DOUBLY STOCHASTIC MATRICES AND THE DIAGONAL OF
A ROTATION MATRIX.* 1

By Avrrrep HoRrN.

An elegant theorem of Hardy, Littlewood and Polya (Theorem 1 below)
has been generalized and applied in various ways in recent literature. In
this paper we shall present an extension of their theorem (Theorm 4). As
an application we prove that the set of all diagonals of rotation matrices of
order » is equal to the convex hull of those points (&1, - -, == 1) of which
an even number of coordinates are — 1. From this, we determine the set
of all diagonals of orthogonal or of unitary matrices. It would be interesting
to prove without Theorem 4 that the set of diagonals of rotation matrices
is convex.

1. Definitions and notation. If A is a matrix, then 4, will denote its
i, j component and we write 4 = (44). A similar convention will be used
for vectors. An n-vector is a vector with n components. A unit vector is a
vector of length one. The diagonal of a matrix 4 is the vector (A1, -, Apn).
A diagonal matrix is one whose non-diagonal elements vanish. The identity
matrix is the diagonal matrix with diagonal (1, - -, 1).

A permutation matrix is a matrix with elements all 0 or 1 such that
every row and every column contains exactly one element equal to 1. A doubly
stochastic (d.s.) matrix is a matrix P such that P; =0, 3 Pjj= 3 Pij=1

i i

for all 4 and j. We use the symbols A’, A and A* for transpose, conjugate
and conjugate-transpose respectively. By an orthogonal matrix, we mean a
real matrix A such that A”= A-!, A rotation matrix, or rotation, is an
orthogonal matrix with determinant 4 1. A unitary matrix is a matrix 4
such that 4% = A-1.

If o is a real m-vector, then H (z) is the convex hull of all the points
(Toyy* * *»q,), @ varying over all permutations of (1, - -,n). By 8™,
we mean the set of all & termed sequences o of integers for which 1 = oy < - -
< oy =n. The only member of 8% is the empty sequence.

* Received April 16, 1953.

* This paper was written while the author received partial support from the Office
of Naval Research.
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DOUBLY STOCHASTIC MATRICES. 621

If 2 is a complex number, R denotes its real part. Occasionally we
shall use ¢ both as a summation index and to denote the imaginary unit
(—1)% But we shall do this in such a way as to avoid confusion.

2. Doubly stochastic and ortho-stochastic matrices.

TarorEM 1. Let a,y be real n-vectors. Then the following statements
are equivalent:

(1a) y == Pz, where P is a d.s. matriz.

(1b) yeH(z).

X k 3 n
(1e) max 4o, = mMax 2o, 1=k=n and X y;= > .
gel8". i=1 oeln =1 i=1 i=1
n n
(1d) 2 fy) = X f(w) for any convex function f whose domain con-
=1 =1

tains all the numbers x;, ¥, 1 =1 = n.

Proof. The equivalence of (1a), (1¢) and (1d) is proved in [1], pp. 49
and 89. Also (1b) is equivalent to (la) by virtue of the following theorem
of G. Birkhoff [2].

THEOREM 2. A matriz is d.s. if and only if it lies in the convex hull
of the set of all permutation matrices.

In case @, = - - = @, the conditions (1c) are equivalent to
n ke k
(19) 2 Z; é 2 Yo, § 2 Ty, aE S"}c, 1 é k é n.
P=n~k+1 i=1 i=1

We take this opportunity to point out a companion to Theorem 1, various
parts of which are scattered through the literature.

THEOREM 3. Let x,y be n-vectors for which ;= 0, 4, =0, 1 S 1= n.
Then the following statements are equivalent:

n n
(Ra) == P, where P is ¢ matriz such that P; = 0, X Py =1, 2 Py =1,
4=1 ji=1
110 1550
1 &k
(2b) max > Yo, = max &, 1=k=n.
geSW =1 geS% i=1
" n
(2¢) Sy = 2 f(w) for any convex non-decreasing function f whose
i=1 =1

domain contains all the numbers @iy yi, 1 = 1= n.

