined.

These spectral decompositions are obtained as follows. We define three
subspaces of S:

It is convenient to have a notation for the unique hollow and the unique
centered matrix equivalent to a given symmetric matrix. Accordingly, we
define h: S -+ SHand c: S -+ Sc by

Since T(H) is always centered, T(H) - AH if and only if T(H) = Ac(H);
since IC(C) is always hollow, IC(C) - AC is equivalent to K(C) = Ah(C). Now
the following three results can be verified by straightforward if tedious
calculation. Insightful derivations, based on matrix representation of IC and T,

are given in Section 4.

PROPOSITION 2.3.

(a) The subspaces h(S,), h(Sw), and SHC are painvise orthogOTUll and
have direct sum Sw Their dimensioTUllities are 1, n -1, and m - n respec­
tively.

(b) The subspaces c(S,), c(S w), and SHC are painvise orthogoTUll and
have direct sum SC' They have dimensions 1, n - 1, and m - n respectively.

Observe that m - n vanishes if and only if n = 3. In this case SHC is the
trivial subspace.

THEOREM 2.4.

(a) (i) On h(S,), T(H) - (- 2n)-lH;
(ii) on h(Sw)' T(H) - ( - n )-lH;

(iii) on SHC> T(H) = - ~H.

(b) (i) Onc(S,), K(C)-(-2n)C;
(ii) on c(Sw)' K(C) - ( - n )C;

(iii) on SHC' IC(C) = ( - 2)C.
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Let the mappings a J and 13J represent orthogonal projection of SHonto
h(SJ) and of Sc onto c(SJ) respectively. Let a w , aHC and f3w,f3Hc be
similarly defined. We denote aJ(H) by HJ and f3J(C) by CJ, with similar
conventions for H w , HHC and Cw , CHC'

PROPOSITION 2.5. We have the orthogonal decompositions

(a) H=HJ+Hw+HHC and
(b) C=CJ+CW+CHC'

where

(a) (i) HJ = n(n -1)-lh(lHl),
(ii) H w = n(n - 2)-lh{(l-l)HI + Hl(l-l)},
(iii) HHC = H - n(n - 2)-lh(HI + IH) - n2(n -1)-I(n - 2)-lh(lHl),

and

(b) (i) CJ =(n-l)-l tr(C)(I-l),
(ii) Cw = - (n - 2)-1{ c(c*l~ + Inc~)+2tr(C)(I -l)},

(iii) CHC = C + (n - 2)-IC(c*l~ + Inc~) + n(n - 1)-I(n - 2)-1 tr(C)(l
-l),

with

As the mappings K and T are linear, we obtain their spectral decomposi­
tions by combining Proposition 2.3 and Theorem 2.4, while Proposition 2.5
provides the explicit form of the six orthogonal projections a J' ... , 13 HC' Let 0

denote composition of maps. We have then the desired result:

THEOREM 2.6.

(i) (a) T = (- 2n)-I(c 0 aJ)+( - n)-I(c 0 aw)+( - 2)-laHC'
(b) K = (- 2n)(h 0 f3J)+( - n)(h 0 f3 w )+( - 2)f3HC'

(ii) That is, for all H in SH and for all C in Sc,

(a) T(H) =( - 2n)-lc(HJ)+( - n)-lc(H w )+( - 2)-IHHC'
(b) K(C) = (- 2n)h(CJ)+( - n)h(Cw )+( - 2)CHC'

COROLLARY 2.7. The zero matrix is the unique fixed point of both T

and K.

Proof. Immediate. •
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COROLLARY 2.8. The relevant restrictions of T and K are mutually
inverse linear mappings between

(i) h(SJ) and c(SJ)'
(ii) h(S w) and c(S w),

(iii) SHe and itself.

Proof. Observe that c 0 h = c and hoc = h.

COROLLARY 2.9.

