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Sparse signal recovery

measurements:

length m = k log(n)
k-sparse signal

length n



Problem statement

m as small
as possible

Construct matrix A : Rn → Rm

Assume x has
low complexity:
x is k-sparse
(with noise)

Given Ax for any signal x ∈ Rn, we can quickly recover x̂ with

‖x − x̂‖p ≤ C min
y k−sparse

‖x − y‖q



Parameters

Number of measurements m

Recovery time

Approximation guarantee (norms, mixed)

One matrix vs. distribution over matrices

Explicit construction

Universal matrix (for any basis, after measuring)

Tolerance to measurement noise



Applications

Data stream algorithms

xi = number of items with index i
can maintain Ax under increments to x
recover approximation to x

Efficient data sensing

digital/analog cameras
analog-to-digital converters

Error-correcting codes

code {y ∈ Rn|Ay = 0}
x = error vector, Ax = syndrome
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Two approaches

Geometric [Donoho ’04],[Candes-Tao ’04, ’06],[Candes-Romberg-Tao ’05],

[Rudelson-Vershynin ’06], [Cohen-Dahmen-DeVore ’06], and many others...

Dense recovery matrices (e.g., Gaussian, Fourier)
Geometric recovery methods (`1 minimization, LP)

x̂ = argmin‖z‖1 s.t. Φz = Φx

Uniform guarantee: one matrix A that works for all x

Combinatorial [Gilbert-Guha-Indyk-Kotidis-Muthukrishnan-Strauss ’02],

[Charikar-Chen-FarachColton ’02] [Cormode-Muthukrishnan ’04],

[Gilbert-Strauss-Tropp-Vershynin ’06, ’07]

Sparse random matrices (typically)
Combinatorial recovery methods or weak, greedy algorithms
Per-instance guarantees, later uniform guarantees



(Recent) History  
Paper Rand. 

/ Det. 
Sketch 
length 

Encode 
time 

Update 
time 

Recovery time Approx 

[CCF’02], 
[CM’06] 

R k log n n log n log n n log n l2 / l2 

R k logc n n logc n logc n k logc n l2 / l2 

[CM’04] R k log n n log n log n n log n l1 / l1 

R k logc n n logc n logc n k logc n l1 / l1 

[CRT’04] 
[RV’05] 

D k log(n/k) nk log(n/k) k log(n/k) nc l2 / l1 

D k logc n n log n k logc n nc l2 / l1 

[GSTV’06] 
[GSTV’07] 

D k logc n n logc n logc n k logc n l1 / l1 

D k logc n n logc n k logc n k2 logc n l2 / l1 

[BGIKS’08] D k log(n/k) n log(n/k) log(n/k) nc l1 / l1 

[GLR’08] D k loglogloglog 

n  
kn1-a n1-a nc l2 / l1 

[NV’07], [DM’08], 
[NT’08] 

D k log(n/k) nk log(n/k) k log(n/k) nk log(n/k) * T l2 / l1 

D k logc n n log n k logc n n log n * T l2 / l1 

[IR’08] D k log(n/k) n log(n/k) log(n/k) n log(n/k) l1 / l1 

Excellent Scale:  Good Fair Poor 



Unify these techniques

Achieve “best of both worlds”

LP decoding using sparse matrices
combinatorial decoding (with augmented matrices)

Deterministic (explicit) constructions

What do combinatorial and geometric approaches share?
What makes them work?



Sparse matrices: Expander graphs

S N(S)

Adjacency matrix A of a d regular (1, ε) expander graph
Graph G = (X ,Y ,E ), |X | = n, |Y | = m
For any S ⊂ X , |S | ≤ k, the neighbor set

|N(S)| ≥ (1− ε)d |S |

Probabilistic construction:

d = O(log(n/k)/ε),m = O(k log(n/k)/ε2)

Deterministic construction:

d = O(2O(log3(log(n)/ε))),m = k/ε 2O(log3(log(n)/ε))



RIP(p)

A measurement matrix A satisfies RIP(p, k , δ) property if for any
k-sparse vector x ,

(1− δ)‖x‖p ≤ ‖Ax‖p ≤ (1 + δ)‖x‖p.



RIP(p) ⇐⇒ expander

Theorem
(k , ε) expansion implies

(1− 2ε)d‖x‖1 ≤ ‖Ax‖1 ≤ d‖x‖1

for any k-sparse x. Get RIP(p) for 1 ≤ p ≤ 1 + 1/ log n.

Theorem
RIP(1) + binary sparse matrix implies (k, ε) expander for

ε =
1− 1/(1 + δ)

2−
√

2
.



Expansion =⇒ LP decoding

Theorem
Φ adjacency matrix of (2k , ε) expander. Consider two vectors x, x∗
such that Φx = Φx∗ and ‖x∗‖1 ≤ ‖x‖1. Then

‖x − x∗‖1 ≤
2

1− 2α(ε)
‖x − xk‖1

where xk is the optimal k-term representation for x and
α(ε) = (2ε)/(1− 2ε).