10
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Proof. The proof given in [1] for the implication (1d)-» (1c) also
proves (2¢) — (®b). The fact that (2b) — (2¢) is proved in [3]. Ky Fan
[4] proves (2a) — (2b). He also states (2b) — (2a) and quotes a lemma
used in his proof. Using the fact that (1c) — (1a), a simple proof may be
obtained. It is also possible to derive (2a) — (2b) from (1la)— (1b) by
using the fact that any matrix of the kind described in (Ra) may be aung-
mented to a d.s. matrix (of order = 2n).

A special class of d.s. matrices consists of those matrices @ such that
Qi; = U,;? where U is an orthogonal matrix. Let us call such matrices ortho-
stochastic (o.s.) matrices. Not every d.s. matrix is an o.s. matrix. In
fact it is not hard to see that the matrix

1 1 0
i1 0 1
0 1 1
cannot even be expressed as a product of o.s. matrices. (This example is

due to A. J. Hoffman.) Nevertheless we have the following theorem.

TaeoreM 4. If z,y are n-vectors salisfying (1c¢), then there exists an
0. 5. matriz Q such that y= Qz.

The proof of Theorem 4 will be simplified if we first prove a lemma.

DerFiNITON. If 2, = - =2y, and 1 = m = n, let T™(z,,- - -, Tn) be
n 1 13

the set of points (2, - -, 2s) such that X ;= X7z, = X x; whenever
i=n-l+1 i=1 i=1

celm, 1=k=m. Also let T°(,, - - -, z,) be the empty set.

Lemma. If o= - =@, and (Yo" 5, Yna) €T (20, - -, 20) and
n = 2, then there exists a set of n— 1 real ortho-normal n-vectors u',- - -, u"*
such that

(3) y7=2 (Uji)za’!i, 1 éjé’lb~— 1.
=1

Proof. The statement is obvious for n =2. We proceed by induction.
Suppose the lemma is true for 2 =n < N. Clearly T¥*(z,,- - -, zy) con-
sists of the points (1, - -, yny—1) such that (yy, -, yy—o) € TN2(21, -+, 2¥)

and such that b =yy, =a, where b is the largest of the numbers

N K E+1 k
bo = > @ — > Yo,, and a is the smallest of the numbers ao = X ¢, — X Yo,
i=N-k =1 =1 =1

as o ranges over SV-%, and k varies from 0 to N —2. (When ¢ is the empty
sequence, be =2y and ac =,).
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For each o e SN2, 0 = k = N — 2, let T's be the subset of TN-2(zy, - - -, zy)
on which a = aos, and let 7" be the subset on which b =bs. It is not
hard to verify that To consists of the points (yi,- - -, yy_.) such that

(yav' ) y”k) € Tk(xb T xk+1) and (y"'v T yU’N-z-k) €

TN-*%(&yyo, - -, @y), Where o’ is the sequence consisting of those integers

from 1 to N —2 which are not among the terms of o. Verify also that
N-2

To=1T¢. It follows that T¥*(a,,- - ,zy) = U 8o, where Jo is
k=0 g e SN2

the set of points (yi, - -, yw—1) such that (yi, - ,yy»)eTs and
bo = Yy-1 = do.