(a) (i) On h(SJ)' IIT(H)II = (2y'n)-IIIHII,
(ii) on h(Sw), IIT(H)II = (/2-;;)-IIIHII,

(iii) on SHe' IIT(H)II = *IIHII;
(b) (i) on c(SJ)' IIK(C)II = 2/rlIlCII,

(ii) on c(Sw)' IIK(C)II = y'2;IIC11,
(iii) on SHe' IIK(C)II = 211C11·

•

Proof. On h(SJ)' T= ( - 2n) -IC and Ilc(H)II = /rlIIHII, yielding a(i).
The rest of the proof is similar. •

Finally, using the induced operator norm, let

IITII = sup { II T(H) IIIIIHII ~ I}.

Then, omitting for brevity the special case n = 3 where SHC = {O}, we
obtain:

COROLLARY 2.10. Suppose n > 3, and let 0 *- H E SHand 0 *- C ESc'

(a) (2/rl) -II1HII ~ IIT(H)II ~ *IIHII, with equality in the first place ifand
only if H E h(SJ)' and in the second if and only if H E SHC'

(b) 211CII ~ IIK(C)II ~ (2/rl)IIClI, with equality in the first place if and
only if C E SHC and in the second if and only if CE c(SJ).

In particular, IITII = * and IIKII = 2/rl.

Proof. Immediate. •
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3. THE OPERATORS '1"* AND K*
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By Theorem 2.2 and Corollary 2.10, 'I" and K are mutually inverse,
bounded linear operators between the Hilbert spaces SHand Se' By the
general theory of adjoints [see, for example, Luenberger, (1969, §§ 6.5-6.8)],
the operators K * :SH --+ Se and 'I" * :Se --+ SH defined by (3) have therefore the
properties stated in the following portmanteau theorem. Recall that the polar
AO(L), or A° for brevity, of a subset A of S relative to a subspace L of S is
defined by

We denote the inverse image of a set by the superscript ( -1).

THEOREM 3.1.

(i) K* and '1"* are bounded, linear, and mutually inverse.

(ii) (a*) IIK*II = 1I1e1i.
(b*) 11'1"*11=11'1"11·

(iii) (a*) '1"** = '1".
(b*) K** = K.

(iv) (a*) For all A eSe, {K(A)} ° = K*< -l)(A0), both polars being relative to

Se'
(b*) For all A c SH' {'I"(A)}O = 'I"*<-l)(AO), both polars being rekztive to

SH'

We proceed by direct analogy with our treatment of 'I" and K in Section 2.
In particular, equivalent results, reflecting now the one-to-one correspon­
dence which K* and '1"* provide between Sn and Se' are given as {(a*),(b*)}
pairs. The following explicit expressions for Ie * and 'I" * may be verified
directly. More insightful derivations are given at the end of Section 4.

THEOREM 3.2.

(a*) Ie* = - 2cH ,

(b*)'I"*=-lh2 e,

where CH and he are the restrictions of c and h to SH and Se respectively.
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That is,

(a*) K*(H)= -2{H-diag(Hl n )},

(b*) 7"*(C)= -HC-(C*I)}.

FRANK CRITCHLEY

The spectral decompositions of K * and 7" * are simple and immediate.

THEOREM 3.3.

(a*) K*(H) - (- 2)H on Sw
(b*) 7" *(C) - (- VC on Se'

COROLLARY 3.4. The zero matrix is the unique fixed point of both K *
and 7"*.

Proof. Immediate. •
COROLLARY 3.5. Let L denote any subspace of S. Then the relevant

restrictions of K * and 7" * are mutually inverse linear mappings between h(L)
and c(L).

Proof. Immediate.

COROLLARY 3.6.

(a*) (i) On h(S/), IIK*(H)II = (2vn)IIHII;
(ii) on h(Sw), 11K *(H)II = (v'2n)IIHII;

(iii) on SHe' IIK*(H)II = 211HII.
(b*) (i) On c(S/), 117"*(C)11 = (2v'n)-11IClI;

(ii) on c(Sw), 117"*(C)1I = (v'2n)-lIlCII;
(iii) on SHe' 117"*(C)1I = !IIClI.

Proof. Combine Theorem 3.3 with Corollary 2.9.