Guarantees that Linear Program recovers good sparse
approximation

Robust to noisy measurements too



Augmented expander =⇒ Combinatorial decoding
Combinatorial decoding: bit-testLocating a Heavy Hitter

! Suppose the signal contains one “spike” and no noise

! log2 d bit tests will identify its location, e.g.,

B1s =




0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1









0
0
1
0
0
0
0
0





=




0
1
0




MSB

LSB

bit-test matrix · signal = location in binary

One Sketch for All (MMDS 2006) 18

Theorem
Ψ is (k , 1/8)-expander. Φ = Ψ⊗r B1 with m log n rows. Then, for
any k-sparse x, given Φx, we can recover x in time O(m log2 n).

With additional hash matrix and polylog(n) more rows in
structured matrices, can approximately recover all x in time
O(k2 logO(1) n) with same error guarantees as LP decoding.

Expander central element in [Indyk ’08], [Gilbert-Strauss-Tropp-Vershynin ’06, ’07]



RIP(1) 6= RIP(2)

Any binary sparse matrix which satisfies RIP(2) must have
Ω(k2) rows [Chandar ’07]

Gaussian random matrix m = O(k log(n/k)) (scaled) satisfies
RIP(2) but not RIP(1)

xT =
(
0 · · · 0 1 0 · · · 0

)
yT =

(
1/k · · · 1/k 0 · · · 0

)
‖x‖1 = ‖y‖1 but ‖Gx‖1 ≈

√
k‖Gy‖1



Expansion =⇒ RIP(1)

Theorem
(k, ε) expansion implies

(1− 2ε)d‖x‖1 ≤ ‖Ax‖1 ≤ d‖x‖1

for any k-sparse x.

Proof.
Take any k-sparse x . Let S be the support of x .

Upper bound: ‖Ax‖1 ≤ d‖x‖1 for any x

Lower bound:

most right neighbors unique
if all neighbors unique, would have

‖Ax‖1 = d‖x‖1

can make argument robust

Generalization to RIP(p) similar but upper bound not trivial.



RIP(1) =⇒ LP decoding

`1 uncertainty principle

Lemma
Let y satisfy Ay = 0. Let S the set of k largest coordinates of y .
Then

‖yS‖1 ≤ α(ε)‖y‖1.

LP guarantee

Theorem
Consider any two vectors u, v such that for y = u − v we have
Ay = 0, ‖v‖1 ≤ ‖u‖1. S set of k largest entries of u. Then

‖y‖1 ≤
2

1− 2α(ε)
‖uSc‖1.



`1 uncertainty principle

Proof.
(Sketch): Let S0 = S, S1, . . . be coordinate sets of size k in
decreasing order of magnitudes

A′ = A restricted to N(S).

On the one hand

‖A′yS‖1 = ‖AyS‖1 ≥ (1− 2ε)d‖y‖1.

On the other

0 = ‖A′y‖1 = ‖A′yS‖1 −
X
l≥1

X
(i,j)∈E [Sl :N(S)]

|yi |

≥ (1− 2ε)d‖yS‖1 −
X

l

|E [Sl : N(S)]|1/k‖ySl−1‖1

≥ (1− 2ε)d‖yS‖1 − 2εdk
X
l≥1

1/k‖ySl−1
‖1

≥ (1− 2ε)d‖yS‖1 − 2εd‖y‖1

S

S1

S2

y Ay

N(S)



Combinatorial decoding

Bit-test

Good votes

Bad votes

Retain {index, val} if have > d/2 votes for index

d/2 + d/2 + d/2 = 3d/2 violates expander =⇒ each set of
d/2 incorrect votes gives at most 2 incorrect indices

Decrease incorrect indices by factor 2 each iteration



Empirical results

δ

ρ

Probability of exact recovery, signed signals
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Probability of exact recovery, positive signals
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Performance comparable to dense LP decoding

Image reconstruction (TV/LP wavelets), running times, error
bounds available in [Berinde, Indyk ’08]



Summary: Structural Results

Geometric Combinatorial

RIP(2) RIP(1)⇐⇒

Linear
Programming

Weak 
Greedy



More specifically,

Expander

RIP(1) matrix

LP decoding

sparse 
binary

+ 2nd hasher 

(for noise only)

bit tester 

Combinatorial 
decoding

Explicit constructions

m = k2
(log log n)O(1)

(fast update time, sparse)

(fast update time, fast recovery time, sparse)



Application: combinatorial group testing

R. Kainkaryam (Univ. of Michigan)
and P. Woolf (Univ. of Michigan)



Application: combinatorial group testing

Rat dies only 1 week after drinking poisoned wine



Being good (computer) scientists, they do the following:





Unique encoding of each bottle



If bottle 5 were poison...



...after 1 week



Problem statement: CGT

m as small
as possible

Construct matrix A : Bn → Bm

Assume x has
low complexity:
x has k-defects
the rest are zero

Given Ax for any signal x ∈ Bn, we can quickly recover k defects
present in x . Note: arithmetic is boolean and result from pooled
test is {0, 1}.