Now let (y1, - -, yny-1) be a fixed point of TW-*(zy,- - -, zy). Then
(%1, + -, yn-1) €S0 for some fixed o€ 87, and some fixed s =N —2. We

must find an ortho-normal sequence w*,- - -, uN-! for which (3) holds. By
the induction hypothesis, there exist % real ortho-normal k - 1-vectors
v, - - -, v% and N — 2 — k real ortho-normal N — 1 — k-vectors v, - - -,

F+1 N-1-k&
vo'¥=r guch that yo, =3 (v")%, 1=m=Fk, yo, = (v"") T,
i=1 i=1
1=m=N-—R—%k. We define N— 2 ortho-normal N-vectors u?,- - -, u?-2

as follows: uom — (vomy, - -+, 0om4,,0,- -+, 0), 1 =m =k; u'» = (0, - -,0,

N
vy, vy ), 1SEm=N-—2—Fk  We have y;=2 (uf;)w,
=1
1=j=N—2. If u ranges over the circle consisting of all real N-vectors
orthogonal to #?,- - -, uN-2 then the values of the sum
N
(4) 2 (wi) 2y
4=1
fill out some interval. If we take w= (vi,- ' -, ¥4, 0,- - -,0), where
(v1,° © *, Vrar) s a real unit k 4 1-vector orthogonal to o, - - -, v9% then
k+1 13
(4) takes on the value X a;— X 9o, = ao. Also if we take u— (0, - -,0,
=1 j=1
Vi, Unax), Where (v, ¢, Uy.x) 18 a real unit vector orthogonal to
N N-2-k
v, -+ -, 7%k then (4) takes on the value X #;— 3 yor, = bo. There-
i=k+2 j=1

fore if bor = yn-1 = a0, there exists a real unit N-vector uN-! orthogonal to

N
u', - - -, ulN"? such that yy, = (u¥V%) 2%,
i1

Proof of Theorem 4. There is no loss of generality if we assume
Ty = = %, As mentioned above, condition (1c) is equivalent with (1e).
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Furthermore it is easily verified that (le) is equivalent to the conditions

n n-1
(Y150 * "5 Ynma) €T (@g, - - -, @), and yp = X &, — X 95 By the preceding
=1 =1

lemma, there exists an ortho-normal system w*,- - -, u** such that (3) holds.

If w» is a real unit vector orthogonal to w*, - - -,ur?, it follows that
n n n-1

S (um)? = X v — > y; = yn. Thus if we set Q= (u/;)? then Q = (@)
i=1 i=1 j=1

is the desired o.s. matrix.

An immediate consequence of Theorem 4 is the following.
THEOREM 5. A wvector y can be the diagonal of a Hermitian matriz
with etgenvalues @y, - -, @, if and only if (lc) holds.

Proof. A Hermitian matrix A has eigenvalues zy,- - -, 2, if and only
if A = UBU¥*, where B is the diagonal matrix with diagonal (.- - -, @),
and U is a unitary matrix. Therefore y is the diagonal of such a matrix 4

if and only if y; = é | Uy |2w;. Theorems 1 and 4 now yield the conclusion.
j=1

The neecssity of (1c) in Theorem 5 was pointed out by Schur [5],
who showed that this leads to a simple proof of Hadamard’s inequality for
determinants.

It is interesting to compare Theorem 5 with the following theorem,
proved in [6].

TareoreM 6. Let 2; > 0. 1=1=mn. Then there exists « Hermitian

i
matric A with ecigenvalues i, - - -, T, such that Jlyi= My, 1=k =mn,
where My is the determinant formed from the first k rows and columns of A,

if and only if max H:l/o'L = max qui and Hyl ﬁx@
=1

geSn i=1 oelSty =1

3. Remarks on the complex case. If y = Pz, where z,y are complex
n-vectors, and P is a d. s. matrix, then there is an analogue to the implication
I
(la) — (le). We can show that for each & 8";, > 9o, lies in the convex
A =1
hull of all the points 3 ;,, r & S". More generally, we have:
=1