Omitting again the special case n = 3 for brevity, we obtain at once:

•

•

COROLLARY 3.7. Suppose n > 3, and let 0"* HE SH and 0"* C ESe'

(a*) 211HII ~ IIK*(H)II ~ (2vn)IIHII, with equality in the first place if
and only ifH E SHe, and in the second if and only ifH E h(S/).

(b*) (2vn)-1IiCIi ~ 117"*(C)11 ~ tliCII, with equality in the first place if
and only if C E c(S/), and in the second if and only if C E SHe'
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Let T, and (T *), denote the restrictions of T and T* to h(S,) and c(S,)
respectively. Let TW' (T*)W' THC' (T*)HC' and their analogues for K and K*

be similarly defined. Then combining Corollaries 2.8 and 3.5, we obtain:

PROPOSITION 3.8.

(i) (T,)* =(T*), and (K,)*=(K*),.
(ii) (TW)* =(T*)W and (KW)* =(K*)W'
(iii) (THd* =(T*)HC and (KHd* =(K*)HC'

Verbally, this last result says that for both T and K, and for each of their
three eigenspaces, the restriction of the adjoint is the adjoint of the restric­
tion.

4. MATRIX REPRESENTATIONS OF T AND K

For S in S, let v(S) E R m contain the above-diagonal elements of S listed
in rowwise order. That is, v(S) = (812,,,,, 8 1n , 8 23,,,,, 8 n -l, nf. Then H +-+

v(H) and C +-+ v(C) provide natural one-to-one correspondences from SH
and Sc to R m

• We use these correspondences to represent T and K by m X m
matrices T and K via

(a) T(H) = C +-+ Tv(H) = v(C) and
(b) K(C) = H +-+ Kv(C) = v(H).

In particular, T(H) - AH, H =f:. 0, if and only if v(H) is an eigenvector of T
corresponding to the eigenvalue A. Our first task is then to obtain the
spectral decompositions (in the usual sense) of T and K.

We obtain explicit expressions for T and K as follows. For p ~ 1, let Wp

be the (p -I)-dimensional subspace of RP defined by Wp = {w E RPlwTIp
= O}. With A as a mnemonic for ..additive," let SA be the n-dimensional
subspace of S defined by SA= {xI~+lnxTlxERn}. Finally, define the
m X n binary matrix R by

I~_1 OT OT 0

I~-2 OT 0

RT= OT 0
1n - 1

1n - 2 I~ 0

Q 1

1
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where the suffix on I (as on I below) denotes its order. This matrix R is
extremely useful. Its properties are summarized in the follOwing result, whose
straightforward proof we omit.

PROPOSITION 4.1.

(i) R has full column rank n.
(ii) For all x E IR n, Rx = tI(xl~ + I nxT). In particular, Rl n = 2 ·lm,

while Rx E Wm if and only if x E Wn •

(iii) For all 5 E S, RTv(S) has ith element (s;. - S;i)' In particular,
RTl m= (n -1)l n , while RTv(S) E Wn ifand only if v(5) E Wm •

(iv) The common range space ofR and ofRRT is V(SA)' The common null
space of RT and of RRT is v(SHd.

(v) RTR = (n - 2)In + nIn.

Next, we observe that T can be expressed in terms of the row sums of H,
and IC in terms of the diagonal entries of C. Accordingly, we define h+ and
c. in IR n by

and rewrite (2) as:

PROPOSITION 4.2.

(a) T(H) = - HH - n- 1h+ 1~ - n-l1nh~ + n-l(l~h+ )In},
(b) IC(C) = c.l~ + Inc~ - 2C.

Combining Propositions 4.1 and 4.2, we find, as required, that

THEOREM 4.3.

(a) T= -t{Im-n-1RRT+(I-n-l)Jm}'
(b) K = - (21m + RRT

).

•
COROLLARY 4.4. T and K are mutually inverse and symmetric, negative

definite.