High Throughput Screening (HTS)

HTS is an essential step in drug discovery
(and elsewhere in biology)

Large chemical libraries screened on a
biological target for activity

Basic {0, 1} type biological assays to find
active compounds

Usually a small number of compounds found

One-at-a-time screening: automation and
miniaturization

Noisy assays with false positives and
negative errors

Motivation Pooling in HTS QUAPO Results Conclusions

High Throughput Screening (HTS)

HTS is an essential step in drug discovery (and elsewhere in biology).

Large chemical libraries screened on
a biological target for activity.

Basic yes-no type biological assays
to find active compounds .

Usually a small number of
compounds found.

One-at-a-time screening – power
comes from automation and
miniaturization.

Noisy Assays with false positive and
negative errors.



Current HTS uses one-at-a-time testing scheme (with repeated
trials).

Motivation Pooling in HTS QUAPO Results Conclusions

Current HTS Design

Current HTS uses a one-at-a-time testing scheme.



Pooled HTS design

Motivation Pooling in HTS QUAPO Results Conclusions

Pooled HTS Design

Propose the use of pooled
testing of compounds.

Uses fewer tests.

Work is moved from testing
(costly) to analysis (cheap).

Handles errors in testing due
to in-built redundancy.

Propose using pooled testing of
compounds

Uses fewer tests

Work moved from testing
(costly) to computational
analysis (cheap)

Handles errors in testing better
due to built-in replication

Additional quantitative
information



HTS and signal recovery
Motivation Pooling in HTS QUAPO Results Conclusions

Analogy to HTS

To use compressed sensing approach we need a linear model.



Quantitative analysis of pooling in HTS

Constraints

linearity: measured quantities map linearly to compound
activities
sparsity: most compounds inactive


y1

y2

...
ym

 =


1 0 . . . 0 1
0 1 . . . 0 1

...
...

1 0 . . . 1 0




x1

x2

...
xn−1

xn


Challenges

choosing a good mixing scheme
enforcing a mixing constraint
recovery algorithm tolerant to measurement noise + errors



Our approach

Binary measurement matrix: adjacency
matrix of unbalanced expander graph

Appropriate linear biochemical model

Decoding via linear programming

Motivation Pooling in HTS QUAPO Results Conclusions

Sparse Recovery Problem

QUAPO

Binary measurement matrix : Adjacency
matrix of unbalanced expander graph.a

Appropriate linear biochemical model.

Decoding : via Linear Programming.

aBerinde et. al. (2008) – Combining geometry and
combinatorics: A unified approach to sparse signal
recovery



Small library

Synthetic screen: small molecule ligands for formylpeptide
receptor, 6 active [Edwards, et al., Nature Protocols ’06]

n = 272, k = 6, using deterministic STD matrix, m = 116

Motivation Pooling in HTS QUAPO Results Conclusions

Small Library : Competitive Binding

Synthetic Screen : small molecule ligands for formylpeptide receptor (FPR) with
6 showing activity.6

poolHiTS(n = 272, d = 3, e = 0%, m = 10) required t = 116 tests.

y =
(1+Ka[L])

[D]
%I

100−%I
=
P

i Ki

[L] = 1.5µM, 1/Ka = 3µM and [D] = 1.5µM

6Edwards et. al., Nature Protocols (2006)



In silico

Motivation Pooling in HTS QUAPO Results Conclusions

Small Library : QUAPO Result



Large library

Actual screen: 50,000 compounds screened against E. coli
dihydrofolate reductase (DHFR), 12 active [McMaster HTS Lab Data

Mining and Docking Competition ’05]

n = 50, 000, k = 12 screened in 122 blocks of 410 compounds
using STD deterministic matrix, m = 10, 004

Motivation Pooling in HTS QUAPO Results Conclusions

Large Library : Competitive Inhibition

50, 000 compounds screened against E. coli dihydrofolate reductase (DHFR)
with 12 showing activity.7

poolHiTS(n = 50, 000, d = 12, e = 0%, m = 10) screened in 122 blocks of 410
compounds requiring a total t =10,004 tests.

y =
(1+[S]/Km)

[D]
100−%RA

%RA
=
P

i Ki

[S] = 30µM, Km = 9.5µM and [D] = 10µM

7McMaster HTS Lab Data Mining and Docking Competition (2005)



In silico
Motivation Pooling in HTS QUAPO Results Conclusions

Large Library : QUAPO Result



Current/Future work

Computer Science:

`2/`1 error bounds for sparse matrices?
optimal number of measurements for Fourier matrix, sublinear
algorithms
refined decoding with noise + missing measurements
refined error analysis
decoding algorithms to rank compounds

Chemical Engineering:

good/best explicit constructions which meet experimental
constraints
refine error analysis, algorithm output for cultural
interpretations of biologists
design and implementation of several in vitro experiments
(HTS, differential gene expression)