TurorEM 7. If y= Pz, where x,y are complex n-vectors, and P s a

n
d.s. matriz, and if ¢, - -, ¢, are any complex numbers, then > cy; lies in
i=1
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the convex hull of all the points 2 Cia,, @€ R™ where RB* is the set of all
permutations of (1, - -, n). =
Proof. By Theorem 2, we may write P = 3 a.P% where P%;=1

ae R
when ;= 4, and P%; = 0 otherwise, and a4 =0, X a¢q=1. Therefore
o

n n n
2 CiYi = 2 P,-,-cia:,- = 2 Qg 2 P%jcixj

i=1 i, §=1 a @5 j=1

n n n
=X ta 2 6 2 P%aj =3 4 2 Cia,
o 4=1  j=1 « i=1

We do not know whether the converse of Theorem 7 is true. However,

there cannot be any simple analogue of (le) — (la). In fact there exists
4

a pair z,y of 4-vectors such that X ¢;y; lies in the convex hull of the points
=1

4
> City, for all real ¢, - - -, ¢, and yet there exists no d.s. matrix P such

i=1

that y = Pz. For example take y = (1/4 4+ 2¢/3,—1/4 -} 2¢/3,0,0) and
= (1,—1,4,¢/3). Theorem 4 also breaks down in the complex case. In
fact if y= (0,1/2 44/, —1/2 +1/2), v = (1,—1,1), then there is one
and only one d.s. matrix P for which y = Pz, namely

1 1 0
=11 0 1).
0 1 1
However the equivalence (1d) <> (1a) still holds for complex vectors [7].

4. The diagonal of a rotation.

THEOREM 8. A vector (di,- - -, dy,) 1s the diagonal of a rotation of
order n if and only if it lies in the convex hull of those points (=1, -+, %= 1)
of which an even number (possibly 0) of coordinates are — 1.

Proof. If R is a rotation, then its eigenvalues are all of modulus 1. The
complex eigenvalues occur in conjugate pairs and an even number of the real
eigenvalues are — 1. Therefore we may say that if » is odd, say n = 2m - 1,
then the eigenvalues are of the form 1, exp(= i,), - -, exp(== 0,), where
0=40; < 2r. If n=2m, the eigenvalues have the form exp (== 1,), - -,
exp (= 1,,). In what follows, the case n even is practically identical with the
case n odd. Accordingly we will only treat the case n =2m + 1. It is well
known that there exists an orthogonal matrix U7 such that R = U’AU, where
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A— : , and By —(CSOTsbN o
. sing; cos?;

0 B,

Therefore
Rjj=Uj;® + Uj? cos 8, + Ujs® cos b,
4 4 Ujam?® €08 0y + U jzmsr® €OS O, 1==n

By Theorem 4, it follows that (d,,- - -, d,) is the diagonal of a rotation
with eigenvalues 1, exp (== 46;),  * -, exp (== 10,) if and only if it lies in
H(1,cos;,cos 0, - -, c080m,cosby). Since H(x) is unchanged if we
permute the coordinates of z, we find that the set S of all diagonals of n-th
order rotations has the form
(5) S = U@a];”% S H(a,a, o a, a).

=0m

Let 7" be the convex hull of those points (=% 1,- - -, == 1) of which an
even number of coordinates are — 1. To prove § C T, we need only show
that if 1=, = - Zaw=—1, then (1,0, 0. - -, am an) e¢T. This
follows immediately from the formula

m
D=t 11Si=m H %(1 -+ xfai)(ly Lyy Ly "y Ty fL'm)
=1
m-1

= EmFi L1=i=m-1 H %(1 + :I"f'(l':f)(ly Ty, Ty, " " " Tty Tty A a’m)
j=1

= - '=(1)a1}a17' T, Omy am)’

To show that 7' C S, we first note that each of the vertices of 7 is
obviously in 8, by (5). Therefore to complete the proof, we need only
show that S is convex. Suppose z,y are distinct points of S, and 0 < A < 1.
By (5), there exist sequences {¢;}, {b;} such that 1 =0, = - - - =@, = —1,
IZzb= - Zbn=—1,

m —
veH(l, a0 a0, -, am, @), and yeH (1, by, by, - -, by, b).
By using the equivalence of (1b) and (1c) it is easy to show that