Proof. T and K are mutually inverse because T and IC are so (Theorem
2.2). It is clear from Theorem 4.3(b) that K is symmetric, negative definite,
and so therefore is K - 1. •
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We obtain the spectral decompositions of T and K from that of RRT as
follows. Here orthogonality is with respect to the usual inner product
(y, z) = yTz on R m

•

PROPOSITION 4.5. R m = v(SJ) (l) v(S w) (l) v(SHC) is an orthogonal decom­
position in which the subspaces stated have dimensions 1, n - 1, and m - n
respectively.

Proof. Straightforward. •
Let PJ denote the matrix projecting R m orthogonally onto v(SJ)' and let

Pw , PHC be similarly defined. For y in R m, write YJ = PJY' and let Yw, YHC
be similarly defined.

PROPOSITION 4.6. Any vector Y in R m can be decomposed orthogonally
as

Y = YJ + Yw + YHC'

where YJ=m-l(l~y)lm and Yw=(n-2)-lv(wl~+lnwT), w=(ln­
In )RT y.

Proof. Consider the two matrices 1m and (n - 2)-lR(ln - In)RT. The
first is clearly symmetric and idempotent, and so, by Proposition 4.1, is the
second. They therefore represent orthogonal projection onto their range
spaces. But Range(lm) = v(SJ)' Thus PJ = 1m, and so YJ is as stated. Now
In - In is the symmetric, idempotent matrix projecting R n onto Wn. Thus,
usirtg the fact that Range(A) = Range(AAT

), the second matrix has range
space {Rwlw E Wn }. But, by Proposition 4.1(ii), this is v(Sw)' Thus Pw =
(n - 2)-lR(ln - In)RT and so, using Proposition 4.1(ii) again, Yw is as
stated. Finally, Proposition 4.5 implies that PJ + Pw + PHC = 1m and that
PJPw = PWPHC = PHCPJ = O. •

PROPOSITION 4.7. RRT has spectral decomposition RRT= (2n - 2)PJ +
(n - 2)Pw .

Proof. By Proposition 4.1( v), RTR has spectral decomposition



102 FRANK CRITCHLEY

That is, RTRl n = (2n - 2)l n and RTRw = (n - 2)w for all wE Wn • Thus,
using Proposition 4.1(ii), RRTl m = (2n - 2)l m and RRTw = (n - 2)w for all
wEWm • •

THEOREM 4.8. The spectral decompositions of T and K are as follows:

(a) T = (- 2n)-lp, +( - n)-lpw +( - 2)-lPHC'
(b) K = (- 2n)P, +( - n)Pw +( - 2)PHC'

In particular,

(i) on v(S/), Ty = (- 2n)-ly and Ky = (- 2n)y;
(ii) onv(Sw)' Ty=(-n)-lyandKy=(-n)y;
(iii) on v(SHd, Ty = (- 2)-ly and Ky = (- 2)y.

Proof. The spectral decomposition of K follows from combining Propo­
sitions 4.5 and 4.7 with Theorem 4.3(b). That of T = K -1 is then immediate.

•
We now translate these results about T and K back into properties of T

and /c. To effect this, let H and C denote IR m endowed respectively with the
inner products

THEOREM 4.9. The correspondences H - v(H) and C - v(C) establish
Hilbert-space isomorphisms between SHand H and between Sc and C
respectively.

Proof. The result for SH is immediate. That for Sc follows on recalling
the explicit form of K [Theorem 4.3(b)] and that c* = - RTv(C). •

THEOREM 4.10. Let y and z be eigenvectors ofK (or T) corresponding to
distinct eigenvalues. Then (y, z)H = 0 = (y, z)c'

Proof. Observe that yTz = yTKz = O. •
Combining these two theorems, Proposition 4.5 translates into Proposition

2.3, and Proposition 4.6 into Proposition 2.5. Theorem 2.4 is the translation of
the latter part of Theorem 4.8.

Next we discuss matrix representations of /C * and T *. As with /C and T,

we use the correspondences H - v(H) and C - v(C) to represent Ie* and
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T * by m x m matrices K * and T * via:

(a*) ,,*(H) = C +-+ K *v(H) = v(C) and
(b*) T*(C) = H +-+ T*v(C) =0 v(H).

THEOREM 4.1l.

(a*) K* = - 21m ,

(b*) T* = - tIm'

Proof. Using the defining relation (3a) and Theorem 4.9 gives

103

for all H in SH and for all C in Sc' Thus K * = - 21m , By Theorem 3.1(i),
T * = (Ie *) - 1 and so T * = (K *) - 1. •

Finally, we observe that the simplicity of the adjoints ,,* and T * results
from the rather remarkable fact that the matrix defining the inner product on
C is the negative of the matrix representing Ie, while that defining the inner
product on H is just a multiple of the identity.

5. DISCUSSION

5.1. Extensions
Let BO and DO denote the polars of Band D with respect to their linear

hulls Sc and SH respectively. By Theorem 2.2, D = ,,(B) and B = T(D). By
Theorem 3.1, BO = Ie *(DO) and DO = T *(BO). Now B is self-dual. That is,
BO = - B. Thus, each of the four sets B, D, BO, and DO is a known
nonsingular linear transformation of each of the others. In a companion paper
(Critchley, 1986a), we use the four mappings studied in the present paper to
derive in a unified way the properties of these four sets and to illuminate our
understanding of the relationships between these properties. For example,
being a pointed solid closed convex cone is a property invariant to nonsingu­
lar linear transformation. Having established this property for B, it is then
immediate that D, BO, and DO all share it. Again, support cones are
equivariant to nonsingular linear transformation. Thus, having obtained the
support cone at a boundary point of B, we have at once by transformation
the support cone at the corresponding boundary point of each of D, BO,
and DO.
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In a related paper (Critchley, 1986b), we study the behavior of the rank
and spectral decomposition of a matrix under the mappings T, Ie and their
adjoints.

There are close links with the recent work on diversity and quadratic
entropy reported in Roo (1982,1984,1986). In particular, Equation (4.4) of
Rao (1984) involves an extension of the domain of Ie from Sc to S.

We now briefly note some of the other possible extensions to the present
paper. First, as is natural in some contexts, we may allow more general and
possibly different inner products on SHand Sc' This leaves the mappings T

and Ie unchanged, but not their adjoints. Secondly, we may extend the
domain of both T and Ie to the space of all real n X n matrices, with
consequent changes to their adjoints. This throws light on the analysis of
nonsymmetric data. Extending further to the space and all real 1X n matrices,
we recover the removal of row and column effects in statistical models for
two-way data as the transformation - 2T( .). Thirdly, following Gower
(1982), we may consider generalizations of the normalization condition
LX j = O. This is a more fundamental change, which affects B and each of the
four mappings studied, but not the set D. Finally, we may envisage extending
the collection {x j: i = 1, ... , n} to a countable infinity or continuum of
points. Clearly this requires restriction or normalization of the mappings T

and Ie in some sense to prevent their blowing up as the number of points
increases.

5.2. Applications
Our interest in the present paper arose out of multidimensional scaling.

For an excellent introduction to this subject see Kruskal and Wish (1978), and
for a recent authoritative review of its theory and algorithms see De Leeuw
and Heiser (1982). In the multidimensional scaling context, we identify a
collection X with an n X p configuration matrix i. of n points in I = iii P for
some p:E:; (n - 1). Depending upon the particular application on hand, it is
often appropriate to measure the squared distance between the ith and jth
points by their squared Euclidean distance, or by a weighted version (gjx j ­
g jX jl(gjxj - g jX j) of this in which gj > 0 reflects the importance of the ith
point in some sense, or by (xj-xjldiag(g)(xj-Xj) in which the positive
elements of the vector g reflect the relative importances of the dimensions,
or, most generally of all, by a squared Mahalanobis distance (x j - x jlM(x j ­

x j) for some symmetric, positive definite M. Each of these possibilities, and
several others, can be accommodated in the present paper by an appropriate
choice of the inner product on I and/or an initial transformation (such as
Xj -+ gjXj).