Az 4 (1—A)ye H(1, A, + (1 — )by,
Aty 4 (1 —=A)bs, - -, A+ (1 —A)bm, A+ (1 —A)bp) C 8.
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TreorEM 9. Let © be a real n-vector, n = 2. The following statements
are equivalent
(6a) Su=n—2Hd v, md 0=, =1,1=Zi=Zn.
jF#i

(6b) @ lies in the convex hull of B, where B is the sel of those points
with coordinates all 0 or 1 for which the number of 0 coordinates is different

from omne.
(6¢) x 15 the diagonal of « rotation, and 2, =0, 1 <1 = n.
(6d) x 18 the diagonal of a d.s. matriz.

Proof. Given any set A of & integers between 1 and n, there exists a
permutation which leaves invariant the members of A, and only these, as
long as k5% n— 1. Therefore the set of diagonals of permutation matrices
of order n is exactly B. Theorem 2 now shows that (6d) and (6b) are
equivalent. We conclude the proof by deriving the implications (6b) — (6¢)
— (6a) — (6d).

(6b) — (6c) : Since the set S of diagonals of rotations is convex, we
need only prove B C §. 1f z¢ B, then some permutation of z has the form
(" - "syn), mwhichy; =0, 1=1=k, s =1, k+1=i<n,and k=~ 1.
1t k& is even, then ye S by (5). (When n=2m, (5) remains valid if we
drop the 1 in H(1, as, a1, * -, m, a)). If k is odd, then & = 3, and using the
equivalence of (1b) and (lc), it is easy to prove that y e I (z), where 2, — 1,
I1=1=n—k—+1, Zon=13%, Znss =—12, and 2z, =0 otherwise. Again
H(z) C 8 by (5).

(6c) — (6a): Let « be the diagonal of a rotation of order n. If
n=2m —+ 1, then by (5), xe H (1, a1, @, * -, Gy, t) for some sequence {a;}
with 1=a, = - - =an=—1. Therefore by (1le),

2$]§1+2(t]—|— . ‘+2am~1+am§n—2+$1.

i
The case n even is analogous.
(6a) — (6d): Suppose x satisfies (6a). We may exclude the obvious
case ;=1 for all v. Lety;—=1—ua; Then 0=y, <1 and 2yt<2yj#0
Let 8= Zy, and set 2z;=2y;/8. Then 0 =2 <1 and 2%—-2 By the

=1

equlvalence of (1b) and (lc), we have (25, - -,2,)eH(1,1,0,- - -,0).



623 ALFRED HORN.

Therefore (21, « *, %) = Dusicjsn@ut'!, Where u¥/ is the n-vector whose i-th
and j-th components are 1, and whose other components are 0, and a; = 0,
> a;;=1. Therefore (1 —ay, - -, 1—x,) = X y;uts, where yi; = 8- ay;/2.
i< 1<)

If we define Py =2x; and P;j = Pj=1yy for 1=1=7=mn, we obtain a
symmetric d.s. matrix P = (P;;) with the desired property.

TuEOREM 10. For n =2, a real vector (d.,- - -, d,) i the diagonal
of an orthogonal matriz if and only if the vector v = (|di|,- - -, |dn])
satisfies any one of the conditions of Theorem 9.

Proof. Suppose z satisfles (6c). If z is the diagonal of a rotation,
then d is the diagonal of an orthogonal matrix, since an orthogonal matrix
remains orthogonal when we multiply any row by — 1.

Now suppose d is the diagonal of an orthogonal matrix. Then at least
one of the two vectors (|dy|," - -,| dia|, = di, | disa |, © -, | dn|) is the
diagonal of a rotation. The proof of (6¢) — (6a) did not use the hypothesis
;= 0. Therefore we have X |d;j|=n—2 +d;=n-—2+ |d;|, which
proves (6a). 7

THEOREM 11. For n =2, a complex vector (d.,- - -, dy) is the diagonal
of a unitary matriz of and only if the vector ¢ = (| dy |,- - -, | dun|) satisfies
any one of the conditions of Theorem 9.