Taken together, the present paper and its companion (Critchley, 1986a)
provide a mathematical framework with many fruitful applications to the
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study of multidimensional scaling and related methods of data analysis. In
particular, it provides a means of their clear and precise comparison. For
example, Critchley (1980) uses this framework to characterize nine such
methods as contrasting optimization problems. This is useful (1) in giving
theoretical insights into these methods, (2) in establishing their formal
properties, and (3) in devising algorithms for their implementation. In
Critchley (1986c) we focus upon two particular methods and use them to
illustrate each of these three aspects in turn. The theme of Critchley (1980) is
that a variety of data analysis problems can be posed as projection onto a
closed convex cone. This establishes at once the existence and uniqueness of a
solution to the problem. Moreover the solution can be simply characterized in
terms of three conditions. For example, squared-distance multidimensional
scaling is projection of a given H onto D. The unique solution D is
characterized by DE D, (H - D, D) = 0, and thirdly (H - D) EDO =
'I" *( - B). Hence the importance of studying adjoints and polars. In a review
paper (Critchley, 1986d), we use this framework to unify and extend the
literature on Euclidean dimensionality theorems in multidimensional scaling
and hierarchical cluster analysis. In particular, certain results reported in
Lingoes (1971), Holman (1972), De Leeuw and Heiser (1982), and the
present author's D. Phil. thesis are generalized or unified there.

Gower (1982,1984,1985) has initiated a study of the theory of distance
matrices. See also Mathar (1985). In particular, Gower shows that HH-l n =

1n for any generalized inverse of any nonzero H in D. In a review paper
(Gower, 1986), he raises the problem of finding additional requirements on a
matrix H in SH which are necessary and sufficient for H E D. A solution to
this problem is given in Critchley (1986b) based on certain extensions to the
present paper.

One statistical approach to multidimensional scaling is via a probability
model for a dissimilarity matrix or, more generally, for H in SH' A collection
{hi;: 1 ~ i < j ~ n} of random variables identifies a matrix H in the obvious
way. Consider the probability model H = D + U in which DE D is an
unknown true matrix about which we wish to make inferences based on a
value of H observed in the presence of errors U. Let u = v(U), /L = E( u),
and ~H = cov(u) =cov(v(H)), where cov(·) denotes a covariance matrix.
Often we will take /L = O. Then C == '1"( H) is the true inner-product matrix
B == 'I"(D) plus the matrix V == 'I"(U) of errors. By linearity, v(V) = Tu and
thus is multivariate normal if and only if u is so. Moreover, in the general
case, the properties of E{ v(V)} = TIL and of Qc == cov{ v(C)} = cov{ v(V)}
= T~HT flow from those of IL and ~H using the spectral decomposition of T.
Thus, in the important special case where IL = 0 and ~H = (J2Im , one has
E(C) = B, while the above-diagonal elements of C have covariance matrix
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Explicit knowledge of 0c opens up the possibility of interval estimation for B
and thereby the configuration X. Similar remarks apply to hypothesis testing.

The matrix R in the matrix representation of 'T and " also plays a role in
the following probability model for H. Using the usual notation and assump­
tions, consider for n > 3 the following symmetric analysis of variance of
model:

for all i < j,

in which we impose the usual identifying restriction that a == (al"'" anf E

Wn • Using Proposition 4.1, this model can be written as

v(H)=Ol m +Ra+£,

in which 01 m E v(SJ) and Ra E v(S w ). Using the familiar characterization of
the fitting process as orthogonal projection, we have from Propositions 4.5
and 4.6 that 81 m = PJv(H) and Ra= Pwv(H), so that

Using the orthogonal decomposition of H given in Proposition 4.6, we obtain
at once the corresponding analysis of variance table:

Source

Mean
Between-point differences
Residual

Total

Sum of squares Degrees of freedom

1
n-1
m-n

m

A corresponding analysis is also possible for C.
Finally, we note a link with experimental design. We observe that RT is

the incidence matrix of a balanced incomplete block design with m blocks
and n treatments, each block containing two distinct treatments, each
treatment occurring in n - 1 blocks, and each pair of distinct treatments
occurring together in exactly one block. This design is symmetric if and only
if n = 3.
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