Proof. Suppose z satisfies (6¢c). Then « is the diagonal of a rotation R.
It we multiply the ¢-th row of R by arg d;, whenever d, == 0, then R becomes
a unitary matrix with diagonal (d,,- - -, da).

To prove the converse (the idea of this proof is due to J. von Neumanu),
let a=sup (|di|+- -+ |dus|—|du]|) as d varies over all diagonals
of unitary matrices of order n. In order to prove (6a), we need only show
a=n—2. Clearly « = n —2R, as is seen by considering the identity matrix.
Now let U be a unitary matrix for which | Uy, |+ - -+ | Uy net | — | Una |
= a. By multiplying each row by a proper factor, we may assume that
Uy;=0,1=t¢=n. By the maximal property of U, we have U;; = U, since

n-1
otherwise an interchange of rows of U would increase the value of 3, Uy — U,
=1

Thus it involves no loss of generality to assume U,; = - - = U,, = 0.
n-2
1f Upynor=0, then a =3 Uy =n—2 and (6a) is proved. Hence-
i=1

forth assume Uy ys > 0. For 1 =p < qg=mn, let Vr¢ be the matrix of
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order n for which V?4,, — V94, = cos ¥, V1, —— V*%, = sin 6 exp (i8),
where 6, 8 are arbitrary real numbers, and V79; — §; for i 5% p, ¢, and j 5% p, q.

n-1 n-1
It W=UV", we have X | Wy | — | Won | = 2 Usi— Upy.  Therefore
=1 =1

(7) | Uwncos—U,.sinbexp (—if)| -+ | Usi sin 6 exp (48) + U..cos 6 |
é Ull + UZZ'

The expansion of the left side of (7) in powers of 6 begins with
(Uss + Uszz) + 0[ R (exp (18) (Uor — U12) )1 4+ - -

Consequently the coefficient of § must vanish for all 8. This can occur only
if Uy = U, Similarly Uy =10, for 1=1=j=n—1. From this it

follows that | U | = | Uni|, 1= 1= n.
If U,w > 0, then by multiplying U on the right by Vi and using the
same reasoning as before, we find Uy = — Uiy, 1 =1 =n—1. Therefore,

if we multiply the last row of U by — 1, we obtain a symmetric unitary
matrix B for which B,, < 0 and such that ¢ = %BM.
i=1

In case Unn =0, let k be an integer for which Uy, 54 0, and let B be the
matrix obtained by multiplying the n-th column of U by arg (Uy,) and the
n-th row of U by arg (U.x). Then By, =By, > 0. If j£k 1=j=n—1,
we have

n-1 -

n-1 -
Bjann = ngﬁBki = 2 Bi]‘Bik = BM'Bnk-

=1
Therefore By, =1-3’,,,-. Thus in both cases, we have obtained a symmetric
unitary matrix B for which @ = ¥ B;, and B,, = 0. But the eigenvalues of
i=1
a symmetric unitary matrix are all = 1. Also « is equal to the sum of the
eigenvalues of B. Since B is not the identity matrix, B,, being non-positive,
the trace of B can be at most n — 2. The proof is complete.

By using Theorem 11, we can prove many curious inequalities in the
elements of a unitary matrix. For example, if we apply Theorem 11 to the

product »
1 1 1 1
(U 0).; 1 1 —1 —1
0 1/ %1 —1 1 —1
1 —1 —1 1
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where U is an arbitrary unitary matrix of order 8, we find
,—U11+U12+U13 ] + I UZI—U22+ U28 ' + l U31+U3?J—033|§5'
The bound is attained for

1 —2 —2
U=3(—2 1 —2).
—2 —2 1

THE INSTITUTE FOR ADVANCED STUDY.
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